Graphite in Rocks of the Popigai Impact Crater: Residual Or Retrograde?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure Characterization of Impact Natural Diamond from Popigai Crater
80th Annual Meeting of the Meteoritical Society 2017 (LPI Contrib. No. 1987) 6191.pdf STRUCTURE CHARACTERIZATION OF IMPACT NATURAL DIAMOND FROM POPIGAI CRATER Mara Murri1, Adrian P. Jones2, Paul F. McMillan3, Christoph G. Salzmann3, Matteo Alvaro1, M. Chiara Domeneghetti1, Fabrizio Nestola4, Mauro Prencipe5, David Dobson2, Rachael Hazael3, Moreton Moore6, Sergei A. Vishnevsky7, Alla M. Logvinova7, Nikolay V. Sobolev7 1 Earth and Environmental Science University of Pavia, Via Ferrata 1, Italy ([email protected]), 2 Department of Earth Sciences, University College London, WC1E 6BT, UK ([email protected]), 3 Department of Chemistry, University College London, WC1E 6BT, UK, 4 Department of Geosciences, University of Padua, Italy 5 Earth Sciences Department, University of Torino, Italy, 6 Royal Holloway, University of London, TW20 0EX, UK, 7 Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Ave., 3, 630090, Novosibirsk, Russia Introduction: Impact cratering is undoubtedly one of the most frequent high-energetic and potentially catastrophic event occurring at the earth surface and in the planetary system. For example, the energy released from an impact occurring on the Earth’s surface as calculated even for a small impact crater appears to be 3 orders of magnitudes higher than the Hiroshima atomic bomb. These enormous energies and the very short duration can cause unique irreversible changes to rocks and minerals (eg. deformations, phase transformations, melting and vaporization) and are compatible with P and T conditions required to transform graphite into diamond (4.5GPa at 1000°C) and are also enough to induce deformation in the newly formed diamonds. -
The Popigai Crater in the Capacity of Interplanetary Structural Analog
EPSC Abstracts Vol. 5, EPSC2010-217, 2010 European Planetary Science Congress 2010 c Author(s) 2010 The Popigai crater in the capacity of interplanetary structural analog. G.Dolnikov (1), O.Korablev (1), O.Roste (1) and N. Evdokimova (1) (1) Space Research Institute (IKI), Russia, ([email protected] / Fax: +7-495-3332566) Abstract Popigai crater was formed into two-layer target of Archaean crystalline rocks of the Anabar Shields, In central Arctic Siberia of Russia is situated one of and overlying Proterozoic to Mesozoic sedimentary interesting placing our planet crater Popigai. It is the sequences. Basement rocks are represented by the 4th largest impact crater on Earth but the best Verkhne-Anabar (lower layer up to 10 km thick) and exposed, the three other craters are larger, but they the Khapchan (about 800-1200 m) series [3]. are either buried (Chicxulub), strongly deformed (Sudbury), or deformed and severely eroded (Vredefort). The crater is filled with melted and shuttered material, including microdiamonds and other high pressure minerals characteristic of ultra- high pressure formed during the catastrophic impact. 1. Introduction One of very interesting astroblem of Earth is one hundred kilometres Popigai structure, centred at 7134'N, 11112'E in central Arctic Siberia (Fig. 1, 2), that has been ascribed as nature conservation Figure 2: Space image of Popigai meteorite crater. object of our planet of significant first value [1], [2]. Сlearly showed the inner part about 80 km with a darker tone of forest. In Western and North-Western 2. Popigai astroblem sectors of crater clearly showed exits fragments of bottom old crater and melt rocks (tagamites). -
Shocked Quartz, Ir, Sr, and OS Anomalies Found in the Late
LPS XXVII 239 Shocked Quartz, Ir, Sr, and 0sanomalies found in the Late Eocene at Massignano (Ancona, Italy): clear evidence of a bolide impact. Aron K. Clymer, Dept. of Geology and Geophysics, University of California, Berkeley, California 94720; Hubert B. Vonhof, Research School of Sedimentary Geology (NSG), Inst. of Earth Sciences, Vrije Universiteit, de Boelelaan 1085, 1018 HV, Amsterdam, Netherlands; Thomas Meisel, Dept. of Geology, University of Maryland, College Park, MD 20742; David M. Bice, Dept. of Geology, Carleton College, Northfield, MN 55057; Alessandm Montanari, Osservatorio Geologico di Coldigioco, 62020 Frontale (MC), Italy. Shock metamorphosed quartz grains coincident with a positive Ir anomaly of 199 +I- 19 ppb, a positive 87Srl86Sr anomaly, and a negative 187W 1880s anomaly of about 0.3 5 have been found in a marly layer of the Late Eocene Scagha Variegata formation at Massignano (Ancona), which clearly indicates a large impact with an interpolated radiometric age of 35.7 +I- 0.4 Ma. The Popigai crater (Siberia, - 100 km diameter) and the recently discovered Chesapeake Bay Crater (Eastern U. S., - 80 km diameter) are the only known giant craters from the Late Eocene and are prime candidates for the event that distributed the shocked quartz and geochemical anomalies found at Massignano. Although the Middle and Late Eocene are characterized by signrficant stepwise extinctions, the only evidence of a biotic response at Massignano to an impact is a cooler water shift in the dinocyst assemblage associated with the impact layer. Therefore the effects of the impact on this region of the Late Eocene Tethys appears mild, and the global ramification s of the Late Eocene impacts on climate and life remains unclear. -
Carbonados from Central Africa and Brazil - Are They Related to Impact Events? a Geochemical, Spectroscopical, and X-Ray Study
Seventh Annual V. M. Goldschmidt Conference 2330.pdf CARBONADOS FROM CENTRAL AFRICA AND BRAZIL - ARE THEY RELATED TO IMPACT EVENTS? A GEOCHEMICAL, SPECTROSCOPICAL, AND X-RAY STUDY. Christian Koeberl1, Marcus Schrauder1, Marco A. G. Andreoli2, Franz Brandstätter3, Christian Lengauer4, and Iain Gilmour5. 1Institute of Geochemistry, University of Vienna, Althanstrasse 14, A- 1090 Vienna, Austria ([email protected]); 2AEC, P.O. Box 582, Pretoria 0001, South Africa; 3Naturhistorisches Museum, P.O. Box 417, A-1014 Vienna, Austria; 4Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; 5Planetary Sciences Research Institute, Open University, Milton Keynes, MK7 6AA, U.K. Carbonado is a grey to black polycrystalline diamond variety that has been found in placer deposits in Central Africa and Brazil. Various hypotheses have been proposed for the origin of this unusual diamond type, including derivation from the Earth’s mantle, formation in metamorphic processes related to subduction, meteorite impact, extraterrestrial sources, or irradiation of carbonaceous materials at or near the surface of the Earth. However, detailed studies of carbonados are scarce and their origin remains unknown. In discussing their origin, any scenario needs to be able to explain the formation of individual carbonados with sizes of up to about 600 g. We studied six carbonados from Diamantia (Brazil) and four from Ubangi (Central Africa) by infrared spectroscopy, X-ray diffractrometry, electron probe microanalysis, electron microscopy, mass spectrometry, and neutron activation analysis. The samples were prepared using a laser sawing technique. Slices of 0.1-0.3 mm thickness were cut from the central parts of the carbonado samples. -
Candidates for Multiple Impact Craters: Popigai and Chicxulub As Seen by EGM08, a Global 50×50 Gravitational Model
Solid Earth Discuss., 2, 69–103, 2010 Solid Earth www.solid-earth-discuss.net/2/69/2010/ Discussions © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. This discussion paper is/has been under review for the journal Solid Earth (SE). Please refer to the corresponding final paper in SE if available. Candidates for multiple impact craters: popigai and chicxulub as seen by EGM08, a global 50×50 gravitational model J. Klokocnˇ ´ık1, J. Kostelecky´ 2,3, I. Pesekˇ 3, P. Novak´ 2,4, C. A. Wagner5, and J. Sebera1,3 1Astronomical Institute, Academy of Sciences of the Czech Republic, Czech Republic 2Research Institute for Geodesy, Topography and Cartography, Czech Republic 3Department of Advanced Geodesy, Czech Technical University, Czech Republic 4Department of Math, Faculty of Applied Sciences, University of West Bohemia, Czech Republic 5Laboratory for Satellite Altimetry, NOAA, USA Received: 15 January 2010 – Accepted: 25 February 2010 – Published: 9 March 2010 Correspondence to: J. Klokocnˇ ´ık ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 69 Abstract In 2008 the new Earth Gravitational Model (EGM08) was released. It contains a com- plete set of spherical harmonic coefficients of the Earth’s gravitational potential (Stokes parameters) to degree 2190 and order 2159 that can be used for evaluation of various 5 potential quantities with both the unprecedented accuracy and high spatial resolution. Two such quantities, the gravity anomaly and second-order radial derivative of the dis- turbing potential, were computed over selected areas with known impact craters. The displays of these derivatives for two such sites clearly show not only the strong circular- like features known to be associated with them but also other symmetrical structures 10 which appear to make them multiple impact sites. -
Strange Diamonds:C N 6 E
y framesite 8 Strange Diamonds: y c 6 The Mysterious Originsn e u of Carbonado and Framesiteq e r F 4 Peter J. Heaney1, Edward P. Vicenzi2, and Subarnarekha De3 2 olycrystalline aggregates of diamond called carbonado andB framesite microcrystalline diamonds found have excited the attention of scientists because their crystallization in association with kimberlites all over the world. The unusual phys-single crystal Phistories are thought to depart markedly from established modes of ical features observed in carbona- diamond genesis. In contrast to kimberlitic diamonds, the100 geochemical dos and framesites have provoked signatures of carbonados are systematically crustal. Since the apparent age a wide array of hypotheses regard- of carbonados is Archean (~3.2 Ga), a number of exotic formation theories ing their origin. This article will focus on the chemical and struc- have been invoked, including metamorphism of the earliest80 subducted y tural properties that unite and lithosphere, radioactive transformation of mantle hydrocarbon,c and mete- divide these two puzzling diamond n varieties. orite impact on concentrated biomass. Unlike carbonados,e framesites are u known to originate in the mantle. They appear to haveq crystallized60 very e CARBONADO rapidly, shortly before the eruption of the kimberlites thatr brought them to Earth’s surface, suggesting that old cratonic materialsF can be remobilized Mineralogical after long-term storage in the lithosphere. 40 Characteristics Carbonado nodules typically are KEYWORDS: carbonado, framesite, polycrystalline diamond pea-sized or greater. Indeed, the largest known diamond of any INTRODUCTION 20 type is the Carbonado of Sergio (Brazil), weighing in at Most people who like diamonds like them large. -
Black, Or Carbonado, Diamonds, Came from Outer Space, Geologists Have Discovered
GEOLOGIST DISCOVER THE ORIGIN OF THE EARTH’S MYSTERIOUS BLACK DIAMOND Black, or carbonado, diamonds, came from outer space, geologists have discovered. Credit: Steve Haggerty If indeed "a diamond is forever," the most primitive origins of ـــــJanuary 8, 2007 Earth's so-called black diamonds were in deep, universal time, geologists have discovered. Black diamonds came from none other than interstellar space. In a paper published online on December 20, 2006, in the journal Astrophysical Journal Letters, scientists Jozsef Garai and Stephen Haggerty of Florida International University, along with Case Western Reserve University researchers Sandeep Rekhi and Mark Chance, claim an extraterrestrial origin for the unique black diamonds, also called carbonado diamonds. Infrared synchrotron radiation at Brookhaven National Laboratory was used to discover the diamonds' source. "Trace elements critical to an 'ET' origin are nitrogen and hydrogen," said Haggerty. The presence of hydrogen in the carbonado diamonds indicates an origin in a hydrogen-rich interstellar space, he and colleagues believe. The term carbonado was coined by the Portuguese in Brazil in the mid-18th century; it's derived from its visual similarity to porous charcoal. Black diamonds are found only in Brazil and the Central African Republic. "Conventional diamonds are mined from explosive volcanic rocks [kimberlites] that transport them from depths in excess of 100 kilometers to the Earth's surface in a very short amount of time," said Sonia Esperanca, program director in the National Science Foundation's Division of Earth Sciences, which funded the research. "This process preserves the unique crystal structure that makes diamonds the hardest natural material known." From Australia to Siberia, from China to India, the geological settings of conventional diamonds are virtually identical, said Haggerty. -
The Recognition of Terrestrial Impact Structures
Bulletin of the Czech Geological Survey, Vol. 77, No. 4, 253–263, 2002 © Czech Geological Survey, ISSN 1210-3527 The recognition of terrestrial impact structures ANN M. THERRIAULT – RICHARD A. F. GRIEVE – MARK PILKINGTON Natural Resources Canada, Booth Street, Ottawa, Ontario, KIA 0ES Canada; e-mail: [email protected] Abstract. The Earth is the most endogenically active of the terrestrial planets and, thus, has retained the poorest sample of impacts that have occurred throughout geological time. The current known sample consists of approximately 160 impact structures or crater fields. Approximately 30% of known impact structures are buried and were initially detected as geophysical anomalies and subsequently drilled to provide geologic samples. The recognition of terrestrial impact structures may, or may not, come from the discovery of an anomalous quasi-circular topographic, geologic or geo- physical feature. In the geologically active terrestrial environment, anomalous quasi-circular features, however, do not automatically equate with an impact origin. Specific samples must be acquired and the occurrence of shock metamorphism, or, in the case of small craters, meteoritic fragments, must be demonstrated before an impact origin can be confirmed. Shock metamorphism is defined by a progressive destruction of the original rock and mineral structure with increasing shock pressure. Peak shock pressures and temperatures produced by an impact event may reach several hundreds of gigaPascals and several thousand degrees Kelvin, which are far outside the range of endogenic metamorphism. In addition, the application of shock- wave pressures is both sudden and brief. Shock metamorphic effects result from high strain rates, well above the rates of norma l tectonic processes. -
Appendix a Recovery of Ejecta Material from Confirmed, Probable
Appendix A Recovery of Ejecta Material from Confirmed, Probable, or Possible Distal Ejecta Layers A.1 Introduction In this appendix we discuss the methods that we have used to recover and study ejecta found in various types of sediment and rock. The processes used to recover ejecta material vary with the degree of lithification. We thus discuss sample processing for unconsolidated, semiconsolidated, and consolidated material separately. The type of sediment or rock is also important as, for example, carbonate sediment or rock is processed differently from siliciclastic sediment or rock. The methods used to take and process samples will also vary according to the objectives of the study and the background of the investigator. We summarize below the methods that we have found useful in our studies of distal impact ejecta layers for those who are just beginning such studies. One of the authors (BPG) was trained as a marine geologist and the other (BMS) as a hard rock geologist. Our approaches to processing and studying impact ejecta differ accordingly. The methods used to recover ejecta from unconsolidated sediments have been successfully employed by BPG for more than 40 years. A.2 Taking and Handling Samples A.2.1 Introduction The size, number, and type of samples will depend on the objective of the study and nature of the sediment/rock, but there a few guidelines that should be followed regardless of the objective or rock type. All outcrops, especially those near industrialized areas or transportation routes (e.g., highways, train tracks) need to be cleaned off (i.e., the surface layer removed) prior to sampling. -
Establishing the Link Between the Chesapeake Bay Impact Structure and the North American Tektite Strewn Field: the Sr-Nd Isotopic Evidence
Meteoritics & Planetary Science 41, Nr 5, 689–703 (2006) Abstract available online at http://meteoritics.org Establishing the link between the Chesapeake Bay impact structure and the North American tektite strewn field: The Sr-Nd isotopic evidence Alexander DEUTSCH1, 2* and Christian KOEBERL3 1Institut f¸r Planetologie (IfP), Westfälische Wilhelms-Universität Münster (WWU), Wilhelm-Klemm-Str. 10, D-48149 M¸nster, Germany 2Zentrallabor f¸r Geochronologie (ZLG), WWU, Corrensstr. 24, D-48149 M¸nster, Germany 3Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria *Corresponding author. E-mail: [email protected] (Received 09 November 2004; revision accepted 21 December 2005) Abstract–The Chesapeake Bay impact structure, which is about 35 Ma old, has previously been proposed as the possible source crater of the North American tektites (NAT). Here we report major and trace element data as well as the first Sr-Nd isotope data for drill core and outcrop samples of target lithologies, crater fill breccias, and post-impact sediments of the Chesapeake Bay impact ε t = 35.7 Ma structure. The unconsolidated sediments, Cretaceous to middle Eocene in age, have Sr of + + ε t = 35.7 Ma − − 54 to 272, and Nd ranging from 6.5 to 10.8; one sample from the granitic basement Nd ε t = 35.7 Ma + ε t = 35.7 Ma − with a T CHUR model age of 1.36 Ga yielded an Sr of 188 and an Nd of 5.7. The Exmore breccia (crater fill) can be explained as a mix of the measured target sediments and the granite, plus an as-yet undetermined component. -
Are Carbonado Diamonds out of This World? Carbonado Diamonds Are
Are Carbonado Diamonds Out of This World? Carbonado diamonds are shiny, gray to black, rounded, relatively porous masses of fine-grained diamond, mixed with graphite and other rare minerals. They were first found in 1843 in placer deposits in Bahia, Brazil. Amazingly, these aggregates of interlocking grains are slightly harder than coarser diamond crystals. So, although not at all gemmy, they became prized for their use as an abrasive. Although most are from Brazil, carbonado finds have also been made in widely scattered localities such as Venezuela, Borneo, the Central African Republic and Russia. The carbonados from these locations also have a lot of chemical similarities, such as their carbon and nitrogen isotopes, suggesting a common origin. They are also quite different from ordinary coarse dark diamonds, generally referred to as "bort". Carbonado has never been found in kimberlites and lamproites, which are the usual host rocks for diamonds. It is only found in sediments or sedimentary rocks that are made of fragments brought in from elsewhere and reworked and redeposited by rivers and other surface processes. What could be the source of this strange material? One clue to carbonado’s origin is the presence in these rocks of very odd minerals such as silicon carbide, pure titanium metal, pure silicon metal and iron-chromium alloy. Such materials form only under extremely reducing conditions. Such conditions may occur very deep in the earth but carbonado has never been found in the rocks that originate at those depths. A second way to get such environments on earth is around certain very acidic volcanic vents. -
Designing Global Climate and Atmospheric Chemistry Simulations for 1 and 10 Km Diameter Asteroid Impacts Using the Properties of Ejecta from the K-Pg Impact
Atmos. Chem. Phys., 16, 13185–13212, 2016 www.atmos-chem-phys.net/16/13185/2016/ doi:10.5194/acp-16-13185-2016 © Author(s) 2016. CC Attribution 3.0 License. Designing global climate and atmospheric chemistry simulations for 1 and 10 km diameter asteroid impacts using the properties of ejecta from the K-Pg impact Owen B. Toon1, Charles Bardeen2, and Rolando Garcia2 1Department of Atmospheric and Oceanic Science, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA 2National Center for Atmospheric Research, Boulder, CO, USA Correspondence to: Owen B. Toon ([email protected]) Received: 15 April 2016 – Published in Atmos. Chem. Phys. Discuss.: 17 May 2016 Revised: 28 August 2016 – Accepted: 29 September 2016 – Published: 27 October 2016 Abstract. About 66 million years ago, an asteroid about surface. Nanometer-sized iron particles are also present glob- 10 km in diameter struck the Yucatan Peninsula creating the ally. Theory suggests these particles might be remnants of the Chicxulub crater. The crater has been dated and found to be vaporized asteroid and target that initially remained as va- coincident with the Cretaceous–Paleogene (K-Pg) mass ex- por rather than condensing on the hundred-micron spherules tinction event, one of six great mass extinctions in the last when they entered the atmosphere. If present in the great- 600 million years. This event precipitated one of the largest est abundance allowed by theory, their optical depth would episodes of rapid climate change in Earth’s history, yet no have exceeded 1000. Clastics may be present globally, but modern three-dimensional climate calculations have simu- only the quartz fraction can be quantified since shock fea- lated the event.