DEEPSEAOCTOCORALS:

DATINGMETHODS,STABLEISOTOPICCOMPOSITION,ANDPROXY

RECORDSOFTHESLOPEWATERSOFFNOVASCOTIA

by OwenA.Sherwood,B.Sc.,M.Sc. Submittedinpartialfulfillmentoftherequirementsforthedegreeof DoctorofPhilosophy at DalhousieUniversity Halifax,NovaScotia June2006 ©CopyrightbyOwenA.Sherwood,2006 Distribution License

DalSpace requires agreement to this non-exclusive distribution license before your item can appear on DalSpace.

NON-EXCLUSIVE DISTRIBUTION LICENSE

You (the author(s) or copyright owner) grant to Dalhousie University the non-exclusive right to reproduce and distribute your submission worldwide in any medium.

You agree that Dalhousie University may, without changing the content, reformat the submission for the purpose of preservation.

You also agree that Dalhousie University may keep more than one copy of this submission for purposes of security, back-up and preservation.

You agree that the submission is your original work, and that you have the right to grant the rights contained in this license. You also agree that your submission does not, to the best of your knowledge, infringe upon anyone's copyright.

If the submission contains material for which you do not hold copyright, you agree that you have obtained the unrestricted permission of the copyright owner to grant Dalhousie University the rights required by this license, and that such third-party owned material is clearly identified and acknowledged within the text or content of the submission.

If the submission is based upon work that has been sponsored or supported by an agency or organization other than Dalhousie University, you assert that you have fulfilled any right of review or other obligations required by such contract or agreement.

Dalhousie University will clearly identify your name(s) as the author(s) or owner(s) of the submission, and will not make any alteration to the content of the files that you have submitted.

If you have questions regarding this license please contact the repository manager at [email protected].

Grant the distribution license by signing and dating below.

Name of signatory Date DALHOUSIEUNIVERSITY DEPARTMENTOFEARTHSCIENCE TheundersignedherebycertifythattheyhavereadandrecommendtotheFacultyof GraduateStudiesforacceptanceathesisentitled: “DEEPSEAOCTOCORALS:DATINGMETHODS,STABLEISOTOPIC COMPOSITION,ANDPROXYRECORDSOFTHESLOPEWATERSOFFNOVA SCOTIA” byOwenA.Sherwood inpartialfulfillmentoftherequirementsforthedegreeofDoctorofPhilosophy. Dated:June17,2006 Supervisor:______ Readers:______ ______ ______ ______ ______ ______

ii DALHOUSIEUNIVERSITY DATE: June16,2006 AUTHOR: OwenA.Sherwood TITLE: DEEPSEAOCTOCORALS:DATINGMETHODS,STABLE ISOTOPICCOMPOSITION,ANDPROXYRECORDSOF THESLOPEWATERSOFFNOVASCOTIA DEPARTMENTORSCHOOL: DepartmentofEarthSciences DEGREE:Ph.D. CONVOCATION:October YEAR:2006 PermissionisherewithgrantedtoDalhousieUniversitytocirculateandto havecopiedfornoncommercialpurposes,atitsdiscretion,theabovetitleuponthe requestofindividualsorinstitutions. ______ SignatureofAuthor Theauthorreservesotherpublicationrights,andneitherthethesisnor extensiveextractsfromitmaybeprintedorotherwisereproducedwithouttheauthor’s writtenpermission. Theauthoratteststhatpermissionhasbeenobtainedfortheuseofany copyrightedmaterialappearinginthethesis(otherthanthebriefexcerptsrequiringonly properacknowledgementinscholarlywriting),andthatallsuchuseisclearly acknowledged.

iii ForGrandma, whowasalwaysinterested.

iv TABLEOFCONTENTS Dedication………………………………………………………………………… iv ListofTables……………………………………………………………………… viii ListofFigures…………………………………………………………………….. ix Abstract…………………………………………………………………………… xi ListofAbbreviationsUsed………………………………………………………. xiii Acknowledgments………………………………………………………………… xiv Chapter1 GeneralIntroduction…………………………………………………………….. 1 Chapter2 DeepSeaCorals:NewInsightstoPaleoceanography……………………..... 6 2.1 Introduction…………………………………………………………………. 7 2.1.1 Overviewofpastworkongeochemistryofdeepcorals……………. 8 2.1.2Advantagesofthedeepcoralarchive………………………………... 11 2.2 Methodsandinterpretations…………………………………………………. 12 2.2.1 Growthandsclerochronologyindeepscleractinians………………… 12 2.2.2 Growthandsclerochronologyinhornycorals……………………….. 17 2.2.2 Fossilpreservation…………………………………………………… 21 2.2.4 Sourcesofcarbontodeepcorals……………………………………… 22 2.2.5 Biocalcificationmodels……………………………………………….. 23 2.2.6 Stableisotopicdisequilibriaindeepcorals…………………………… 24 2.2.7 Overcomingisotopicdisequilibria:the“linestechnique”…………… 28 2.2.8 Traceelementvitaleffects…………………………………………… 30 2.2.9 Useriesdatingofdeepcorals………………………………………… 32 2.2.10 Radiocarbondatingandpaleoventilationrates……………………… 37 2.2.11Surfacesignalsfromtheorganicskeletonsofhornycorals…………. 39 2.3 Landmarkstudies…………………………………………………………….. 44 Chapter3 RadiocarbonEvidenceforAnnualGrowthRingsinaDeepSea Octocoral( Primnoa resedaeformis )……………………………………………….. 47 3.1 Abstract……………………………………………………………………….. 48 3.2 Introduction…………………………………………………………………… 49 3.3 Materialsandmethods………………………………………………………… 52 3.4 Results………………………………………………………………………… 55 3.5 Discussion…………………………………………………………………….. 56 Chapter4 StableIsotopicCompositionofDeepSeaGorgonianCorals (Primnoa spp.):ANewArchiveofSurfaceProcesses…………………………… 61 4.1 Abstract………………………………………………………………………...62 4.2 Introduction…………………………………………………………………….63

v 4.3 Materialsandmethods…………………………………………………………66 4.4 Results………………………………………………………………………….73 4.4.1 Compositionoftissueandskeletalgorgonin…………………………..73 4.4.2 Geographicandinterspecificvariability………………………………74 4.4.3 Intracolonyisotopicreproducibility………………………………….. 75 4.4.4 Intercolonyisotopicreproducibility………………………………….. 78 4.4.5 Compositionofmodernandsubfossilspecimens……………………. 80 4.4.6 δ15 Ncompositionofplankton………………………………………….80 4.5 Discussion………………………………………………………………………83 4.5.1 Trophiclevel……………………………………………………………83 4.5.2 Surfacebenthiccouplingofisotopicsignatures……………………….89 4.5.3 Preservationoforiginalisotopiccomposition………………………….90 4.5.4 Paleoceanographicapplications………………………………………..91 4.6 Conclusions…………………………………………………………………….93 Chapter5 LateHoloceneRadiocarbonandAsparticAcidRacemization DatingofDeepSeaOctocorals…………………………………………………… 95 5.1 Abstract……………………………………………………………………….. 96 5.2 Introduction…………………………………………………………………… 97 5.3 Materialsandmethods………………………………………………………… 99 5.4 Resultsanddiscussion………………………………………………………… 101 5.4.1 Skeletalchronology…………………………………………………… 101 5.4.2 Aminoacidcompositionofthetissueandgorgonin………………….. 105 5.4.3 D/Lratios……………………………………………………………… 108 5.4.4 ProspectsforD/LAspdatingof P. resedaeformis …………………… 116 5.4.5 Conclusions…………………………………………………………….118 Chapter6 Carbon14RecordsfromthePhaseofDeepSeaOctocorals…..………. 120 6.1 Abstract……………………………………………………………………….. 121 6.2 Introduction…………………………………………………………………… 122 6.3 Materialsandmethods………………………………………………………... 124 6.4 Results………………………………………………………………………… 129 6.4.1 Growthhiatuses………………………………………………………. 129 6.4.2 14 Cdating……………………..………………………………………. 130 6.4.3 210 Pbdating…………………………………………………………... 131 6.4.4 Pb/Caprofiles………………………………………………………… 135 6.4.5 14 Cprofiles………………………………………………………….. 138 6.5 Discussion…………………………………………………………………….. 140 6.6 Conclusions…………………………………………………………………… 145 Chapter7 StableCandNIsotopicRecordsFromDeepSeaOctocoralsParallelRecent ChangesintheSlopewaterSystemoffNova……………………...…………….... 147

vi 7.1 Abstract……………………………………………………………………….. 148 7.2 Introduction…………………………………………………………………… 149 7.3 Materialsandmethods………………………………………………………… 152 7.3.1 Coralsamples…………………………………………………………. 152 7.3.2 Chronology……………………………………………………………. 154 7.3.3 Hydrographicdata…………………………………………………….. 155 7.3.4 Nutrientdata………………………………………………………….. 156 7.3.5 Statisticalanalysis…………………………………………………….. 157 7.4 Results………………………………………………………………………… 158 7.4.1 Longtermtrends……………………………………………………… 158 7.4.2 Recenttrends………………………………………………………….. 160 7.4.3 Correlationwithenvironmentalrecords………………………………..160 7.4.4 NortheastChannelnutrientdistribution………………………………..164 7.4.5 Isotopiccompositionofsourcenutrients……………………………… 167 7.5 Discussion…………………………………………………………………….. 169 7.5.1 Possiblecausesof δ13 Cvariability……………………………………. 170 7.5.2 Possiblecausesof δ15 Nvariability……………………………………. 172 7.5.3 Subfossildiagenesis…………………………………………………...176 7.5.4 δ15 Nrecords:slopewatershift,ortrophiccascade?...... 177 7.6 Conclusions…………………………………………………………………….180 Chapter8 GeneralConclusions……………………………………………………………….. 182 References………………………………………………………………………….. 183 AppendixA:PhotographsofCoralSections……………………..……………… 216 AppendixB:C14Data……………………………………………………………. 225 AppendixC:PrimnoaStableIsotopeandC:NData……………………………. 227 AppendixD:Hydrographicand δδδ15 NdatafromHudsonand Teleostcruises…………………………………………………………………….. 239 AppendixE:CopyrightPermissionLetters…………………………………….. 241

vii LISTOFTABLES Table3.1: Summaryof P. resedaeformis sectionusedingrowthring countingand 14 Cdeterminations……………………………………. 51 Table4.1 Primnoa spp.Collectiondataofsamplesexamined………………….. 65 Table4.2 Primnoa spp.SummaryofstableisotopicandC:Ndata………………67 Table51: Calculationoflocalmarinereservoircorrectionfromknownage samples…………………………………………………………………102 Table52: Radiocarbonagesforthesubfossil P. resedaeformis specimen………102 Table53: SummaryofaminoacidabundanceandD/Ldata……………………..104 Table6.1: AnalyticalparametersusedduringLAICPMSanalysis……………. 128 Table6.2: Radiocarbondataandagecalibrations…………………………………128 Table6.3: Resultsof 210 Pband 226 Raanalyses……………………………………133 210 Table6.4: Pb ex calculatedgrowthratesandtimeintervalsbetween D1andD2………………………………………………………………133 Table7.1: Summaryofdatingandisotopicdataaveragedbycoralcolony……….154

viii LISTOFFIGURES Fig2.1: Globaldistributionofdeepwatercoralreefs……………………….. 8 Fig2.2: Drawingsof D. cristagalli and P. resedaeformis …………………… 9 Fig.2.3: SEMimageofcentresofcalcification………………………………. 13 Fig2.4: Exampleofgrowthbandinginseptumof D. cristagalli ……………. 15 Fig.2.5: Exampleofgrowthbandingin P. resedaeformis …………………… 18 Fig.2.6: Timeseries 14 Cfromtheannualringsof P. resedaeformis ………... 20 Fig.2.7: Isotopicdisequilibriain L. pertusa ………………………………….. 25 Fig.2.8: Isotopicdisequilibriainaseptumof D. cristagalli …………………. 27 Fig.2.9: Thelinestechnique………………………………………………….. 29 Fig.2.10: Traceelementalcovariationin L. pertusa …………………………… 31 Fig.2.11: Mg/CatrendsfromAustralianoctocoral……………………………. 32 Fig.2.12: ComparisonofprecisioninU/Thdates……………………………… 36 Fig.2.12: Longtermtrendsin δ15 NfromNWAtlanticP. resedaeformis ……… 41 Fig.2.13: EvidenceofYoungerDryasfromOrphanKnollcorals……………… 43 Fig.2.14: Changeinglacialinterglacial 14 CindeepAtlanticcorals………..… 45 Fig.3.1: Sectionof P. resedaeformis :growthringsandcalendarages……….. 54 Fig.3.2: Timeseries 14 Cfromtheannualringsof P. resedaeformis ………….. 56 Fig.4.1: MapoftheGulfofMaineregion………………………………………67 Fig.4.2: Coloniesof P. resedaeformis :ColonyHUD2001055VG15,and ColonyDFO2002con5……………………………………………… 68 Fig.4.3: SectionofColonyDFO2002con5,showinggrowthrings…………. 69 Fig4.4: Plotsofbulkskeletal δ15 Nvs. δ13 C,and δ15 N/δ13 Cvs.AOU………… 74 Fig.4.5: IntracolonyisotopicvariationinColonyHUD2001055VG15……. 76 Fig.4.6: IsotopicandC:NdatafromthetissuefractionofDFO2002con5…... 77 Fig.4.7: IntracolonyisotopicvariationinColonyDFO2002con5……………78 Fig4.8: Intercolonyisotopicprofilesfrom3differentcolonies……………….79 Fig.4.9: Isotopicprofilesfromamodern,and2subfossilcolonies……………81 15 Fig.4.10: Average δ NofPOM SUSP intheGulfofMaine/GeorgesBank region………………………………………………………………….. 82 15 Fig.4.11: Depthprofileof δ NPOM intheNEChannel/GulfofMaine…………. 82 Fig.4.12: Trophiclevelδ 15 NmodelforNEChannel/GulfofMaineregion…… 85 Fig.5.1: ImageofFossil95specimenusedinAARand 14 Cdating…………….100 Fig5.2: Aminoacidcompositionofthetissueandgorgonin(modernand subfossil)fractionsof P. resedaeformis ……………………………….106 Fig.5.3: Ontogenetictrendsinaminoacidcompositionofthemodern gorgonin…………………………………………………………………106 Fig.5.4: SEMimageoffibrillarproteinin P. resedaeformis ……………………108 Fig.5.5: D/Lcompositionofthetissueandgorgonin(modernand subfossil)fractionsof P. resedaeformis ……………………………… 110 Fig.5.6: D/LAspvs.calendaragefrom P. resedaeformis and Gerardia ……… 111 Fig.5.7: Comparisonoferrorsinradiocarbonandasparticacid racemizationdatingtechniques……………………………………….. 117 Fig.6.1: MapoftheNWAtlanticshowingmajorcurrentpatternsand locationsofNortheastChannel………………………………………. 125

ix Fig.6.2: SectionofColonyCOHPS20011usedin 14 C, 210 Pb andPb/Caanalyses.…………………………………………………. 126 Fig.6.3: Localsurfacewaterbomb14 Creconstruction,withdata fromCOHPS20011…………………………………………………. 131 Fig.6.4: Plotsofnaturallogtransformed 210 Pbvs.distancefromthe growingedge…………………………………………………………. 134 Fig.6.5: ProfilesofPb/Cameasuredin3colonies…………………………….. 136 Fig.6.6: Recordsof 14 CfromthecalcitephaseofcolonyCOHPS20011…. 139 Fig.6.7: TTNA 14 Cdata……………………………………………………… 143 Fig.7.1: MapoftheNWAtlantic,showingmajorcurrentpatternsand locationsofdatadiscussedintext……………………………………. 153 Fig.7.2: Longtermtrendsin δ13 Cand δ15 N:thelast2000years……………… 159 Fig.7.3: Shorttermtrendsin δ13 Cand δ15 N:thelast70years………………… 161 Fig.7.4: TimeseriestrendsinNAO,T200m, Calanus , δ13 Cand δ15 N…………162 Fig.7.5: Correlationmatrixofenvironmentalandisotopicdata………………. 163 Fig7.6: NEChanneldepthtimeplotsoftemperature,salinity,nutrientsand chlorophyll…………………………………………………………… 165 Fig.7.7: DepthprofilesofWOCEtemperature,salinity,seawater δ13 C, andCO 2datafromNWAtlanticslopewaters………………………… 166 13 Fig.7.8: Regressionsofseawater δ CandCO 2vs.salinity…………………… 166 Fig.7.9: Depthprofilesoftemperature,salinity,NO 3+NO 2and 15 δ NNO3 :Labradorvs.Scotianshelves……………………………….. 168 15 Fig.7.10: Regressionof δ NNO3 vs.salinity…………………………………….168 Fig.7.11: δ15 Nvaluesofsediments, Primnoa tissue,andrepresentative invertebratesandfish:Labradorshelfvs.GulfofMaine…………….. 173 15 Fig.7.12: Theoreticaleffectofnutrientdrawdownonthe δ NNO3 …………….. 174

x ABSTRACT

Forgenerations,fishermeninAtlanticCanadahaveknownaboutcoralsor“trees” growinginthedeepwatersalongtheshelfbreak.Scientificinterestdatesbacktothe

1880s,whenGloucesterFisheriescollectedspecimensfortheSmithsonian.Inrecent years,growingconcernabouttherateandscaleofclimatechangehaspromptedan examinationofclimaterecordsencodedindeepseacoralskeletons.

Focusingonthegorgonianspecies Primnoa resedaeformis ,thisthesisexamines thepaleoceanographicutilityofdeepseaoctocorals.Withalifespanof700+years, P. resedaeformis isthelongestlivingoctocoral,andoneoftheoldestinthesea.

Unliketheiraragoniticcounterparts,thescleractinians,octocoralssecretea2part skeletonofcalciteandgorgonin,aprotein.Thecalciteisderivedfromdissolved inorganiccarbonatdepth,whilethegorgoninisderivedfromrecentlyexported particulateorganicmatter.Thegorgoninisresistanttoorganicdiagenesis,asrevealedby theaminoacidcompositionofanearly2000yearoldsubfossilspecimen.Cluesabout pastenvironmentalconditionsareencodedinthechemicalmakeupofannualrings secretedoverthelifetimeofthecoral.The2partskeletoncalciteandgorgoninthus constitutesarecordofsurfaceanddeepwaterpropertiesalike.

Developmentofcalciteandgorgoninbasedproxyrecordsfrom P. resedaeformis shedsnewlightontheslopewatersystemofftheScotianShelf/GulfofMaine.Fromthe skeletalcalcite,arecordof 14 Cdocumentsdecadalscaleshiftsin 14 Creservoirageof

xi upperintermediatewaters.Fromtheskeletalgorgonin,stableCandNisotopic compositionpresentsamorecomplicatedpictureofthesurfacewaterenvironment.

Followingnearly2000yearsofrelativelyconstantvalues, δ15 Nrapidlydecreasedduring the20 th century.Asapossiblecausefortheobservedtrend,aweakeningoftheLabrador

Currentissuggested,butatrophiccascadepresentsaplausiblealternativehypothesis.

Methodsdevelopedhereinmaybeexpandedtootheroceanographicregionswhereproxy climatedataarelacking.

xii LISTOFABBREVIATIONSUSED

AAR AminoAcidRacemization

AAIW AntarcticIntermediateWater

AMS AcceleratorMassSpectrometry

AOU ApparentOxygenUtilization

B/P BenthicForaminiferaPlankticForaminiferadatingmethod

CSWS CoupledSlopeWaterSystem

COC CentreofCalcification

DIC DissolvedInorganicCarbon

DOM DissolvedOrganicMatter

ECF ExtracellularCalcifyingFluid

ENSO ElNiño/SouthernOscillation

IRMS IsotopeRatioMassSpectrometry

LAICPMS LaserAblationInductivelyCoupledPlasmaMassSpectrometry

LShW LabradorShelfWater

LSW LabradorSlopeWater

NAO NorthAtlanticOscillation

POM ParticulateOrganicMatter

SEM Scanningelectronmicroscope

SOM Sedimentaryorganicmatter

TL TrophicLevel

WSW WarmSlopeWater

xiii ACKNOWLEDGEMENTS

Thisthesiswouldnothavebeencompletedwithoutthehelpofmanypeople.My

supervisor,DaveScott,providedconstantsupport,encouragement.MikeRiskgotme

interestedincoralsinfirstplace,andhelpedmetofocusonthebiggerpicture.Several peopleofferedadviceandconstructivecriticismovertheyears:KumikoAzetsuScott,

EvanEdinger,HermannEhrlich,JohnGosse,JeffHeikoop,ClaudeHillaireMarcel,

BrianPetrie,DanSinclairandBranwenWilliams.Forlaboratoryanalyses,Iam

especiallyindebtedtoStevedeVogel,BassamGhaleb,TomGuilderson,Moritz

Lehmann,JenniferMcKayandPatriciaStoffyn.LawrencePlughelpedwithMatlab programming.ThepioneersofCanadiandeepseacoralresearchSanfordAtwood,

DerekJones,RonnieWolkinskindlydonatedmanypricelesschunksofcoral.Tomy

friendsinHalifaxJane,Russ,Myles,Laurie,Flavia,Hawkes,Joyia,Tony,Jim,Barb,

Jeremiah,Anastasia,Anne,Saka,Sophiethanksforthegoodtimes.Myfamilyback

maintainedaninterestinmyweirdspecialty,andtheirsupportwasinvaluable.Finally,

mybiggestthanksgotoChristine,withwhomthere’sneveradullmoment!

xiv CHAPTER1

GENERALINTRODUCTION

Inthe1990s,NovaScotiafishermenforceddeepseacoralsontotheradar screensofCanadianscientists.Knowingfullwellthelinkbetweencoralhabitatand fishingsuccess,theirinterestwasinsavingdeepseacoralsfrombottomdragging.Their effortsultimatelyledtotheestablishmentin2002ofa424km 2CoralConservationArea 1

intheNortheastChannel,a250mdeepcanyonsouthwestofCapeSable,NovaScotia.

Thisareaisnotedfordensethicketsofgorgoniancorals(Breezeetal.,1997;MacIssacet

al.,2001),structurallyunlikethe Lophelia reefscharacterizingtheNEAtlantic(e.g.

Fössaetal.,2002),butimportantfishhabitatnonetheless.Conservationconcerns propelleddeepseacoralsintothemediaspotlight;but,forearthscientists,deepsea coralspresentafascinatingnewarchiveofclimatechange.

WehearhowglobalwarmingcouldtriggerunexpectedchangesintheNorth

Atlanticthermohalinecirculation,withuncertainconsequencesforthestabilityofglobal climate(IPCC,2001;Brydenetal.,2005;Overpecketal.,2006).Thegeologicrecord, uponwhichclimatepredictionslargelyrely,providesuswithlongtermaverages.What happenedinthepastonshortertimescales,thehumantimescale,constitutesamajorgap inknowledge.Onland,thegapispartlyfilledbytreeringsandicecoresproviding annuallyresolvedrecordsintheformoftreeringsoricelayers.Intheoceans,tropical reefcoralsdomuchthesame,intheformofannuallybandedcarbonateskeletons.

1DFOBackgrounderonCoralResearchandConservation: http://www.mar.dfompo.gc.ca/communications/maritimes/back02e/BMAR02(5E).html

1 Outsidethewarm,shallowtropics,highresolutionmarineproxyrecordsarevirtually absent.

Severalstudiesondeepscleractinian(secreting)coralsfirmlyestablish thisgroupasakeytoolinpaleoceanographicstudies(e.g.Smithetal.,1997;Robinsonet al.,2005).Thisthesisexploresthepaleoceanographicpotentialofthedeepseagorgonian coral Primnoa resedaeformis .Thisspecieslooksandgrowsverymuchlikeatree,with anunusual2partskeletonofcalciteandgorgonin,thelatterbeingadurableprotein.The presenceofskeletalgrowthringsofpresumedannualtimingsuggestedearlieronthat recordsofambientenvironmentalconditionsmaybeencodedintheskeletons,yearby year,overthecenturies(Heikoopetal.,2002;Risketal.,2002;Sherwood2002).

Thepromiseofnewandexcitingclimaterecordsnotwithstanding,severalbasic questionsabout Primnoa hadyettobeanswered,forinstance,“Howlongdotheylive?”,

“Aretheskeletalgrowthringsreallyannual?”,and“Whatdotheyeat?”.Thisthesis addressesseveralbasicquestionsaboutthebiologyandgeochemistryof Primnoa .The focusisprimarilyontheskeletalgorgoninfraction,asitsgeochemicallinktothesurface waterenvironment,viathesinkingofplankton,presentednovelresearch.Thescopeof theresearchpresentedherewaslargelydrivenbysampleavailability:specimenswere donatedbyfishermenorobtainedfromlimitedscientificsurveys.

Eachchapterispresentedasastandalonemanuscript.Threeofthechaptershave beenpublishedatthetimeofthiswriting;anotherisdueforpublicationinautumn2006.

2 PartsofChapters6and7werepresentedasabstractsatmeetings.Theorderingof chaptersstrivesforasmoothflowoflogic,eachchapterbuildingonpreviouschapters.

Thiswasnotalwayspossible,however,asthedesiretosubmitpublishableresultstook precedenceovertheexecutionofeachprojectinanorderlysequence.

Chapter2,“DeepSeaCorals:NewInsightstoPaleoceanography”wasprepared asachapterondeepseacoralsforaspecialvolumeonmethodsinlateCenozoic paleoceanography,tobepublishedinautumn,2006.Thischapterreviewsapplicationsof deepseacoralsinpaleoceanography,withafocusonmethodologicalaspects.Mostof theattentionisgiventoscleractinians,asopposedtooctocorals,asthenumberofstudies ontheformerfaroutweighsthelatter.Asthemanuscriptisintendedforpublication, someofthematerialisreproducedfromlaterchaptersofthisthesis.

Chapter3,"RadiocarbonEvidenceforAnnualGrowthRingsinaDeepSea

Octocoral( Primnoa resedaeformis )”waspublishedinthejournalMarineEcology

ProgressSeriesinOctober,2005.Thismanuscriptpresentsincontrovertibleproofforthe annualtimingofgrowthringformationintheinner,organicrichregionsof Primnoa skeletons.Indeed,thiswasthefirstsolidproofforannualringtiminginanyoctocoral species,whereaspreviousstudiesreliedonmorecircumstantialevidence.

Chapter4,“StableIsotopicCompositionofDeepSeaGorgonianCorals( Primnoa spp.):anewarchiveofsurfaceprocesses”waspublishedasacompaniontoChapter3in thejournalMarineEcologyProgressSeriesinOctober,2005.Thismanuscript

3 investigatesthestableCandNisotopiccompositionamong Primnoa spp.collectedinthe

AtlanticandPacificOceansandtheSeaofJapan.Specialattentionispaidtotheintra andintercolonyreproducibilityof δ13 Cand δ15 N,andinelucidatingthetrophiclevelof

Primnoa with δ15 N.

Chapter5,“LateHoloceneRadiocarbonandAsparticAcidRacemizationDating ofDeepSeaOctocorals”waspublishedinthejournalGeochimicaetCosmochimicaActa inJune,2006.Someofthesedatawerealsopublishedasanabstractinthe2005

ProceedingsoftheNorthAmericanPaleontologyConference.Thisstudyintoaminoacid racemization(AAR)datingofcoralswasundertakenasasideprojectfundedthrougha

GeologicalSocietyofAmericastudentgrant.TheresultsoftheAARdatingwerenot encouraging.Ontheotherhand,oneofthesubfossilcoralshadaradiocarbondated lifespanof700years,thelongestlivedoctocoraleverdocumented.

Chapter6,“Carbon14RecordsFromtheCalcitePhaseofDeepSeaOctocorals” hasnotbeensubmittedforpublicationatthetimeofthiswriting.Whereasmostofthe thesisexploresthegeochemistryoftheorganicfractionof Primnoa ,thischapterexplores theproxyrecordsfromthecalcitefraction.Muchattentionisgiventowards chronologicalaspects(bomb14 Cdatingand 210 Pb)becausegrowthbandinginthe

skeletalcalciteispoorlydefined.AccuratereconstructionoftheanthropogenicPbpulse

demonstratesthatusefulproxyinformationisencodedinthetraceelementalprofiles

fromthecalcite.Profilesof 14 Ctrackshiftsinslopewaterreservoirageovertime.

4 Chapter7,“StableCandNIsotopicRecordsfromDeepSeaOctocoralsParallel

RecentChangesintheSlopewaterSystemoffNova”focusesonrecentandlongerterm patternsinstableCandNrecords.Partsofthesedatawerepresentedatthe3 rd

InternationalSymposiumonDeepSeaCoralsinNovember,2005,andattheMay,2006 meetingoftheGeologicalAssociationofCanada.Severalrecordsof δ13 Cand δ15 Nare patchedtogethertocovermostofthelast~300years,withadditionaldatafrom~400

AD.Therecenttrendsarecorrelatedwiththepresenceofwarmvs.coldslopewaters,

whilethelongertermtrendistowardsisotopicdepletioninthe20th century.Competing hypothesesregardingthecauseofobservedcorrelationsarepresented,includinga declineintherelativestrengthoftheLabradorCurrent,andatrophiccascadebroughton byoverfishing.

Withrareexception,theconceptualization,samplepreparation,dataanalysis,and writingofthisthesiswascompletedentirelybyO.Sherwood.M.Riskdraftedthe introductoryparagraphsofChapter2.J.Heikoopinitiatedsomeoftheideas,and performedsomeoftheisotopicmeasurementspresentedinChapter4.Allchemical analyseswereoutsourcedtootherlaboratories.

5 CHAPTER2

DEEPSEACORALS:NEWINSIGHTSTOPALEOCEANOGRAPHY

OwenA.Sherwood 1,MichaelJ.Risk 2

1 CentreforEnvironmentalandMarineGeology,DalhousieUniversity,Halifax,Canada

2SchoolofGeographyandGeology,McMasterUniversity,Hamilton,Canada

Manuscriptpreparedfor:“LateCenozoicPaleoceanographyVolume1:Methods”

(forpublicationinautumn2006)

6 2.1INTRODUCTION

DeepseacoralswerefirstdescribedfromthecoastofNorway,andthefirst

speciesidentifiedbyLinnaeus(1758).Sincethen,atleastuntilrecently,interestinthe

grouphaswaxedandwaned,seeminglyinconcertwiththefrequencyoftheir

relationshipwithfishingeffortsonthecontinentalshelves.

Inrecentyears,twocriticalconcernshaveheightenedinterestindeepseacorals.

Worldwidedeclineofcoastalfisheries,especiallyofftheshelvesoneasternNorth

America,haspromptedareexaminationoftheroleofdeepseacoralsashabitatfor

fishes.Inaddition,concernabouttherateandscaleofclimatechangehascombinedwith

thegrowingrealisationthatthisprocesscanbestbemeasuredbyusingtherecords

encodedincoralskeletons.Instrumentalrecordsarenotsufficientlywidespreadorlong

standingtoallowpredictivemodelstobeconstructed,andproxyrecordshavetobe

consulted.Otherthandeepseacorals,fewarchivesofferthecombinationofglobal

distribution(Fig.2.1),temporalresolution,anddurationofrecord.Inthischapter,when

wespeakofdeepsea“corals”,wearereferringnotonlytothetruecorals,the

Scleractinia(whichdatefromthe)butanycoelenteratethatmakesahard

skeletoncapableofrecordingclimatedata(Fig.2.2).Thiswouldincludeseveralorders

thatsecreteahornyskeleton,suchasOctocorals,(recent),Antipatharians

(Miocenerecent)andZoanthids(recent).

7 Fig.2.1: Globaldistributionofdeepseacoralreefs.Pointsonthemapindicateobserved reefsofvaryingsizeandstagesofdevelopmentbutnottheactualareacovered.The highdensityofreefsshownintheNorthAtlanticreflectstheintensityofresearchin thisregion.Furtherdiscoveriesareexpectedworldwide,particularlyinthedeeper watersofsubtropicalandtropicalregions.FigurefromAndréFreiwald.

2.1.1Overviewofpastworkongeochemistryofdeepseacorals

Previousattemptsseveraldecadesagotodeciphertheclimaterecordindeep seacoralsfromstableisotopeanalyseswereovershadowedbytheupsurgeininterestin recordsfromshallowwaterreefcorals.Weber(1973)foundthatdeepseacoralswere generallylessdepletedin δ18 Oand δ13 Cthanwerereefcorals;Emilianietal.(1978)

describedaseriesofanalysesofsubsamplesofcoralsfromtheBlakePlateau,offFlorida,

andfoundaprogressiveuppolypcloserapproachtoequilibriumvalues.

8

Guinea,andfoundthatENSOeventshaveexistedforatleastthepast130,000years,and thattheycontinuedeventhroughglacialtimes.TheyalsofoundthatENSOeventsofthe

20thcenturywerestrongerthaninpastglacialorinterglacialtimes.Coresfromreef coralscanfrequentlyspancenturies:Hendyetal.(2002)wereabletogobackintime morethan400years.

Mostoftheworkonreefcoralcoreshasemphasizedtemperaturedeterminations, usingthe δ18 Opaleothermometer.Morethantemperaturecanbedeterminedfromthese cores,however:Fallonetal.(2002)usedreefcoralcorestodeterminetheimpactof miningonthewatersaroundMisimaIsland,PapuaNewGuinea,andHeikoopetal.

(1996)foundthehydrothermalpulseassociatedwithavolcaniceruptionintheBanda islands,Indonesia,recordedincoralsneartheeruptionsite.Asusefulandasflexibleas thereefcoralrecordis,however,itsuffersfromseveregeographicalrestrictions.Tostate theobvious,reefcoralrecordsmayonlybeobtainedwherereefcoralsgrow:warm, shallowwaters.Themostdynamicoceanographicprocessesarefrequentlylocateddeeper inthewatercolumnandfurthertowardthepoles.

Themid90’ssawincreasedinterestintherecordsfromdeepseacorals,sparked bytwokeypapers.Druffeletal.(1995)determinedanageofapproximately1800years foranindividual Gerardia (zoanthid)collectedoffLittleBahamaBank,suggestingthat

theseorganismswereperhapstheoldestlivingspeciesintheocean,rivalingBristlecone

Pinesforthetitleoflongestlivedorganismsontheplanet.Theyfurthersuggested(p.

5031)“thereispotentialfor Gerardia toserveasamillennialscaleintegratorofupper

10 oceanparticleflux,andpossiblyrevealpastchangesintheproductivityofthesurface ocean.”Smithetal.(1997)analysedasuiteof Desmophyllum dianthus fromoffOrphan

Knoll,offtheNewfoundlandslope.Therecordofonepseudocolonycapturedarapid coolingofintermediatewatersattheonsetoftheYoungerDryas(~13kaBP).Their analysesshowedthatthistookplaceinaslittleasfiveyears,astartlingfindforthetime.

Thefieldhasexpandeddramaticallyinthepastdecade.AttheThirdInternational

SymposiumonDeepSeaCorals,heldinMiamiinNovDec2005,therewereclimate relatedpapersfromauthorsfromalmost20differentcountries.

2.1.2Advantagesofthedeepseacoralarchive

Tobeacceptedasdependable,anyclimateproxyextractedfromorganismsor sedimentsmustbediageneticallystable,reproducibleamongspecimens,andmust faithfullyrecorddataofclimaticsignificance.Advantageswouldbelongevity,wide geographicanddepthranges,easeofanalysisandabundance.Deepseacoralsfulfillall thesecriteria,withthepossibleexceptionofabundance.Socalleddeepseacoralsinfact rangefromdepthsofonlyafewmetres(inplaceslikeAlaskaandChile),to>4km,and inalloceans,buttheyarebynomeansabundant.Inmanycases,suchasmuchofour ownwork,adventitiousoropportunisticsamplesmaybeobtainedfromcultivatinggood relationshipswithfishermen,orfromaccidentaltrawlhauls.Samplesspecifictoagiven researchprojectmaybecollectedusingdeepsubmersibles,allofwhicharevery expensive,andtheuseofwhichismostlyrestrictedtodevelopednations.

11 AlthoughScleractiniansarerelativelycommonandwidespreadinthedeepsea, obtaininglong,coherentclimaterecordsfromtheirskeletonscanbechallenging.They areusuallysmall,lessthan5cminheight,andtheirgrowthbandingisexceedingly narrow,ca.10–100microns(Lazieretal.,1999;Sherwood2002).Recenttechnological advances,however,suchasmicrosamplersandmicroprobes,havemadesmallsample sizesmuchlessofaproblem,and,whereasacenturyofreefcoralrecordcouldbecarried onastrongshoulder(itcouldweigh~100kg),thesamelengthofrecordinadeepsea coralcouldbetuckedinashirtpocket.Inthefuture,itislikelythatmoreresearchwill focusonhornycorals,whichhavetreelikemorphologies,andlifespansofseveral centuries(Druffeletal.,1990;Druffeletal.,1995;Risketal.,2002;Sherwoodetal.,

2006).

Insummary,deepseacoralsprovideawidespreadarchiveofoceanographic processes,withannualtodecadalresolutionrecordsspanningseveralcenturiesin length.Theyareideallysuitedtothestudyofrapidchanges,suchasthatwhich characterizedthePleistoceneHolocenetransition.

2.2METHODSANDINTERPRETATIONS

2.2.1Growthandsclerochronologyindeepseascleractinians

Deepseascleractiniansexhibitawidevarietyofgrowthforms,fromsimple, solitarycupcoralstocomplex,branchingcolonies(Fig.2.2).Abriefintroductionto skeletalnomenclatureisprovidedhere,tofacilitatethediscussionofsclerochronology.

12 F

COC

Fig2.3: SEM imageofcentersofcalcification(COC)andcrystalfibres(F)in the(shallowwater)scleractiniancoral Porites lutea .Noteocclusionofcrystal fibresatpointsoflateralinterference.ImagefromCohenandMcConnaughey (2003).

Theitself,thepolyp,rangesfromafewmmtoseveralcmindiameter.Thepolyp

sitsatopaverticalcalcifiedtube,thecorallite,supportedbyathinhorizontalplatecalled

thedissepiment.Thecoralliteislengthenedbyperiodicupliftofthepolypandformation

ofanewdissepiment.Thewallofthecoralliteiscalledthetheca.Aseriesofthinvertical

sheets,thesepta,radiatefromthethecaintothecenterofthecorallite.

Atthemicroscopicscale,allthecoralstructuresshareacommonmodeofcrystal

nucleationandgrowth.Theextendingtipsofstructurescomprisesocalled“centersof

calcification”(COCs;seereviewinCohenandMcConnaughey,2003).Crystal

nucleationoccursintheCOCs,producingrandomlyorientedmicrogranules.Inthin

13 section,COCsappearopaque.Thickeningoftheskeletalstructuresisachievedbythe growthofcrystalfibres(Fig.2.3).Fanshapedbundlesoffibres(spherulites)competefor spaceastheyelongate(Barnes,1970;Gladfelter,1982).Thefibresthustakeonan increasinglypreferredorientationfurtherawayfromtheCOCs.Microbandingonthe growingfibresoccurswithaperiodicityofca.1micron(SoraufandJell,1977;Cuifand

Dauphin,2005).Thefibrousregionappearstranslucentintransmittedlight,eventhough thecrystalsaremoredenselypacked(Cohenetal.,unpubl.).Crystalfibrescomprisethe bulkofcoralskeletons.

Growthcoupletsconsistingofalternatingopaquetranslucentbandpairs(Fig.2.4)

arefoundinmanydeepseascleractinians,rangingfrom0.1to0.75mminwidth

(MortensenandRapp,1998;Lazieretal.,1999,Chengetal.,2000;Adkinsetal.,2004;

Cohenetal.,unpubl.).Thedelicate,sheetlikeseptaeusuallyexhibittheclearestbanding

wheretheyhavenotbeensecondarilythickened(Lazieretal.,1999).Growthbandsare

visibleintransverseandlongitudinalsectionsofthetheca,butthesemaybesusceptible

todissolutionwherethelivingtissuedoesnotenveloptheouterskeleton(Lazieretal.,

1999).Cohenetal.(unpubl.)relateopaquetranslucentgrowthbandingobservedin

Lophelia pertusa totherepetitionofcrystalnucleationandgrowthevents.Theysuggest

thattheprocessofcrystalnucleationandgrowthoccursquicklyinsuccession,andthatit

mayreflectaseasonalgrowthspurtfollowedbyadormantperiod.Obviously,thishasan

importantconsequenceforthecontinuityofgeochemicalproxyrecords.

14 Fig.2.4 :Exampleofgrowthbandinginaseptumofthescleractiniancoral Desmophyllum dianthus .Whitepatchatbottomofimageiswherethetheca wasattached.FigurefromChengetal.(2000).

Thekeyutilityofcoralsinpaleoceanographyisthatlongrecordsofambient conditionsarelockedintothegrowingskeletoninsuccessivelayers.Whendealingwith tropicalreefscleractinians,massivecoloniesareselectedforclimatereconstructions becauseofthesimplicityoftheirgrowthbanding.Deepseascleractinianshavemore complicatedcupandbranchingmorphologies,makingitdifficulttovisualizeandsample thegrowthlayers.Thesolitarycupcoralsareeasiertodealwithbecausetheygrowas onecoralliteovertheir100+yearlifespans(Smithetal.,1997;Adkinsetal.,1998;

Chengetal.,2000).Thus,theseptaandthecaexhibitthefullcomplementofgrowth

15 layersoverthelifespanofthecoral(Fig.2.4),providedthatdissolutionhasnotremoved someoftheselayers(Lazieretal.,1999).Branchingspeciesaremuchmoredifficultto analyzebecausetheindividualcorallitesarerelativelyshortlived.Althoughthereare visiblegrowthlayersintheseptaandthecaof Lophelia pertusa ,forexample,they

usuallynumber<10(MortensenandRapp,1998;Cohenetal.,unpubl.).Theoretically,

extendedchronologiescouldbedevelopedbytrackingsuccessivegrowthlayersinto

youngercorallites,butthishasnotbeendemonstrated.Also,PonsBranchuetal.(2005)

raisethepossibilitythatgrowthin L. pertusa occursinrelativelyshortbursts,separated bylonghiatuses.

Inmostcasesdeepseacoralscannotbeobservedgrowingintheirnaturalhabitat

(butseeMortensenandRapp,1998),sogrowthratesmustbedeterminedwith

radiometricdatingtechniques(e.g.U/Th, 226 Ra/Ba, 210 Pbor 14 C).Verticalgrowthrates

rangebetween0.1and3mm/yrforsolitarycorals(Chengetal.,2000;Adkinsetal.,

2002;Adkinsetal.,2004)and2and5mm/yrforbranchingcorals(MortensenandRapp

1998,Adkinsetal.2004).Correspondingperiodicitiesofgrowthbandingrangefrom0.3

to3bands/yrin Desmophyllum dianthus (Chengetal.2000)to~0.1bands/yrin

Enallopsammia rostrata (Adkinsetal.2004).Bandingperiodicityprobablyvarieswithin

andamongdifferentspeciesdependingondepthandenvironmentalconditions.Forthis

reason,bandingperiodicityshouldbeassessedonacasebycasebasis.Sincetheyoften

liveinnearconstantphysicalconditions,thecausesofgrowthbandingindeepsea

scleractiniansremains“quiteliterally,inthedark”(Lazieretal.,1999).Overall,it

appearsthatgrowthbandingindeepseascleractiniansisnotareliablechronometerin

16 mostcases,andthatskeletalchronologiesmustinsteadbeestablishedbyradiometric datingmethods.

2.2.2Growthandsclerochronologyinhornycorals

Severalgeneraofdeepseafans(Octocorallia:OrderGorgonacea)formdurable,

longlived,treelikeskeletons(Fig.2.2).Compositionally,theydifferfromscleractinians

intwokeyaspects.First,thecarbonatephaseisusuallyhighmagnesiumcalcite;but

somespeciesmaydepositcarbonatehydroxyapatite(Mcintyreetal.,2000).Relativeto

aragonite,thesmallerlatticegeometryofcalcitefavourscoprecipitationofsmallcations

suchasMg,anddiscriminatesagainstlargercations,suchasSrandU.Second,the

skeletonalsocontainsahorny,fibrillarproteincalledgorgonin.Thefunctionofgorgonin

istolendflexibilitytotheotherwisestiffcalcifiedskeleton(GrasshoffandZibrowius,

1983;Lewisetal.,1992).Differentregionsoftheskeletonmaybecomposedof

‘massive’(100%)calcite,100%gorgonin,oracombinationofboth.Forexample,the

BambooCorals(familyIsididae)depositgorgoninnodes,likethejointsofafinger, betweeninternodesofmassivecalcite.Redtreecorals(family)deposita2 partcalcitegorgonin“hornyaxis”towardstheinnerpartoftheaxialskeleton,anda

massivecalcitecortexlateron.

Atthemicroscopicscale,massivecalcitestructuresinoctocoralsappearalmost

identicaltothearagoniteinscleractinians(Lewisetal.1992;Sherwood,2002;Bondet

al.2005).Calcitefibresgrowinspheruliticfashion,thefibresnucleatingon

17 2 mm 2

30 (1973)

25 (1979)

20 (1984)

15 (1989)

10 (1994)

5 (1999)

Fig.2.5 :Exampleoftheannualgrowthringsinayoung(30yearold) axialskeletonofthedeepseagorgonian Primnoa resedaeformis .Markings showindividualringsisolatedforanalysis,withcorrespondingcalendar age(inbrackets),asdeterminedbyamateurgrowthringcounters.Figure fromSherwoodetal.(2005a).

gorgoninsurfacesorCOCs.Microbandingonthegrowingfibresoccurswitha periodicityofca.1micron(Sherwood,2002).Wherecalciteisembeddedwithgorgonin,

thecalcitefibrestakeonstubbiermorphologies,perhapsindicatingadifferentprocessor

rateofbiomineralization(Sherwood,2002).

18 Growthringsinoctocoralsmaybeobservedineitherthemassivecalciteorhorny regionsoftheskeleton(Fig.2.5).Inthemassivecalcite,theringsprobablyrelatetothe repetitionofcrystalgrowthandnucleationevents.Inthehornyregions,theringsare producedbyalternationsintheratioofgorgonin:calcite(Risketal.,2002;Sherwood,

2002;Marschaletal.,2004),perhapscompoundedbyvariationsintheextentofprotein tanning(SzmantFroelich,1974).Usingbomb14 C(Sherwoodetal.,2005a)and 210 Pb dating(Andrewsetal.,2002)annualringperiodicityintheredtreecoral Primnoa resedaeformis hasbeenproven(Fig.2.6).Finerscalegrowthrings,possiblylunarin origin,havealsobeendescribedin P. resedaeformis (Risketal.,2002;

Sherwood,2002)makingthisspeciesperhapsthehighestresolutiondeepwaterarchive intheworld.Thresheretal.(2004)verifiedannualringformationinthecalcite internodesofthebamboocoral Keratoisis spp. Otherstudiesreportmorediffusebanding patterns,withambiguousperiodicities(Druffeletal.,1990;Roarketal.2005;Andrews etal.2005).Aswithscleractinians,itishighlylikelythattheappearanceandtimingof ringsdependsonlocalenvironmentalfactors,suchasthedownwardfluxoforganic matterfromspringplanktonblooms(Sherwood,2002).Inregionsoftheoceanwhere seasonalvariabilityisattenuated,growthringsmaynotbeasprominentlydeveloped.

Lifespansofoctocoralsoftenexceedseveralhundredsofyears(Druffeletal.,

1990;Risketal.,2002;Andrewsetal.2002;Thresheretal.2004;Roarketal.2005),the oldestreportedlifespanbeinga700yroldspecimenof P. resedaeformis (Sherwoodet al.,2006).Comparedwithdeepseascleractiniancorals,obtainingcenturieslong

19 100 DFO2002con5 80 HUD2002055VG15 HUD2002055VG13 60 NED2002371 NED2002375 ROPOS6400013 40 ROPOS639009 Primnoa:splinefit 20 A.islandica M.aeglefinus C(‰)

4 0 1 20

40

60

80

1920 1930 1940 1950 1960 1970 1980 1990 2000 Yearorringcount Fig.2.6 :Timeseries 14 C ofannualhornyrings(afterdecalcification)of Primnoa resedaeformis .Dataarefrom7differentcoloniescollectedfrom250475minthe NWAtlanticOcean.Accuratereconstructionofthebomb14 Csignalprovesannual ringperiodicity.Referencecurvesforclamshell(Arctica islandica ;Weidmanand Jones,1993)andhaddockotoliths( Melanogrammus aeglefinus ;Campana1997)also shown.FigurefromSherwoodetal.(2005a).

geochemicalrecordsfromoctocoralsissimplifiedbytheabilitytosampleacrossthe growthringsoftheaxialskeletal.

Zoanthidsandantipatharians(blackcorals)alsoshowgreatpromiseasmarine

archives.Thesecoralsalsoformarborescent,concentricallybandedskeletonscomposed

ofahornyproteinmuchlikethegorgoninfoundinoctocorals(Goldberg,1991;Druffel

etal.,1995).Theskeletonsarenotcalcified,sothefossilrecordissparse.However,these

organismshavesomeofthelongestlifespansofanycorals.Druffeletal’s(1995)1800

20 yearold Gerardia isacaseinpoint.Antipathariansmayliveforseveralhundredsof years(Williamsetal.,2005),andtheirgrowthrings,demarcatedbydarkcoloured protein“glue”(Goldberg,1991),alsoappeartoformannually(Williamsetal.,2005).

2.2.3Fossilpreservation

Thedegreeofdiageneticstabilityofdeepseacoralsseemsexcellent(Teichert

1958).Repeatedscanningelectronmicroscopeexaminationofdeepseascleractinians

fromvariousdepths(afewhundredmetresto>2km)andvariousoceansshowsthatthey

remaintheoriginalaragonite,withvirtuallynorecrystallisation,sincetheearly

Pleistocene(TitschakandFreiwald,2005;RemiaandTaviani,2004).Themassivecalcite

structuresingorgonianshavemoredurableandcompactskeletons;aged

specimensareexcellentlypreserved(GrasshoffandZibrowius,1983).Theorganicphase

ofhornycoralshaspoorerpreservationpotential,butaminoacidandstableisotopic

analysessuggestthatitisstableoveratleastthelastfewthousandyears(Goodfriend,

1997;Sherwoodetal.,2006).

Boththereefcoralrecordandthedeepseacoralrecord,atleastinthecaseofthe

scleractinianrecord,maybecompromisedbybioerosion.Allcorals,fromalldepths,are boredbyavarietyoforganisms,ofwhichthemostprevalentarespongesand,inshallow

water,algae.Indeepseacorals,themajorbioerodersaresponges,fungi,bryozoaand polychaetes(Boerboometal.,1998;Bromley,2005;BeuckandFreiwald,2005;Wisshak

etal.,2005).Theeffectsofbioerosionmayrangefromcompleteremovaloftherecordto

selectivedissolutionofaragoniteCOCs(TitschakandFreiwald,2005)andsubtle

21 alterationsofthetraceelementcompositionoftheskeleton(PonsBranchuetal.,2005;

Robinsonetal.,2006).Virtuallynothingisknownoftheprocessbywhichclimate recordsaredistortedbybioerosion.

2.2.4Sourcesofcarbontodeepseacorals

Basedonradiocarbonmeasurements,GriffinandDruffel(1989)originally establishedthatthecarbonatefractionofdeepseascleractiniansandoctocoralsismostly derivedfromambientdissolvedinorganiccarbon(DIC)atdepth.Otherauthorshave noteda1:1relationshipinthe 14 CofcoralcarbonateandseawaterDIC(Goldsteinetal.

2001;Adkinsetal.2002;Franketal.,2004;Roarketal.2005).Radiocarbonevidence limitstheamountofrespiratoryCO 2incorporatedintothecarbonateto<10%(Adkinset

13 al.2002);however, δ CdataindicatethattheamountofrespiredCO 2maybesomewhat higherinselectspecies(e.g.Fig2.7).

Incontrasttothecarbonate,theorganicfractionofhornycoralsissynthesized fromfoodsourcessinkingoutofsurfacewaters,aconclusionbasedonthepresenceof bomb14 Cindeepdwellingspecimens(Fig.2.6;GriffinandDruffel,1989;Druffeletal.,

1995;Roarketal.,2005;Sherwoodetal.,2005a).Theactualfoodsourcesaremostly unknownbecausefieldmonitoringisprohibitivelyexpensive,andspecimensusuallydie whenraisedtothesurface.Studiesonrelativelyshallowdwellingoctocoralsconsistently pointtodetritalparticulateorganicmatter(POM)and(ina~50:50ratio)as themainfoodsources(Ribesetal.,1999;2003;Orejasetal.,2003).Thesinking,rather thansuspendedfractionofdetritalPOMislikelytobemoreimportanttodeeperdwelling

22 taxa,asthenutritionalvalueofthelatterdecreaseswithdepth.Our 14 Cand δ15 Ndata supportasinkingPOMand/orzooplankton(asbothhaveapproximatelythesame 14 C

and δ15 N)dietindeepseagorgoniansandantipatharians,whilerulingoutdeep

suspendedPOManddissolvedorganicmatter(DOM)asimportantfoodsources

(Heikoopetal.,2002;Sherwoodetal.,2005a;2005b;Williamsetal.,2005).

2.2.5Biocalcificationmodels

Adebateonthemechanismofcoralcalcificationhaspersistedfor40years(see

reviewinCohenandMcConnaughey2003).Abriefoverviewofthisdebateseems

appropriate,asitframesourdiscussionofisotopicandtraceelementalvariabilityincoral

carbonate.Inthe“organicmatrix”modelcrystalgrowthisinitiated,directedand

terminatedbyorganicsecretions(Goreau,1959;Johnston,1980).Supportforthisideais providedbylocalizationofsulphurcontainingorganicmatterwithinCOCsandcrystal

fibres(CuifandDauphin,2005).Inthe“physicochemical”model(Barnes,1970;

Constanz,1986)crystalgrowthoccursfreelywithinpocketsofenzymaticallymodified

seawaterbeneaththeectodermaltissue.Thisideaisrootedinthesimilarityofspherulitic

crystalmorphologyincoralstothatinmineralspecimens(BryanandHill,1941).

Oneoftheadvantagesofthephysicochemicalmodelisthat,beinggroundedin

theprinciplesofinorganic(thermodynamicandkinetic)solution/crystalchemistry,it

maybequantitativelyevaluatedagainstagrowingbodyofisotopicandtraceelemental

datafromcoralskeletons(SinclairandRisk,inpress).Thesedataindicatethatisotopic

andtraceelementalcompositionsofcoralsalmostalwaysdepartfromthermodynamic

23 equilibrium(i.e.‘vitaleffects’).Inmostcases,physicochemicalbasedmodelscan accountfortheisotopicandtraceelementaldisequilibriaincoralsthroughbiological manipulationofcalcificationfluids(McConnaughey1998b;Adkinsetal.,2003;Sinclair,

2005;SinclairandRisk,inpress).

Intheclassicmodelofcalcificationphysiology(e.g.:McConnaughey,1989b;

CohenandMcConnaughey,2003)calcificationoccursinathin(~10micron),

extracellularcalcifyingfluid(ECF)betweenthecoraltissueandtheskeleton.TheECFis

isolatedfromcellfluidsbyamembranewhichispermeabletosmall,uncharged

moleculesonly.CO 2passivelydiffusesacrossthecellmembranewhereitreactswith

++ H2OorOH toformHCO 3 .TheenzymeCaATPasepumpsCa intotheECFin exchangefor2protons,tomaintainchargeneutrality.ProtonremovalincreasesthepHof

++ theECF,andconvertsHCO 3 toCO 3 ,whichprecipitateswithCa .Smallamountsof

= seawaterHCO 3 andCO 3 ,aswellastraceelements,entertheECFthroughleaky membranesorbypassageofinvaginatedvacuolesacrossthecellmembrane(Furlaetal.,

1998).

2.2.6Stableisotopicdisequilibriaindeepseacorals

Oxygenandcarbonisotopeanalysisofbiogeniccarbonateshasbeena cornerstoneofpaleoceanographyforover50years.The δ18 Oofcarbonateisusedtoinfer pasttemperatures(Epsteinetal.,1953)andtheextentofcontinentalglaciation(e.g.:

24 3

respiredCO2 2

1 O(‰) 18

δ 0

1

2 10 8 6 4 2 0 2 4 δ13C(‰) Fig.2.7: Stableisotopicdatafromaspecimenof Lophelia pertusa collectedfromthe NEAtlantic.Isotopicdataplotalongastraightlineextendingroughlytotheoretical aragoniteseawaterisotopicequilibrium(boxedcross).Horizontaloffsetfrom 13 equilibriumiscausedbyskeletalincorporationofδ CdepletedrespiredCO 2 (i.e.metaboliceffects).DatafromRisketal.(2005).

Shackleton,1967),and δ13 Cisusedtoidentifywatermassesinthedeepocean(e.g.:

Sarntheinetal.,1994).Manybiogeniccarbonatesthatexhibita“vitaleffect”have

consistentoffsetsfromisotopicequilibrium.Deepseascleractiniansareaspecialcase:

theextentofdisequilibriumishighlyvariablewithinanindividualcoral(Emilianietal.,

1978;McConnaughey,1989a;Smithetal.,2000;2002).Whenplottedin δ18 Ovs. δ13 C space(Fig.2.7),isotopicdataplotalongstraightlinesextendingroughlyfrom equilibriumtoapointupto5‰depletedfor δ18 O,andupto15‰depletedfor δ13 C.

Theslopesoftheselinesaverageabout1/3.Octocoralcalcitesshowsimilarpatterns, thoughtheextentofdisequilibriaissomewhatless(Druffeletal.,1990;Heikoopetal.,

1998).

25 AccordingtoMcConnaughey’skineticmodel(1998b,2003),strongisotopic depletionsaremainlycausedbyhydrationandhydroxylationofCO 2withintheECF,

18 13 althoughthepathwaysof δ Oand δ Cfractionationdiffer.Foroxygen,bothH 2Oand

OH arestronglydepletedin δ18 O:about30‰and69‰,respectively.Since1/3ofthe

oxygenatomsinHCO 3 comefromH 2OorOH ,McConnaughey’s(2003)calculations predictaDICwitha δ18 Ocompositionwellbelowthatofaragoniteinequilibriumwith

13 seawater.Forcarbon,thereactionofCO 2withH 2OandOH stronglyfractionates δ C, about7‰and27‰,respectively.Again,theresultingDICtakesona δ13 Ccontent

muchdepletedcomparedwithequilibriumaragonite.HydroxylationofCO 2predominates atpH>8,wheremostcalcificationoccurs;thusthestronger δ18 Oand δ13 Cdepletions

associatedwithhydroxylationdominatetheisotopiccompositionofthecoralskeleton

(McConnaughey,2003).

++ McConnuaghey(1989b)calculatedthatHCO 3 canprecipitatewithCa much

18 fasterthanitcanattainequilibriumwithH 2OintheECF,sothe δ Odepletionisburied

intheprecipitatingaragonite.Furthermore,equilibrationofHCO 3 occursthroughaCO 2 intermediate,whichdiffusesbackandforthacrossthecellmembraneandequilibrates withcellH 2OatlowerpH.SomeofthecarbonintheECFiscarriedwiththeCO 2

molecule,allowingittoequilibratewithinthecellalso.Strongdepletionsin δ13 C incurredduringhydrationandhydroxylationaretherebypartly“eroded”(Cohenand

McConnaughey,2003).TheCO 2moleculecarriesbothCandOatomsacrossthecell membrane,allowingsimultaneousequilibrationof δ13 Cand δ18 Ointhecell.This

26 Fig.2.8: Transmittedlightimageofthethecal regionof Desmophyllum dianthus , overlainwith δ18 O resultsobtainedwithahighspatialresolutionmicrosampler. VerticallineofCOCs (lightestregion)isassociatedwiththelowest δ18 O.Figure fromAdkinsetal.(2003).

accountsforthe δ18 O–δ13 Ccorrelationsindeepcorals.Inadditionto‘kineticeffects’,a

smallamountoftheCO 2enteringtheECFisderivedfrommetabolism,andisabout2‰ depletedin δ13 C(McConnuaghey,1989a).Thus,thelinesin δ18 O–δ13 Cspaceextendto apointroughly2‰depletedin δ13 Ccomparedtoequilibrium.

Inrecentyears,anewaspectofisotopicdisequilibriaindeepseacoralshas emerged.HighresolutionmicrosamplingrevealsthatCOCsaremoreisotopically depletedthancrystalfibres(Fig.2.8;Adkinsetal.,2003;RollionBardetal.,2003).

27 Moreover,isotopicdatafromCOCsmayevenfalloffthe δ18 Ovs. δ13 Clines,where δ18 O continuestodecreasebut δ13 Cdoesnot.Suchanomalousdatawentunnoticedinearlier studiesbecausethedentaldrillsusedinsamplingcouldnotbeusedtoseparatefibres fromCOCs(Lutringeretal.,2005).Toaccountfortheseobservations,Adkinsetal.

(2003)developeda“carbonatemodel”ofisotopicdisequilibrium.Intheirmodel, δ18 O

and δ13 Cdisequilibriaaredrivenbythermodynamicresponsetoabiologicallyinduced pHgradientintheECF.WhileMcConnaughey’s(1989b)kineticmodelandAdkinset

al’s(2003)carbonatemodelarefundamentallydifferent,bothagreethatisotopic

depletionsinCOCsareanindicationofafasterrateofcalcification.

2.2.7Overcomingisotopicdisequilibria:the“linestechnique”

Smithetal.(2000)proposedthe“linestechnique”asawaytoovercomevital effectsindeepseascleractiniancorals.Theirapproachmakesuseofthefactthatthe lighterendsof δ18 O–δ13 Cregressionlinesforanyonecoralextendtowardsisotopic

equilibrium(Fig.2.9).If δ13 Catequilibriumisknown(from δ13 Cofseawaterorcoeval benthicforaminifera),then,withasmallcorrectionforrespiratory δ13 C(about2‰),the

correspondingvalueof δ18 Oatequilibrium,andhencetemperature,canbecalculated.

Using35moderncorals,Smithetal.(2000)showedthatevenif δ13 Cisnotknown,the

interceptsof δ18 O–δ13 Cregressionlineswerestronglycorrelatedwithtemperature:

18 18 o (δ Oc–δ Ow)=0.21T( C)+4.51 (1)

28 6

4

2 1oC 5.5oC O(‰) 18

δ 0 15oC

2

20oC 4 10 8 6 4 2 0 2 4 δ13C(‰) Fig.2.9: Isotopicdatafor4coralspecimenscollectedfrom:Antarcticshores,410m (solidcircles);NWAtlanticslope,1025m(opensquares);NEAtlantic,310m(solid diamonds);Bahamas,295m(crosses).Forclarity,onlytheleastsquaresregression linesareshown.Crossedboxesrepresenttheoreticalisotopicequilibriumforeachof thecoral’sdatasets.Verticaloffsets,reflectingtemperaturedependenceofd18O,are thebasisforthe‘linestechnique’.Horizontalarrowspointtointersectionofregression lineswithequilibriumd18O;lengthofarrowsreflectsmagnitudeoftheoretical metaboliceffect.FiguremodifiedfromSmithetal.(2000).

Equation1isnearlyidenticaltoGrossmanandKu’s(1986)experimentallyderived δ18 O vs.temperatureequation.Thissuggeststhatsetting δ13 C=0isareasonable

approximationforseawater δ13 Cminustherespiratory δ13 Ccorrection.

Weaknessestothelinestechniquestemfromvariabilityinmetaboliceffects

(Adkinsetal.2003),ortheslopesof δ18 Ovs. δ13 C(Smithetal.,2000).Despitethese limitations,Smithetal.(2000)couldcalculatepresentdaytemperaturestoaprecisionof

±0.36to±1 oCoverarangeof1–28 oC.Thelinestechniquemaynotworkaswellwith

29 preHolocenecorals,however,becauseseawater δ13 Cwasmorevariable,andcoral metabolismmayhavebeenmuchdifferent;thisisapparentuponreexaminationoftheir earlierresultson Desmophyllum (Smithetal.,1997).Inaddition,Smithetal.(2000)used theclassicdentaldrillsamplingmethod,thustheycouldnotresolvetheisotopic differencesbetweenfibresandCOCs.Lutringeretal.(2005)analysedfibresandCOCs separatelywithanionmicroprobeandessentiallyreproducedSmithetal’s(2000) findings,albeitwithslightlylargerestimatesofprecision(±0.7to±1.5 oC).Overall,the linestechniquemaybeusefulintrackingrelativelylargechangesinwatertemperature, suchasthatwhichoccursinupperintermediatewaters.

2.2.8Traceelementvitaleffects

Agrowingbodyofevidenceshowsthattraceelementalvitaleffectsarea ubiquitousfeatureofshallowanddeepwaterscleractiniansalike(Sinclairetal., submittedms).Themeancompositionsdifferfrominorganiccarbonate,andtherangeof variabilitygreatlyexceedsthatwhichcanbeaccountedforbytemperaturedependent partitioningalone.Inscleractinians,differenttraceelementsarestronglycorrelatedwith eachother,muchinthesamewaythat δ18 Oand δ13 Carecorrelated(Fig.2.10;Montagna etal.,2005;Shiraeetal.,2005;Sinclairetal.submittedms).Moreover,elemental compositionsaredistinctlydifferentinCOCsthaninsurroundingfibres,withCOCs beinglowerinSrandU,andhigherinMg(Shiraietal.2005;Cohenetal.,unpubl.;

GagnonandAdkins,2005;Sinclairetal.,submittedms).Arecentlydevelopedtrace elementequilibrium/kineticmodelofcalcificationcanaccountfortheapparentvital effects;specifically,SrandUdepletionsarepredictedathighcalcificationrates(Sinclair

30 Fig.2.10: NegativecorrelationbetweenMg/CaandU/Caacrosstheskeletal micro structuresof Lophelia pertusa .HighestMgandlowestUoccursintheoptically denseCOC.Conversely,thelowestMgandhighestUoccursintheopticallylight depositsliningtheinsideofthecalyx.Thebulkoftheskeletonisamixturebetween these2endmembers.FigurefromSinclairetal.(submittedms).

andRisk,inpress).Cohenetal.(unpubl.)presentcompellingevidenceforaSr/Ca paleothermometerin Lophelia ;however,wearestillalongwayfromproducingreliable temperaturereconstructionsfromscleractiniancorals.

Followingtheextensiveresearchonforaminiferalcalcites,Mg/Cainoctocorals

hasbeenproposedasapotentialpaleothermometer(Weinbaueretal.,2000;Thresheret

al.,2004;Bondetal.,2005;Sherwoodetal.,2005c).Thresheretal.(2004)present350

yearlongrecordsofMg/CafromBamboocorals,whichtheyinterpretasevidencefor

recentcoolingintheupperintermediatewatersoffAustralia(Fig.2.11).Morerecent

studies,however,suggestthatMg/Ca,aswellasU/CaandSr/Ca,maybepoorly

reproduciblealongmultipletransectsofthesamecoral(Allardetal.2005;Fallonetal.,

2005;Sinclairetal.2005).Mg/Cainparticularmaybestronglyenrichedinorganic

31 Fig.2.11: RecordsofMg/Cafortwospecimens(K2andK4)ofbamboocoral collectedfrom~1000mdepthoffTasmania.Recordofd18O fromK2isalsoshown. Bothdatasetsindicateagradualdeclineinwatertemperatureoverthelast~350 years.FigurefromThresheretal.(2004).

phaseswithinthecalcite,thusmaskinganytemperatureeffect.Ontheotherhand,Ba/Ca

exhibitsexcellentreproducibility,andisthereforeagoodcandidateasanenvironmental proxy(Allardetal.2005;Fallonetal.2005).Overall,furtherworkisneededtoassessthe

factorscontrollingelementalpartitioninginoctocoralcalcitebeforereliableproxydata

canbeproduced.

2.2.9Useriesdatingofdeepseacorals

DeepseacoralsareexcellentsubjectsforUseriesdating.Scleractiniansare

easiertodatebecausetheiraragoniteskeletonscontainhigherlevelsofU(24ppm)

comparedwiththecalciteskeletonsofoctocorals(34ppb).WithmodernMulticollector

32 ICPMS,highprecisionUseriesagescanbeobtainedon<1gofsample.Here,we provideabriefoverviewofUseriesdatingasitappliestodeepseacorals.Moredetailed

treatmentsareprovidedinChengetal.(2000)andEdwardsetal.(2003).Boththe 238U

234 U230Th (U/Th)andthe 235 U231 Pa(U/Pa)decayschemescanbeused.U/Thisthe methodofchoicebecauseitissomewhatmorepreciseandcoversalongertimerange:0

600kavs.0250kaforU/Pa.However,U/ThdatingcanbeusedinconcertwithU/Pa

(Goldsteinetal.2001),oreven 226 Ra/Badating(PonsBranchuetal.,2005),asacheck onclosedsystembehaviorandthusondatingaccuracy.

Inreefcorals,itisnormallythecasethatallofthemeasured 230 Thcanbe accountedforbyradioactiveingrowth.Deepseacorals,ontheotherhand,liveina thoriumrichenvironment,sincethoriumincreaseswithdepthintheocean.Asa consequence,deepseacoralsmayincorporatesignificantamountsofunsupportedor nonradiogenicthorium,leadingtoolderapparentages.Thereare3sourcesof unsupportedthorium(Chengetal.,2000;SchröderRitzrauetal.,2003):1)aloosely attacheddetritalphase;2)ferromanganesecoatings,whichadsorbthoriumfrom seawater;and3)an“initial”,latticeboundfractionincorporatedduringcrystallization.

Thedetritusandcoatingscanusuallyberemovedbymechanicalcleaningandbyaseries ofchemicalleaches,respectively(e.g.:ShenandBoyle,1988).Initialthoriumcannotbe separatedfromradiogenicthorium,soitmustbeaccountedforinagecalculations.The precisionandaccuracyofU/Thagesthereforedependsontheprecisionandaccuracyof thecorrectionforunsupportedthorium(Chengetal.,2000).

33 TheU/Thageequation,includingthetermforinitialthoriumisdefinedas

(Edwardsetal.,2003):

230 238 232 238 230 232 λ230t {[ U/ U]–[ U/ U][ Th/ Th] i(e )}1=

λ230t 234 (λ230–λ234)t e +{ δ Um/1000}{ λ230 /( λ230 λ234 )}{1–e }(2)

where:isotoperatiosareactivityratios; λ’saredecayconstants;tisthe 230 Thage; subscriptsiandmrepresentinitialandmeasuredvalues,respectively;

234 234 238 and δ Umisthemeasureddeviationinpermilofthe[ U/ U]ratiofromsecular equilibrium: δ234 U=([ 234 U/ 238 U]1)x1000.Themeasurementof 232 Thprovidesacheck ontheextentofunsupportedthorium;thus,theonlyunknownsinEquation2arethe

230 230 232 230 232 Thage(t)andtheinitial Th/ Thactivity([ Th/ Th] i).

230 232 Therearetwoapproachestoestimate[ Th/ Th] i.Inthefirstapproach,a constantvalueisassumed,basedonseawatermeasurements.Thisapproachissuitablefor relativelycleansamples,with 232 Thcontentsofca.<20ppb.Chengetal.(2000)showed that[ 230 Th/ 232 Th]measuredinmoderndeepseascleractiniansfrombetween400and

2000mintheAtlanticandPacificOceanswasindistinguishable,withinerror,from

230 232 seawatermeasurements.Theirestimateof[ Th/ Th] =14.8+/14.8hasbeenusedasa

“blanket”correctionfactor(Adkinsetal.,1998;Chengetal.,2000;Robinsonetal.,

2005).Alternatively,measurementsofseawater[230 Th/ 232 Th]specifictotheareaand

230 232 depthofinterestmaybeusedtonarrowtherangeofpossible[ Th/ Th] i(Schröder

230 232 Ritzrauetal.,2003;Franketal.,2004;2005).Useofaconstant[ Th/ Th] icorrection

34 assumesthatseawater[230 Th/ 232 Thwasconstantinthepast,whichmaynotnecessarily

230 232 havebeenthecase.Accordingly,errorsin[ Th/ Th] i,of±50%to100%are propagatedthroughtheagecalculationstoaccountforthisuncertainty.

Thesecondapproach,usingthesocalledRosholtIIisochronmethod(Ludwiget al.,1994),assumesa2endmembermixingmodelbetween 232 Thfreecarbonateandthe

232 Thrichcontaminant(LomitschkaandMangini,1999;SchröderRitzrauetal.,2003;

2005).Thismethodissuitableforheavilycoatedsampleswith 232 Thcontents>20ppb

(ShröderRitzrauetal.,2005).Twotofourfractionsofthesamesamplearepreparedand

analyzedseparately.Thefirstfractionconsistsofjustthecoating;theotherfractionsare

subjectedtocleaningsofincreasingintensity,fromsimplemechanicalcleaningtostrong

chemicalleachinginascorbicacidandNa 2EDTAsolution(LomitschkaandMangini,

1999).Whenplottedin[ 230 Th/ 232 Th]vs.[ 238 Th/ 232 Th]space,dataforthedifferent

230 232 fractionsdefineanisochron,theyinterceptofwhichrepresentsthe[ Th/ Th] i correctionfactorforinputtoequation2.Aslightlydifferentvariationoftheisochron approachisoutlinedinGoldsteinetal.(2001).

Therelationshipbetweenmeasuredandinitial δ234 Uisdefinedas(Edwardsetal.

2003):

234 234 –λ234t δ Um=( δ Ui)e (3)

Ifthe 230 Thagecanbesolvedindependently,thenEquation3canbeusedtocalculate

234 234 initial δ U.Knowledgeof δ Uiisausefulcheckondiageneticalterationofthe

35 a 10000

1000

100

10

correcteduncorrectedage(yrs) 1 1 10 100 1000 10000 100000 Corrected230Thage(yrsBP) b 10000 uncorrected corrected(nonisochron) 1000 corrected(isochron)

100 ageerror(yrs) σ

2 10

1 1 10 100 1000 10000 100000 230Thage(yrsBP) Fig.2.12: CompilationofallpublishedU/Thdatesfromdeepseascleractiniancorals. Upperpanel:Differencebetweenuncorrectedandcorrectedagesaverages<3%. Lowerpanel:2 σ ageerrorsassociatedwithuncorrecteddata,andcorrecteddata using eithertheisochronornonisochronapproaches.Seetextforexplanation.

skeletonandhenceopensystembehavior,becausemarine δ234 Uisfairlyconstantintime andspace(Chengetal.,2000;Bardetal.,1991;Henderson,2002).Ifuraniumisaddedto theskeletonbydiageneticprocesses(endolithicborings,secondarymineralization, microredoxtraps,porewaterU;SwartandHubbard,1982;PonsBranchuetal.,2005;

Robinsonetal.,2006),thentheU/Thageequationmaybeinvalidated.Itiscommon

234 234 practicetodiscarddatawhen δ Uifallsoutsideadefinedrangeofseawater δ U(e.g.:

146±7‰;Robinsonetal.2005).

36 CompilationofallpublishedU/Thdatesindeepseascleractiniansprovidesan indicationoftheaccuracyandprecisionofthetechnique(Fig.2.12).Ingeneral,

230 Th/ 232 Thcorrectedagesareyoungerthanuncorrectedagesby<3%.Thus,depending onthedatingresolutionrequired,acorrectionmaynotbenecessary,providedthatthe

232 Thconcentrationislow.Foruncorrectedages,the2 σdatingprecisionisbetterthan

1%.Forcorrecteddata,the2 σprecisionislarger,~5%,owingtouncertaintyinthe

valueofinitial[ 230 Th/232 Th].Therearenoapparentdifferencesintheprecisionofthe

isochronvs.nonisochrondatingtechniques.

Insummary,U/Thdatingofdeepseacoralsischallengingbecauseofthe presenceofunsupportedTh,whichleadstoolderapparentages,andpossiblediagenetic incorporationofU,leadingtoyoungerapparentages.Withcarefulsamplepretreatment, correctionforunsupportedTh,andscreeningfordiageneticallyalteredsamples,high precisionU/Thdatesmaybeobtained.

2.2.10Radiocarbondatingandpaleo14 C

Seawater 14 Chaslongbeenrecognizedasanimportanttoolfortrackingwater

masscirculation(Key,2001).InthedeepNorthAtlantic,forexample, 14 Cdifferentiates

NorthAtlanticDeepWater(65‰)fromAntarcticBottomWater(165‰;Broeckeret

al.,1960;Stuiveretal.,1983).Therelativedominanceofthesewatermassesatanyone

locationprovidesanindicationofoceaniccirculationpatterns.Coralskeletonsprovide

oneofthefewarchivesofpastseawater 14 Cvariations,sincetheircarbonateskeletons

arederivedfromambientDICatdepth(GriffinandDruffel,1989;Adkinsetal.,2002).

37 CoralskeletonscontainenoughcarbonatematerialtoperformbothU/Thand 14 C

datingonthesamesample(Adkinsetal.,1998;Manginietal.,1998).SincetheU/Th

datingcanbeusedtocalculateanabsoluteage,pairedU/Th14 Cdatingprovidesadirect measureofthe 14 Cageoftheseawaterinwhichthecoralgrew(Bardetal.,1993;

Edwardsetal.,1993,Adkinsetal.,2002).Adkinsetal.(1998)andManginietal.(1998) firstdemonstratedthismethodondeepseacorals,analogoustothemethodof differencingradiocarbonagesfrompairsofbenthicplankticforaminiferasampledfrom thesamecoreinterval(B/Pdating;Broeckeretal.1990),butmuchimprovedbythefact thatbioturbationandforaminiferalspecieseffectsarenotatissue,andU/Thdatingis modelindependent.

Paleo14 Cmaybecalculatedby(AdkinsandBoyle1997):

14 14 Cpaleo ={[e( Cage/8033)/e(calage/8266)]1}x1000(4)

where 14 Cageisthe 14 Cagemeasuredonthecoral,calageistheU/Thagemeasuredon coral,8033istheLibbymeanlifeand8266isthetrue 14 Cmeanlifeinyears.Knowledge

ofpaleo14 Cispowerfulfortrackingpastvariationsindeepandintermediatewater

massdistributions(Franketal.,2004;2005;Robinsonetal.,2005).Intheory,by projectingpaleo14 Cvaluesbackintimetotheirintersectionwiththeatmospheric record,theresidencetimeorventilationageofdeepwatermassesmaybecalculated

(Adkinsetal.,1998;Manginietal.,1998;Goldsteinetal.,2001;ShröderRitzrauetal.,

38 2003);however,thisapproachmaybecomplicatedbythemixingofmultiplewater masseswithdifferentconvectionhistories.

2.2.11Surfacesignalsfromtheorganicskeletonsofhornycorals

Someofthemorepromisingpaleoceanographicinformationmayfoundinthe skeletonsofhornycorals.Druffeletal.(1995)originallyhypothesizedthatcertain aspectsofexportofPOMmaybemonitoredbystudyingtheisotopicandaminoacid chemistryofhornylayers,inmuchthesamewaythatdowncoretrendsinsedimentary organicmatter(SOM)isutilizedinpaleoceanography.Insomespeciestheannualrings maybedecalcifiedandgentlypeeledapartandanalyzedseparately,withouttheneedfor expensiveinsitumicroprobeanalyses.Moreover,theaminoacidcompositionofthe hornymaterialisstableoveratleastthelastfewthousandyears,anindicationthatitis resistanttoorganicdiagenesis(Goodfriend,1997;Sherwoodetal.,2006).Sincethe hornymaterialisderivedfromsinkingPOMand/orzooplankton,annuallybandedhorny coralsprovidealongterm,highresolutionarchiveofbiogeochemicalprocesses occurringinsurfacewaters(Sherwoodetal.,2005b).

Accuratereconstructionof20 th centurybombradiocarbonfrom Primnoa resedaeformis (Fig.2.6)isagoodexampleofthetypeofdatathatmayberetrievedfrom

hornycorals(Sherwoodetal.,2005a).AsavariationonB/Pdating,paired 14 Cdatingof boththecarbonateandhornyphasesmayprovetobeusefulintrackingventilationrates

ofambientwatermasses.The δ15 Nand δ13 Cofthehornyphasemaybeanothersourceof paleoceanographicdata(Heikoopetal.,2002;Sherwoodetal.,2005b;WardPaigeetal.,

39 2005;Williamsetal.,2005).The δ15 Nand δ13 Cingorgoniansandantipathariansis correlatedwith δ15 Nand δ13 Cinphytoplankton.Moreover,theintraandintercolony reproducibilityofbothisotopesappearstobeexcellent.

The δ15 Ncompositionofhornycoralsiscontrolledbyavarietyofbottomup processes,beginningwiththeisotopiccompositionofsourcenutrients,uptakeby phytoplankton,andthelengthandcomplexityofthefoodweb.Therelativeinfluenceof

denitrificationvs.nitrificationamongdifferentoceanographicregimeshasastrong

15 impact,forexample,onthe δ NofNO 3(ClineandKaplan,1975;Altabetetal.,1999;

14 Knappetal.,2005).Phytoplanktonpreferentiallyassimilate NO 3,leadingtoisotopically

depletedbiomass.InmanyregionsoftheoceanNO 3iscompletelyconsumed,andthe

15 15 δ NofphytoplanktonandsinkingPOMconvergesonthe δ NofsubsurfaceNO 3

(AltabetandMcCarthy,1985;Altabet,1988;Altabetetal.,1999;Thunnel2004).Thisis

15 15 thebasisfortheinterpretationofdowncoresedimentary δ Nasaproxyforthe δ NO 3

historyoftheoceans(Altabetetal.,1995;Ganeshrametal.,1995;Haugetal.,1998).

ThesimplerelationbetweensubsurfaceNO 3andsinkingPOMmaybeconfoundedbya varietyoffactors,includingincompletenutrientutilization(AltabetandFrancois1994), alterationofsinkingPOMduringtransitthroughthewatercolumn(SainoandHattori,

1987;Altabetetal.,1991),andthecomplexityoftheplanktonfoodweb(Altabet,1988;

Wuetal.,1999a).Thislatterfactorpresentsthelargestsourceofuncertaintyinthe

40 12 a b

11 N(‰) 15 δ 10

9 480 1800 1830 1860 1940 1960 1980 2000 (±450) (±130) (±140) (±140) CalendarYear

Fig.2.13 : δ15 N measuredintheannualhornyringsof Primnoa resedaeformis (NW Atlantic;250 475m).(a)Dataforsubfossilcoloniesplottedasboxand whiskerplotbecauseofuncertaintiesinradiocarbonagecalibrations.Eachbox representsatleast20annualrings.Agesbelowboxesindicatemean(±2 σ range), asdeterminedbycalibrated 14 Cdatingandaccountingfornumberofannualrings analyzed.(b)Datafor6recentcoloniesplottedagainstcalendaryear,asdatedby thebomb14 Cmethodandvisualcountingofannualrings.Boldlineindicates5yr runningmean.The20 th centurydeclinein δ15 N isattributedtoisotopicdepletionof ambientNO ,and/ortrophicleveleffects.DatafromChapter7. 3

interpretationof δ15 Ndatafromhornycorals,sincetrophicfractionationislarge(~3.4‰

15 pertrophiclevel;DeNiroandEpstein,1981)relativetooceanic δ NO 3variability,and

thecoralsmayfeedopportunisticallyonawiderangeofplanktonsizeclasses(Ribeset

al.,1999;2003;Orejasetal.,2003).Futurecompoundspecificisotopeanalyseswill

likelyallowfortheseparationoftrophiclevelandsourcenutrientisotopeeffectsthrough

separateanalysisofdifferentaminoacids(McClellandandMontoya,2002).

Specificprocessesthatcouldbetrackedwiththe δ15 Ncompositionofhorny coralsincludewatermassmovements,eutrophication,andtrophicdynamics.Recent

41 exploratorystudieshighlightsomeofthispotential,particularlyinassessing anthropogenicperturbationsoverthelastfewcenturies.Sherwoodetal.(Chapter7) presentedanear2000yearlongrecordof δ15 Nfromcoloniesof P. resedaeformis

collectedfromtheslopewaterregionoffeasternCanada(Fig.2.13).Anomalousdecline

in δ15 Noverthe20 th centurywasinterpretedtoreflectweakeningofisotopicallyheavier

LabradorCurrent,orachangeintherelativetrophiclevelofthecorals.WardPaigeetal.

(2005),usingshallowgorgonians,andWilliamsetal.,(2005),usingdeepantipatharians, presentedrecordsoflongtermincreasesin δ15 NoffSEUSA,whichtheyinterpretedas

evidenceofincreasinganthropogenicnutrientinputs.

The δ13 Cofhornycoralsiscontrolledbyadifferentassortmentofbottomup processes.Variabilityinthe δ13 CofoceanicDICisonly12‰(Kroopnick,1985),and trophicfractionationaveragesonlyabout1‰pertrophiclevel(DeNiroandEpstein,

1978).The δ13 CofSOMisoftenusedtodistinguishbetweenmarineandterrestrial inputs(FryandSherr,1984);howeverthisgenerallydoesnotapplytodeepcorals becausetheyusuallyinhabitregionsfarfromterrestrialinfluences.Mostofthevariability in δ13 Cofphytoplanktonandsubsequenttrophiclevelsarisesfromisotopicfractionation

duringphytoplanktongrowth.EarlierstudiesemphasizeddissolvedCO 2indetermining

13 13 phytoplankton δ C,andtheuseofsedimentary δ CasaproxyforpaleoCO 2(Jasperet

al.,1994;Rau,1994).Morerecentstudiespointtogrowthrate,cellgeometry,nutrient

andlightlimitationandactivecarbonuptake(asopposedtodiffusiveuptakeofCO 2)as

equally,ifnotmoreimportantdeterminantsof δ13 C(seereviewinLawsetal.,2002).

Longtermdeclinesin δ13 Cmeasuredinoctocoralsandantipathariansappeartoreflect

42 Fig.2.14 :Isotopicdatafrom D. cristigalli collectedfromOrphanKnoll (LabradorSea).Forclarity,onlytheleastsquaresregressionlinesareshown. Symbolsindicatingisotopicmaximaforeachofthecoral'sdatasetsareassumed toapproachisotopicequilibrium.NumbersindicateU/ThagesinyearsBP. The2oldestcorals(15,140and14,143yrs)grewwhentheLabradorsearetained muchofitsglacialcharacter.Corresponding δ18 O maximaaverage4.5‰.Atthe baseofthenextyoungestcoral(13,400yrs), δ18 O maxima(2.5‰)aremuchlike thatofamidHolocenecoral(4,093yrs).Furtherupthesamecolony(13,322yrs), datareturntothatoftheoldestagedcorals,indicatingarapidreturntoglaciallike conditionswiththeonsetoftheYoungerDryas.FigurefromSmithetal.(1997).

theoceanicSuesseffect,thatis,thegradualdepletionofoceanic δ13 Cduetoburningof

isotopicallylightfossilfuels(Chapter7;Williamsetal.,2005).Overshortertime periods,theobservedvariationsareyettobeexplained.Aswith δ15 N,futurecompound specificanalysismayleadtoabetterunderstandingof δ13 Crecordsobtainedfromhorny

corals.

43 2.3LANDMARKSTUDIES

Havingexploredthegrowth,geochemistryandradiometricdatingofdeepsea corals,wenowturnourattentiontoafewstudiesthathaveproducedoperationallyuseful paleoceanographicdata.Wefocusonpapersdealingwiththerateofintermediatewater

massvariabilityacrossthePleistoceneHolocenetransition.Thecentralthemeofthese papersisthatclimatictransitionsoccuroververyshort(decadal)timescales.Undermost

circumstancesdecadalscaleeventsaredifficulttoreconstructfrommarinesediment

recordsbecauseofbioturbation.

Smithetal’s(1997)landmarkpaperfocusedon Desmophyllum coralscollected

fromthetopofOrphanKnoll(1800m),anisolatedseamountofftheNewfoundland

slope.ThelocationanddepthofOrphanKnollallowedforthereconstructionof

intermediatewatermassvariabilityintheLabradorSea,animportantcomponentofthe

NorthAtlanticcirculation.Stableisotopicdatafromthesecoralsexhibitedamajor

differenceinthedistributionof δ18 Ovs. δ13 Clinesbetweenwarmandcoldperiods

spanningthelast15ka.(Fig.2.14).Foreshadowingthe‘linestechnique’publishedafew

yearslater(Smithetal.,2000),theyassumedthatthelighterendsoftheir δ18 Ovs. δ13 C

linesapproachedisotopicequilibriumwithseawater,anassumptionsupportedby

similarityof δ18 Ovaluesmeasuredincontemporaneousforaminifera.Oneoftheircorals capturedarapidshiftfromwarmerconditionsatthebaseofthecoral(13.400kaBP),to coolerconditionsatthetopofthecoral(13.322ka),approximatelycoincidentwiththe acceptedtimingoftheonsetoftheYoungerDryasevent(12.9kaBP).Inthisspecimen,

44 Hol YD A B H1 LGM 50 50

1500 Coral

100 100 2000 150

200 BFPFpairs 2500

200 28 ka 3000

Depth(m) 0

3500 5

1

250 4000 300

4500

Hol YD A B P15.4 H1 LGM GL

10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 Age(years) Fig.2.15: MidNorthAtlanticpaleo14 C reconstructedfromdeepseacorals(black circles)andforaminiferaB/Fpairs(whitecircles).Duringthelastglacialperiodand YoungerDryas,thedeepoceanwasdominatedbyolder, 14 Cdepletedsouthern sourcewaters,indicatingcessationofdeepwaterformationintheN.Atlantic. Younger,northernsourcewaterscharacterizethewarmerBøllingAllerød and Holoceneperiods.Coraldataindicatehigherfrequencyvariabilityinupper intermediatewaters.FigurefromRobinsonetal.(2005).

theshiftfromfullwarmtofullcoldconditionsoccurredbetweensubsamplesspaced

3mmapart,anequivalentof5yearsintime.Thisstudywasthefirsttodemonstratethe utilityofdeepseacoralsinprovidingusefulpaleoceanographicdata.Shortlythereafter,a seriesofpapersonpairedU/Th14 Cdatingofdeepseacoralscameout,emphasizing

45 rapidchangesinintermediatewaterventilationratesacrossthePleistoceneHolocene transition(Adkinsetal.,1998;SchröderRitzrauetal.,2003).Theapproachoutlinedin thesestudiesculminatedintherecentworkofRobinsonetal.(2005),withdatafrom some30coralsrecoveredfromtheNewEnglandSeamounts(3339 oN).Their reconstructionsofpaleo14 Covertheinterval1125ka(Fig.2.15)documentswitchesin

therelativeproportionsofsouthernvs.northernsourcewaters(a“bipolarseesaw”).

Switchesatintermediatedepthsoccurredmorefrequentlythantheydidintheabyss,and

theycoincidedwithclimaticeventsdocumentedinGreenlandandAntarcticicecores.

The15.4kaevent,inparticular,sawashiftfromfullglacialtofullmodernlike

conditionsthattookplaceinlessthan100years.

46 CHAPTER3

RADIOCARBONEVIDENCEFORANNUALGROWTHRINGS

INADEEPSEAOCTOCORAL( Primnoa resedaeformis )

OwenA.Sherwood 1,DavidB.Scott 1,MichaelJ.Risk 2,ThomasP.Guilderson 3,4

1 CentreforEnvironmentalandMarineGeology,DalhousieUniversity,Halifax,Canada

2SchoolofGeographyandGeology,McMasterUniversity,Hamilton,Canada

3CenterforAcceleratorMassSpectrometry,LLNL,Livermore,CA,USA

4 DepartmentofOceanSciences&InstituteofMarineSciences,UniversityofCalifornia

SantaCruz,SantaCruz,USA

Publishedasanarticlein:

MarineEcologyProgressSeries301:129134

(October2005)

47 3.1ABSTRACT

Thedeepseagorgonianoctocoral Primnoa resedaeformis isdistributed

throughouttheAtlanticandPacificOceansatdepthsof653200m.It hasatwopart

skeletonofcalciteandgorgonin.Towardstheinsideoftheaxialskeleton,gorgoninand

calcitearedepositedinconcentricgrowthrings,similartotreerings.Colonieswere

collectedfromtheNortheastChannel(northwestAtlanticOcean,southwestofNova

Scotia,Canada)fromdepthsof250–475m.Radiocarbonwasmeasuredinindividual

ringsisolatedfromsectionsofeachcolony,afterdissolutionofcalcite.Each 14 C

measurementwaspairedwitharingagedeterminedbythreeamateurringcounters.The precisionofringcountsaveragedbetterthan±2years.Accuratereconstructionof20 th

centurybombradiocarbonshowsthat1)thegrowthringsareformedannually,2)the

gorgoninisderivedfromsurfaceparticulateorganicmatter(POM)and3)useful

environmentaldataarerecordedintheorganicendoskeletonsofdeepseaoctocorals.

Theseresultssupporttheuseof Primnoa resedaeformis asalongterm,highresolution

monitorofsurfaceoceanconditions,particularlyintemperateandborealenvironments

whereproxydataarelacking.

48 3.2INTRODUCTION

Forgenerations,fishermeninAtlanticCanadahaveknownabouttheoccurrence ofhabitatforming,deepseacoralsoffshore(Breezeetal.,1997).Therehasbeenrecent interestinusingthesecoralsashistoricalmonitorsofdeepandintermediatewatermass variability(Smithetal.,1997;Franketal.,2004).Thisintereststemsfromthefactthat deepseacoralsgenerallyliveforhundredsofyearsormoreandtheirskeletonscontain discretegrowthlayers(Druffeletal.,1995;Risketal.,2002;Adkinsetal.,2004).

Geochemicalsamplingoftheselayersmayprovidelongterm,highresolutionrecordsof proxyclimateinformation,farbeyondtherangeofinstrumentalrecords(Heikoopetal.,

2002,Roarketal.,2005).

Thedeepseagorgoniancoral Primnoa resedaeformis isoneofthedominant

coralsfoundoffeasternCanada,particularlyincanyonsalongtheshelfbreak(Breezeet

al.,1997).ItisalsodistributedthroughouttheAtlanticandPacificOceansatdepthsof

653200m(Smithsonianholdings:

http://goode.si.edu/webnew/pages/nmnh/iz/Query.php).Thearborescentskeletonsof P.

resedaeformis aremadeupofcalciteandgorgonin,atoughhornyprotein,depositedin

concentricrings(Risketal.,2002).Threegrowthzonesareevident:1)aninner“central

rod”and2)“hornyaxis”,bothmadeofcalciteandgorgonin,and3)anouter“calcite

cortex”,containingpracticallynogorgonin(SherwoodandRisk,inpress).Growthrings

inthehornyaxisarevisibleaslightdarkcouplets;thedarkerpartscontainahigher percentageofgorgonin:calcite(Risketal.,2002).Ringsinthecalcitecortexaremore

ambiguous;oftentheyarebarelyvisibleasslightdifferencesintranslucence.Using 210 Pb

49 dating,Andrewsetal.(2002)inferredthatthegrowthringsinanAlaskan Primnoa colonywereformedannually.Basedonradiocarbon(Risketal.,2002)andU/Thdating

(ScottandRisk,2003)ofsubfossil P. resedaeformis specimenscollectednearGeorges

Bank,lifespansofindividualcoloniesmayexceedseveralhundredsofyears.

Inthispaper,weusebombproducedradiocarbontovalidateannualring

formationincoloniesof P. resedaeformis collectedoffNovaScotia,Canada.Oceanic

uptakeofbomb14 Cproducedbyatmosphericnuclearweaponstestinginthelate1950s

andearly1960sprovidesatimevaryingtracer.IntheNorthAtlantic,thetimingofthe

increaseiswellconstrainedfromdirectmeasurementsofdissolvedinorganiccarbon

(DIC;Nydaletal.,1998)andindirectly,frommeasurementsof 14 Cinannuallybanded

reefcoralsfromBermudaandFlorida(Druffel,1989),andalonglivedquahog( Arctica

islandica )fromGeorgesBank(WeidmanandJones,1993).Theinitialriseofbomb14 C

inthesurfaceoceanprovidesauniquetimemarkerwhichmaybeusedtoestablishor

validateskeletalchronology(Kerretal.,2005).Additionally,ifoneknowstheyearofthe postbombmaximumforacertainlocationorwatermassthepostbombpeakitselfcan beusedasareferencetiepoint(e.g.Roarketal.,2005).Sincethegorgoninfractionof

gorgoniancoralsisformedfromrecentlyexportedparticulateorganicmatter(POM;

GriffinandDruffel,1989;Roarketal.,2005;Sherwoodetal.,2005b),weexpectthat

livingcoloniesof P. resedaeformis incorporatedthebomb14 Cpulse.Wefocuson

youngercolonies(<75years),sothatringsinthehornyaxismaybedatedmoreeasily.

50 Table3.1 SummaryofP.resedaeformissectionsusedongrowthringcountingand 14 Cdeterminations.Averageyearandstandarderrorcalculatedfrom3differentring counters. Section Ringno. Avg.year SE CAMS# 14 C(‰) ± DFO2002con5A1 5 1990 1.9 97097 36 5 DFO2002con5A1 10 1979 2.4 97098 52 4 DFO2002con5A1 16 1970 2.8 97099 71 4 DFO2002con5A1 21 1965 2.4 97100 59 4 DFO2002con5A1 25 1960 2.1 97101 47 3 DFO2002con5A1 31 1953 2.1 97102 77 3 DFO2002con5A1 37 1948 2.2 97103 80 3 DFO2002con5A1 43 1942 2.8 97104 72 3 DFO2002con5A1 50 1934 3.3 97105 77 3 DFO2002con5A1 58 1924 3.3 97106 72 3 HUD2002055VG15A3 10 1981 0.6 111140 67 4 HUD2002055VG15A3 19 1971 0.7 111142 90 4 HUD2002055VG15A3 27 1963 1.7 111143 18 5 HUD2002055VG132 22 1980 1.5 111139 59 4 NED2002037.461A 1 2002 0.3 111328 33 5 NED2002037.461A 16 1984 0.6 111329 68 5 NED2002037.461A 58 1947 0.7 111330 82 4 NED2002037.4651 25 1978 1.2 111331 63 4 ROPOS639009C4 19 1972 0.9 111623 82 4 ROPOS639009C4 27 1963 1.5 111624 46 4 ROPOS639009C4 40 1951 0.3 111625 70 3 ROPOS6400013E1 10 1994 1.2 111626 52 4 ROPOS6400013E1 15 1989 1.5 111141 54 4 ROPOS6400013E1 20 1984 1.5 111627 67 5 ROPOS6400013E1 25 1979 1.9 111628 61 4 ROPOS6400013E1 31 1972 3.3 111629 82 4

51 3.3MATERIALSANDMETHODS

Coloniesof Primnoa resedaeformis werecollectedoffshoreNovaScotia,Canada,

fromtheNortheastChannel(approx.42 o00N/65 o50W),locatedbetweenGeorgesand

Brownsbank,atdepthsof250475m.CollectionsweremadeinAugust2001,duringan

expeditionusingtheremotelyoperatedsubmersibleROPOSaboardtheCCGSMartha

Black,andinthesummerof2002,bytrawl,duringroutineoceanographicsurveys

conductedbytheBedfordInstituteofOceanography.Someofthespecimenswerefrozen

atthetimeofcollection,otherswereairdried.Skeletalsectionswerecutfromthe

thickestpartofeachrecoveredcolonyusingarocksaw.Thesectionsweregroundand polishedonadiamondlapwheelandphotographedwithadigitalcamerainmacromode underUVlight.TheUVlightimprovestheappearanceofringcoupletsandmakesit easiertodistinguishtheringsfromcracksinthesections(Fig.3.1).

Toisolatethegorgoninfractionforradiocarbonassays,thesectionswere dissolvedin5%HCluntilreactionceased,whichtookupto3weeks.Thesectionswere thenplacedinaPetriedishfilledwithdistilledwaterandtheringswerepickedapartwith tweezersandscalpelunderabinocularmicroscope,startingattheoutsideofeachsection, andmovingintowardthecentre.Theexactpositionofeachsampleonasectionwas markedonphotographicprintsoverlainwithtransparencyfilm.Theseparatedringswere placedin5mlpolyethylenevials,toppedwith5%HClandleftforanadditional2days toensurethatallofthecalcitedissolved.Afterwards,samplesweretriplerinsedinde ionizedwateranddriedat70 oCovernight.Fromeachcolony,anywherefrom1to10 ringswereselectedfor 14 Canalysis,dependingoncolonyageandtheeasewithwhichthe

52 annualringcoupletscouldbeidentifiedandcounted.Sampleswerepreferentially selectedtobridgetheexpectedriseinbomb14 Cbetween1958andtheearly1970s, becausethisprovidesthebestconstraintonchronology.Sampleswerecombustedin individualquartztubesandreducedtographiteinthepresenceofironcatalyst.Delta14 C wasdeterminedongraphitetargetsattheCenterforAMS.Resultsincludeabackground and δ13 Ccorrectionandarereportedas 14 CaccordingtoStuiverandPolach(1977).

Toobtainringcountsasobjectivelyaspossible,thephotographicprintsofeach

sectionwerecirculatedrandomlyamongdepartmentalcolleagueswithnoprior

experienceincountingringsingorgoniancoralsoranyotherorganism.Theprintswere

overlainwithasecondlayeroftransparencyfilm,withthefirsttransparencyflippedoff.

Ringcounterswerebriefedfor5minutesonhowtoidentifyanannualring.Theywere

thenaskedtomarkthepositionsofannualringsonthesecondtransparency.This

involveddrawingalineradiallyacrosspartsofthesectionswhereringscouldbeseenthe

easiest,andmarkingtheannualringsalongthatline(Fig.3.1).Eachringidentifiedwas

assignedtoacalendaryearbasedonwhethertheoutermostlayerrepresented2001or

2002,dependingontheyearofcollection.In2ofthe7colonies,therewastissuenecrosis

ontheoutermarginoftheskeleton.Forthese“dead”colonies,achronologicalcontrol pointwasprovidedbythepeakin 14 C(seebelow).Afterwards,thefirsttransparency wasreplaced,andcalendaryearswerepairedwiththeringsisolatedearlier.Thecounting experimentwasrepeatedthreetimesbydifferentcounters.

53 Fig.3.1: Examplesectionof Primnoa resedaeformis (ColonyROPOS6400013; collectedlivein2001).Lightercentreisthecentralrod,outerbandedsectionisthe hornyaxis.Calcitecortexisnotpresent.Markingsshowindividualringsisolatedin preparation,withcorrespondingcalendarage(inbrackets)asdeterminedby3 counters.

54 3.4RESULTS

Theprecisionofgrowthringcounts,asmeasuredbythestandarderroramong threedifferentringcounters,averaged±1.2years(Table3.1).Agesrangedfrom2478 years.Thestandarderrorincreasedslightlywithage,asexpected,becausethe chronologicalerroriscompoundedwithincreasingage.Thespreadinvaluesreflected differencesinthe"quality"ofringsviewedindifferentsections.Theleastpreciseage estimatesweregeneratedontheoldersections;butthesewerestillrelativelygood(±3.5 years).

Theaccuracyofgrowthringcountsisdemonstratedinaplotof 14 Cagainst

calendaryear(Fig.3.2).Datafromthe5livecoloniesclearlyindicatedthatthepeakin

14 Coccurredaround1972.Additionaldatafromthetwo“dead”colonieswereaddedto thefigurebyusing1972asachronologicalcontrolpoint.Analltimehighof+90‰was measuredinonecolony,sothispointwasassignedtotheyear1972.Intheother specimen,asplinecurvewasfitthroughaplotof14 Cversusringnumberinorderto determinewhichringnumbershouldbeassignedto1972.

The 14 Ccurvefor P. resedaeformis isidenticaltothatpreviouslymeasuredinan oceanqhahog( Arctica islandica )collectedatadepthof75monnearbyGeorgesBank

(WeidmanandJones,1993;Fig.3.2).Asimilarcurvebasedontheotolithsofhaddock

(Melanogrammus aeglefinus )collectedonthesouthernGrandBankshasalsobeen published(Campana,1997;Fig.3.2).The P. resedaeformis , A. islandica ,and

55 100 DFO2002con5 80 HUD2002055VG15 HUD2002055VG13 60 NED2002371 NED2002375 ROPOS6400013 40 ROPOS639009 Primnoa:splinefit 20 A.islandica M.aeglefinus C(‰) 0 14 20

40

60

80

1920 1930 1940 1950 1960 1970 1980 1990 2000 Yearorringcount Fig.3.2: Plotof 14 C vs.agefor7differentcoloniesof P. resedaeformis collected intheNortheastChannel.Asplinefitisdrawnthroughthedata.Alsoshownarethe datafromaclamshell( Arctica islandica ;WeidmanandJones,1993),collectedata depthof75monGeorgesBank,andhaddockotoliths( Melanogrammus aeglefinus ; Campana1997),collectedontheGrandBanks.

M. aeglefinus curvesallrangefromapre1958lowof~80‰toanearly1970speakof

~+80‰,followedbyagradualdecreaseto~+40‰tothepresent.

3.5DISCUSSION

Thegrowthringcountingmethodusedhereisarelativelysimpleandeffective

waytoagespecimensof P. resedaeformis withanacceptablelevelofprecision(SE<2

years).Thecountershadnoprevioustrainingingrowthringcountingandwerenotasked

tocountanymorethan3specimenseach,sonooneindividualbecameanexpertcounter.

56 Theprecisionofringcountslargelydependedonthequalityofthesections.Insome casesthegrowthringswereverynarrow,makingcountingdifficult.Subannualrings

(Risketal.,2002)couldhavebeenmistakenforannualrings.Inaddition,“calcitecortex” materialwassometimesinterlayeredwiththehornymaterial.Gorgonianscoloniesmay bendandtwistthroughouttheirlivestokeeptheirfansorientedperpendicularlyto prevailingcurrents(WainwrightandDillon,1969).Thesegrowthvariationsaffectthe appearanceofrings.Therefore,futurestudiesinvolvingageingof Primnoa shouldselect

forthestraightestandhighestqualitycolonies.Similarconsiderationsareroutinein

dendochronologyandsclerochronology.

Samplesfor 14 Candgrowthringcountsweremadeonthesamesections,such

thateach 14 Cmeasurementhadamatchingcalendarage.Datafromeightdifferent colonieswereusedtoestablishatwentiethcenturyrecordof 14 C.Thisrecordwas identicaltopreviouslypublished 14 Crecordsderivedfromamolluscshell(Weidman

andJones,1993)andhaddockotoliths(Campana,1997)collectedfromtheNWAtlantic.

The P. resedaeformis 14 Ccurveisalsoinphasewiththerecordfromannuallybanded

reefcoralskeletonsfromFloridaandBermuda(Druffel,1989),andwithdirect

measurementsofsurfacewaterDIC(Nydaletal.,1998).Theresultsareconsistentwith

theinterpretationthattheringcoupletsfoundinthehornyaxisregionof P. resedaeformis

areformedannually.

Andrewsetal.,(2002)alsovalidatedannualringformationinanAlaskan

Primnoa ;however,theymeasuredtherateofdecayof 210 Pboverthelengthofacolony

57 tovalidategrowthringcounts.Amongshallowwatergorgonians,annualgrowthrings havealsobeendemonstratedbynonradiometricmethods.Usually,thishasinvolvedthe correspondenceinageestimatedfromtheheightofacolonywiththeageestimatedfrom growthrings(e.g.Grigg,1974).Themethoddescribedhereisamoredirectwayof validatingannualgrowthrings,since 14 Candagedeterminationsweremadeonthe

samesections.

Similarityintherangeandtimingof 14 Cmeasuredin P. resedaeformis growing between250475mwith A. islandica growingat75monGeorgesBanksuggeststhatthe

skeletonsoftheseorganismsarederivedfromthesamepoolofDIC.Thecarbonateshell

of A. islandica incorporates 14 CdirectlyfromDIC(WeidmanandJones,1993).Theshelf

watersonGeorgesBankarewellmixed;soDICwillhaveaboutthesame 14 Cfrom0

75m.IncontrasttoGeorgesBank,theslopewaterswhichoccupytheNortheastChannel

arestratified.Ifthegorgoninin P. resedaeformis werederivedfromambientDICat

depth, 14 Cwouldbemuchlowerthanactuallymeasured(Baueretal.,2002).Asin

shallowwatergorgoniansthathavebeenstudiedinsitu(e.g.Ribesetal.,1999),

zooplanktonandsinkingPOMprobablyconstitutethemaindietofthisspecies.

Therefore, 14 Cisassimilatedbyphytoplanktoninsurfacewaters,andisincorporatedby

P. resedaeformis viatheplanktonfoodweb.Thelackofatimelaginpeak 14 Crulesout thepossibilitythat P. resedaeformis feedsonolder,morerefractoryPOM,aswehave foundwith δ15 Ndata(Sherwoodetal.,2005b).Theseresultscorroborateearlierwork

showingthatgorgoninisderivedfromsinkingPOM(GriffinandDruffel1989;Roarket

al.,2005).

58

Therangeof 14 Cvaluesmeasuredin P. resedaeformis , A. islandica ,and M. aeglefinus (~80to~+80‰)isdepletedcomparedtoreefcoralrecordsfromFlorida andBermuda(~60to~+160‰;Druffel,1989).Thisdifferencehasbeenexplainedby thesupplyof 14 CdepletedLabradorSeawatertotheNWAtlanticshelfandslope

(WeidmanandJones,1993).Inthesubtropics,moreintensestratificationprevents dilutionofthebombsignalby 14 Cdepleteddeepwaters.

Fromapaleoceanographicstandpoint,theformationofannualringsmakes P. resedaeformis analogoustoreefscleractiniancorals.Geochemicalproxyrecordsfrom reefcoralshavebeenamainstayofHolocenepaleoceanographyeversinceKnutsenet al. (19 72)conclusivelydemonstratedannualtimingofdensitybandswith 90 Sr.Accurate

reconstructionof20 th centurysurfacewater 14 Cdemonstratesthatusefulenvironmental dataarerecordedintheorganicfractionof Primnoa skeletons.Inaddition,thestableC andNisotopiccompositionofgorgoninmayreflectsurfacewaterproductivity

(Sherwoodetal.,2005b);thus,longterm,highresolutionreconstructionsofsurface processesmaybefeasible(Heikoopetal.,2002).Theoldestcolonyinthepresentstudy

was78years;but,coloniesmayliveforatleast320years(Risketal.,2002).Useful

informationonambientconditionsatdepthmayalsobecontainedintheskeletalcalcite,

sincethisfractionisderivedfromambientDICatdepth(GriffinandDruffel,1989;

Roarketal.,2005).

59 Therehasbeenincreasinginterestinthefrequencyofclimateforcingmechanisms suchastheNorthAtlanticOscillation.Highresolutionproxyreconstructionsfrom

Primnoa mayhelptoresolvethe"spectralgap"issuebetweeninstrumentalandproxy basedclimaterecords,particularlyintemperateandborealenvironments,whereproxy marineclimatedataarelacking.

ACKNOWLEDGEMENTS

Wethankthe ROPOS crewandtheBedfordInstituteofOceanographyforcollecting specimens,andJoyiaChakungal,JeremiahCouey,FlaviaFiorini,JenMcIntosh,Mike

Rygel,MylesThompson,LaurieTremblay,ChristineWardPaigeandJaneWillenbring

Staigerforcountinggrowthrings.Radiocarbonanalyseswereperformedunderthe auspicesoftheU.S.DepartmentofEnergybytheUniversityofCalifornia'sLawrence

LivermoreNationalLaboratory(W7405Eng48).FundingwasprovidedbyanNSERC

StrategicGranttoMikeRiskandDavidScottandanNSERCpostgraduatescholarshipto

OwenSherwood.

60 CHAPTER4

STABLEISOTOPICCOMPOSITIONOFDEEPSEAGORGONIANCORALS

(Primnoa spp. ):ANEWARCHIVEOFSURFACEPROCESSES

OwenA.Sherwood 1,JeffreyM.Heikoop 2,DavidB.Scott 1,MichaelJ.Risk 3,

ThomasP.Guilderson 4,5 ,RichardA.McKinney 6

1 CentreforEnvironmentalandMarineGeology,DalhousieUniversity,Halifax,Canada

2 LosAlamosNationalLaboratory,LosAlamos,USA

3SchoolofGeographyandGeology,McMasterUniversity,Hamilton,Canada

4CenterforAcceleratorMassSpectrometry,LLNL,Livermore,USA

5DepartmentofOceanSciences&InstituteofMarineSciences,UniversityofCalifornia

SantaCruz,SantaCruz,USA

6USEPAAtlanticEcologyDivision,Narragansett,RI,USA,02882

Publishedasanarticlein:

MarineEcologyProgressSeries301:135148

(October2005)

61 4.1ABSTRACT

Thedeepseagorgoniancoral Primnoa spp.livesintheAtlanticandPacific

Oceansatdepthsof653200m.Ithasanarborescentgrowthformwithaskeletalaxis composedofannualringsmadefromcalciteandgorgonin.Lifespansmayexceed severalhundredsofyears.Ithasbeensuggestedthatisotopicprofilesfromthegorgonin fractionoftheskeletoncouldbeusedtoreconstructlongterm,annualscalevariationsin surfaceproductivity.Wetestedassumptionsaboutthetrophiclevel,intraandinter colonyisotopicreproducibility,andpreservationofisotopicsignaturesinasuiteof modernandsubfossilspecimens.Measurementsofgorgonin δ15 Nindicatethat Primnoa

spp. feedmainlyonzooplanktonand/orsinkingparticulateorganicmatter(POM SINK ), andnotonsuspendedPOM(POM SUSP )ordissolvedorganiccarbon(DOC).Gorgonin

δ13 Cand δ15 NinspecimensfromNEPacificshelfwaters,NWAtlanticslopewaters,the

SeaofJapan,andaSouthPacific(SouthernOceansector)seamountwerestrongly correlatedwithLevitus1994surfaceapparentoxygenutilization(AOU;thebest availablemeasureofsurfaceproductivity),demonstratingcouplingbetweenskeletal isotopicratiosandbiophysicalprocessesinsurfacewater.Timeseriesisotopicprofiles fromdifferentsectionsalongthesamecolony,anddifferentcoloniesinhabitingthesame areawereidenticalfor δ13 C,while δ15 Nprofileswerelessreproducible.Similarityin

C:N, δ13 Cand δ15 Nbetweenmodernandsubfossilspecimenssuggestthatisotopic signaturesarepreservedovermillennialtimescales.Theseresultssupporttheuseof

Primnoa spp.ashistoricalrecordersofsurfacewaterprocessessuchasbiological productivityandtheisotopiccompositionofsourcenutrients.

62 4.2INTRODUCTION

Primnoa resedaeformis (Gunnerson)isadeepseagorgoniancoralwithknown occurrencesinNorthAtlantic,ArcticandNorthPacificwatersatdepthsof653200m

(Breezeetal.,1997;EtnoyerandMorgan,2003).Asubspecies, Primnoa resedaeformis notialis (Bayer),occursonseamountsintheSouthernOceansectorofthePacificOcean.

Primnoa willeyi (Hickson)and (Kinoshita)arefoundintheeasternand westernNorthPacific,respectively(Smithsonianholdings: http://goode.si.edu/webnew/pages/nmnh/iz/Query.php ).Thesecoralshaveanarborescent growthpatternwithaskeletonmadeofcalciteandaproteinaceousmaterialcalled gorgonin(Goldberg,1976)arrangedinalternatingconcentricringsaroundlongitudinal growthaxes(Risketal.,2002;Sherwood,2002).Towardstheoutergrowthsurfaceof olderportionsoftheskeletontheoutercortexmaybecomprisedofjustcalcite,with gorgoninlayerslacking.Basedon 210 PbdatingAndrewsetal.(2002)inferredthatvisible growthringsintheskeletonareformedannually.Thiswassubsequentlyvalidatedwith bomb14 C(Sherwoodetal.,2005a).Subannualbandingpatternshavealsobeen identifiedusingscanningelectronmicroscopyandNomarskidifferentialinterference imaging(Risketal.,2002;Sherwood2002).Thiscoralappearstohavelifespanson timescalesofuptoseveralcenturies(Andrewsetal.,2002;Risketal.,2002;Scottetal.,

2005).

Basedon 14 Canalyses,GriffinandDruffel(1989)originallysuggestedthatthe

mainsourceofcarbontodeepseacoralswassinkingparticulateorganicmatter(POM).

Theyfurthersuggested(Druffeletal.,1995)thatthecarbonandnitrogenisotopic

63 compositionoftheproteinaceouslayersofthecolonialzoanthid Gerardia spp.couldbea

recorderofsurfaceoceanprocesses(productivity,nutrientsources,etc.). Primnoa spp.

mayalsoformitsgorgoninskeletonfromsinkingPOM,since δ15 Nand δ13 Cinthe polypsandgorgoninshowsimilarregionaldifferencesto δ15 Nand δ13 Cofsurfacewater

POM(Heikoopetal.,1998;2002).Moreover,the δ15 Nandδ13 Cofthepolypsishighly

correlatedtothe δ15 Nand δ13 Cofassociatedgorgonin(Heikoopetal.,2002).Together, theseresultssuggestthattheisotopiccompositionofannualgorgoninlayerscouldrecord thetemporalhistoryofprocessesthatcontroltheisotopiccompositionofPOM(Heikoop etal.,2002)includingplanktonproductivityandthe δ15 Nand δ13 Cofnutrientsources

(e.g.WardPaigeetal.,2005).The δ15 Nand δ13 Cofgorgoninfromasuiteofcoralsfrom

Alaskanwaters,watersofftheeasternshoreboardoftheUnitedStatesandCanada,anda

SouthPacificseamountwerepositivelycorrelated(Heikoopetal.,2002),suggestingthat surfaceoceanproductivityrelativetonutrientsupplymaybetheprimarycontrolonthe isotopiccompositionofgorgonin.

Forstableisotopicprofilesgeneratedfromtheannualgorgoninlayersof Primnoa spp. skeletonstohaveanymeaningfulenvironmentalsignificance,fourconditionsmust bemet:(1)thetrophicpositionof Primnoa spp.mustbeknown;(2)organicdiagenesis

mustnotaffecttheisotopiccompositionoftheskeleton;isotopictrendsmustbe

reproducibleamong(3)differentsectionsofthesamecolony;and(4) differentcolonies

inhabitingthesamearea.Thepurposeofthispaperistotesttheseassumptionsusinga

suiteofrecentlycollectedliveandsubfossilspecimensfromtheAtlanticandPacific

oceans.

64

Table4.1 Primnoa spp.Collectiondataofsamplesexamined.n/a:notapplicable Year Sample Species Location Lat Lon Depth collected NWAtlantic ROPOS637052 P. resedaeformis NEChannel 2001 42.048 oN 65.577 oW 475

ROPOS639009 P. resedaeformis NEChannel 2001 41.998 oN 65.648 oW 410

HUD2000020VG2 P. resedaeformis NEChannel 2000 42.047 oN 65.610 oW 331 HUD2001055VG P. resedaeformis NEChannel 2001 42.021 oN 65.682 oW 321 15 DFO2002con5 P. resedaeformis NEChannel 2002 42.0 oN d 65.6 oW d 250500

COHPS20011 a P. resedaeformis NEChannel 2001 42.0 oN d 65.6 oW d 250500

Fossil95 b P. resedaeformis NEChannel 1995 42.0 oN d 65.6 oW d 250500

Smith54269 P. resedaeformis E.ofVirginiaBeach 1974 37.060 oN 74.410 oW 237385 NEPacific E.ofQueenCharlotte QC98 P. willeyi 1998 54.386 oN 132.786 oW 378 Islands KIS02 P. willeyi KnightInletsill,BC 2002 50.679 oN 126.000 oW 65

Smith51283 c P. pacifica P.WilliamSound,AK 1941 61.034 oN 146.714 oW 64

Smith52199 P. willeyi ChathamSound,BC 1960 54.5 oN d 130.5 oW d n/a

Smith1010257 P. willeyi AtkaIsland,AK 2002 51.9 oN d 174.1 oW d 213220

Smith1010785 P. willeyi S.ofChirikofIsland,AK 2000 55.5 oN d 155.5 oW d 235 SeaofJapan

SOJ03 P. pacifica S.ofVladivostok,Russia 2003 42.482 oN 132.572 oE 913

Smith56993 c P. pacifica WestofHokkaido,Japan 1906 43.000 oN 140.175 oE 713783 SPacific–SouthernOceanSector

Smith58171 c P. resedae. notialis S.PacificSeamount 1964 54.833 oS 129.833 oW 604

Smith87624 c P. resedae. notialis S.PacificSeamount 1964 54.817 oS 119.800 oW 549 aFossilspecimen,ca.150yrsoldbasedon210Pbdating bFossilspecimen,ca.2000yrsoldbasedonUThdating(Scottetal.2003) cpreservedinethanol dExactcoordinatesunknown;thesearegeneralcoordinatesforthelocationreported

65 4.3MATERIALSANDMETHODS

Specimenswereobtainedduringresearchandfishingexpeditions(Table4.1).

SevenadditionalspecimenswereobtainedfromtheSmithsonianInstitutionNational

MuseumofNaturalHistory. Primnoa resedaeformis (Gunnerus) was collectedfromthe

NortheastChannel,southwestofHalifax,NovaScotia(Fig.4.1)andfromeastof

VirginiaBeach,USA. Primnoa willeyi (Hickson)wascollectedeastoftheQueen

CharlotteIslands,ChathamSoundandKnightInlet,BritishColumbia,andfromthe

AleutianIslandsandPrinceWilliamSound,Alaska.Primnoa pacifica (Kinoshita)was collectedintheSeaofJapan.Thesubspecies Primnoa resedaeformis notialis was collectedfromaseamountintheSouthernOceansectoroftheSouthPacific.Threeofthe

SmithsoniansampleswereoriginallyreportedinHeikoopetal.,(2002);theseare includedheretohighlightgeographictrendsinstableisotopiccomposition.

Allspecimenswerecollectedalive,exceptforFossil95andCOHPS20011.

ThesedeadcollectedspecimensweredatedradiometricallybyB.GhalebatGEOTOP

UQAMMcGill,Montreal,Canada(Chapter6).SamplesfromCOHPS20011areca.

150yrsold,basedon 210 Pb226 Raanalysesoftheoutercalcitecortexregionofthecoral.

Fossil95isca.2000yearsold,basedontwouraniumseriesdatesonthemiddleand

outerregionsofasectionofthecolony.

66 ° ° ° ° 45°N 70 W 68 W 66 W 64 W Halifax

44°N

43°N

42°N

NECHANNEL

41°N ScotianShelf GOM GBShoals NEPeak ° 40 N GBSouthFlank NEChannel

Fig.4.1: MapoftheGulfofMaineregion,NWAtlanticOcean.Colonies of Primnoa resedaeformis werecollectedfromtheNEChannel.Symbols showlocationsofwatersamplesforanalysisofPOM . SUSP

Coloniesforstableisotopicanalyses(Fig.4.2) weresectionedwitharocksaw

andgroundandpolishedonadiamondlapwheeltoathicknessofabout5mm.Sections

werephotographedwithaNikonCoolpixdigitalcamerainmacromode.Aftersometrial

anderrorwefoundthatphotographingthesectionsinultravioletlightgavetheclearest

imageofringpatternsinthehornyaxisowingtocontrastbetweenthecalciterich

(luminescent)andgorgoninrich(nonluminescent)portionsoftheannualgrowthrings

(Fig.4.3).

67

a b

Section E Section D

Section A5 Section C Section A1

Fig.4.2: Coloniesof Primnoa resedaeformis collectedfromtheNortheast Channel:(a)HUD2001055VG15 (tissuemissing)and(b)DFO2002con5 (tissuepresent).Sectionsforisotopictimeseriesprofilesareindicatedbyboxes, tissuesamplesareindicatedbyarrows.Rulerforscaleis15cm.

68

Fig.4.3: SectionA5fromColonyDFO2002con5,photographedunderultraviolet light.Whiteportiontowardstheoutsideistheinorganiccalcitecortex.Darkerlayers towardmiddleareannualgorgoninringsisolatedforchemicalanalyses.Specimenis approx.75yrsold,basedongrowthringcounts(Sherwoodetal.,2005a).Barforscale is0.5cm.

69 Annualgorgoninringswereisolatedbydissolvingsectionsin5%HClforaweek

(uptothreeweeksforlargersections).Upondissolutionsectionsweretransferredtoa

Petriedishfilledwithdistilledwater,andtheannualringswerepickedapartwith

tweezersandscalpelunderabinocularmicroscope.Photographsofthesectionstaken beforedissolutionwereusedtoguidesampling.Individualringswereplacedin5ml polyethylenevialswith5%HCl,foranadditionalweek,toensurethatallthecalcitehad

dissolved.AftertwomorerinsesinHCl,theringsweretriplerinsedindeionizedwater

anddriedinalowtemperatureoven.Ringsaveragedabout5mginweight.Tissue

materialscrapedofftheskeletalaxeswaspreparedinthesameway.

IsotopicandC:NanalysesofgorgoninwereperformedbyElementalAnalyzer/

ContinuousFlowIsotopeRatioMassSpectrometryat GEOTOPUQAMMcGill.Isotope ratiosarereportedinconventionaldeltanotation,where(exampleforcarbon): δ13 C=

13 12 13 [(R sample /R standard )–1]x1000;andR= C/ C.StandardsusedwerePDB( δ C)andair

(δ15 N).Analyticalerror,asmeasuredbythestandarddeviationofduplicate

measurements,averaged0.10‰for δ13 Cand δ15 N,and0.01forC:N.Someofthecorals obtainedfromtheSmithsonianInstitutewerepreservedinethanol,whichmayhave affectedstableisotopiccompositions(BosleyandWainright,1999).

Suspendedparticulateorganicmatter(POM SUSP )intheGulfofMaine/Georges

Bankregion(Fig.4.1)wassampledaspartoftheEcosystemsMonitoringSurveyatthe

NortheastFisheriesScienceCenter,Narragansett,RI,USA.Sampleswerecollectedin spring,summerandautumn,betweenNovember2000andAugust2003.Inaddition,a

70 verticaltransect(depths3.7m,100mand215m)wassampledintheNortheastChannel inAugust2004(Fig.4.1).Surfacesampleswereobtainedwithashipboard,nearsurface flow–throughsystem.DeepersampleswerecollectedwithNiskinbottlesattachedtoa

CTDrosette.Avolumeof6001000mlofwaterwasprefilteredthrough300 mmesh

toremovemostzooplankton,thenontoaGF/Ffilter.Sampleswereimmediatelyfrozen

andtransportedtotheUSEnvironmentalProtectionAgency,AtlanticEcologyDivision,

Narragansett,RIforisotopicanalysis.Nitrogenandcarbonisotopiccompositionwas determinedbycontinuousflowisotoperatiomassspectrometryusingaCarloErbaNA

1500SeriesIIElementalAnalyzerinterfacedtoaGVInstrumentsOptimaMass

Spectrometer.Allsampleswereanalyzedinduplicatewithatypicaldifferenceofabout

0.1‰. Samplematerialwasreanalyzedperiodicallyoveraseveralmonthperiodand exhibitedaprecisionof0.30‰,calculatedasasinglesigmastandarddeviationofall

15 replicatevalues.Thislatterestimateofprecisionisappropriate forPOM SUSP δ Nvalues

determinedinthisstudy.

71 .20 /.37 N 15 C;; δ δ δ δ 13 9.95+/.47 δ 10.28+/.4 11.8 13.8 7.8 9.74+/.15 c c c c c C’ 13 19.01 10.99+/.45 δ δ δ δ /.27 20.59 9.50+/.51 C +/.74 20.25 10.13+/.56 13 δ δ δ δ Gorgonin 6.08+/.34 17.13 12.26+/.33 C’;lipidnormalized 13 δ ±SD). 3.41+/.10 17.79+/.53 18.59 10.86+/.47 b n C:N .13 3 3.22+/.04 17.93+/.16 19.04 12.82+/ /.16 2 3.22+/.02 19.46+/.11 20.58 10.45+ N 15 δ δ δ δ .67+/.09 76+/.12 3 0.22+/.12 16 19.15+/.28 20.3 0.12+/.05 26 3.17+/.04 19.13+/.49 20.34 9.09+/.22 12.75+/.18 10.58+/.31 99 19.03+/.55 20.18 C’ 13 δ δ δ δ C Tissue 13 δ δ δ δ exico;allothersatGEOTOP spp.SummaryofstableisotopicandC:Ndata(mean n C:N 4 5 20.65+/.34 16.50+/.38 1 3 2 18.35 21.14+/.57 19.50 16.17+/.39 17.32 2 20.41+/.45 21.56 a a a Primnoa QC98 3 7.67+/.57 21.17+/.20 19.00 13.26+/ KIS02 1 5.73 19.42 18.05 13.80 8 3.26+/.06 1 SOJ03 3 4.87+/.03 22.45+/.11 21.64 12.91+ Fossil95 6 3.46+/.07 18.29+/.48 Sample Smith56993 3 4.52+/.05 21.24+/.38 20.72 10 Smith58171 3 4.12+/.01 22.05+/.30 21.91 7. Smith52199 1 4.06 18.24 18.17 12.53 Smith87624 Smith54269 Smith51283 COHPS20011 21 Smith1010257Smith1010785 4 3 6.89+/.43 6.22+/.23 23.77+/.04 19.49+/.15 21.87 17.86 ROPOS637052 3 7.70+/.47 23.68+/.06 21.50 1 ROPOS639009 3 7.45+/.31 23.92+/.20 21.82 1 DFO2002con5 5 7.25+/.80 23.87+/.30 21.84 Only3sampleswereanalyzedforC:N HUD2000020VG2 12 3.17+/.05 19.38+ IsotopicanalysesperformedatUniversityofNewM assumesaC:Nratioof3:2 HUD2001055VG15 107 3.15+/.03 19.01 SPacific–SouthernOceanSector SeaofJapan NEPacific Table4.2 NWAtlantic a c insufficientmaterialforanalysis b

72 4.4RESULTS

4.4.1Compositionoftissueandskeletalgorgonin

StableisotopeandC:Ndatafor Primnoa spp.aresummarizedinTable4.2.

Missingentriesreflectcasesofinsufficientsamplematerialforanalyses.Therewere

largedifferencesintheisotopicandelementalcompositionbetweentissueandgorgonin.

C:Nratioswerehigherandmorevariableintissue(6.1+/1.4,n=11)thangorgonin(3.3

+/0.1,n=8). δ13 Cvaluesweremorenegativeinthetissuebyanaverageof3.0+/1.7

‰(n=9).Mostofthisdifferencein δ13 Cmaybeaccountedforbythedifferenceinlipid contentofthetwofractions.TakingC:Nasaproxyforlipidcontent,lipidnormalized valuesof δ13 C( δ13 C’)werecalculatedfromequationsinMcConnaugheyandMcRoy

(1979).Afternormalization, δ13 C’valuesweremorenegativeinthetissueby1.0+/0.6

‰(n=6).Valuesof δ15 Nweremorepositiveinthetissueby0.9+/0.9‰(n=6).

Thereasonforlower δ13 C’(evenafterlipidnormalization)andhigher δ15 Ninthe tissuecomparedwiththegorgoninisnotclear,butmayberelatedtodifferencesintissue turnovertime(Tieszenetal.,1983).Eachgorgoninlayerintegratesseasonalvariations overoneyear,andtheaverageisotopiccompositionslistedinTable4.2integrateinter annualvariationsovermanyyears.Weexpectthatthetissue,whichturnsoverin somethinglessthanoneyear,representsauniqueseasonalsignature.Anotherpossibility relatestodifferencesintheaminoacidcontentsofthetwofractions(Sherwoodetal.,

2006).Differentaminoacidsareknowntohaveuniqueandwidelyvariable δ13 C(Keil

andFogel,2001)and δ15 N(McClellandandMontoya,2002);therefore,therelative

73 a 15 b NEPacific 13 delta13C 14 14 NWAtlantic delta15N

SPacific Gorgonin 13 SeaofJapan 15 12 r2 =0.94 N(‰) 12 C’(‰) p<.0001 15 13 δ δ 17 10

11 δ 15 N(‰) 10 19 8

2 2 Gorgonin 9 r =0.81 Gorgonin r =0.85 p<.0001 21 p<.0001 6 8

7 23 4 23 22 21 20 19 18 17 16 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 Gorgonin δ13 C’(‰) Apparentoxygenutilization(mll 1)

Fig.4.4: (a)Plotofaverage δ15 N vs. δ13 C'(lipidnormalized δ13 C)fromthegorgonin fractionofdifferent Primnoa spp.colonies.(b)Samedata,plottedagainstApparent OxygenUtilizationinsurfacewater.Note,wheregorgoninwasnotmeasured,thetissue isotopicvalueswereplottedinstead.

proportionofaminoacidsbetweentissueandgorgoninmayimpartdifferencesinstable

isotopiccontent.

4.4.2Geographicandinterspecificvariability

Thereweresignificantcompositionaldifferencesamongthedifferentspeciesand

geographicareas(Table4.2). Primnoa pacifica and Primnoa resedaeformis notialis from theSeaofJapanandSouthPacifichadthelowesttissueC:Nvalues(4.5+/0.4,n=3).

Primnoa willeyi fromtheNEPacifichadintermediateC:N(6.1+/1.4,n=5),and

Primnoa resedaeformis fromtheNWAtlantichadthehighestC:N(7.5+/0.2,n=3).

δ13 C’and δ15 Nwerepositivelycorrelated(p<0.001;Fig.4.4a),aspreviouslyfoundin

Heikoopetal.,(2002).Isotopevaluesin δ15 Nvs. δ13 C’spacewereclearlydelineatedby

geography,withhighestvaluesintheNEPacific,intermediatevaluesintheNWAtlantic

74 andSeaofJapan,andlowestvaluesinthePacificSouthernOceanSector(Fig.4.4a).The samplefromAtkaIslandintheNEPacific(Smith1010257)deviatedfromthispattern;it hadisotopicvaluesmoresimilartotheSouthPacificsamples.

Isotopevalueswereplottedagainstapparentoxygenutilization(AOU),selected fromtheLevitusandBoyer(1994)datasetasthebestavailablemeasureofsurface productivityforopenocean,slopewaterandshelfsitesalike(Fig.4.4b).Surfacewater

AOUdatawereobtainedfromthe0.5 olatitudeX0.5 olongitudegridnearesteachofthe coralcollectionlocations.Both δ13 C’and δ15 Nsignificantlyincreasedwithmorenegative

AOU(i.e.higherproductivity;p<0.0001).

4.4.3Intracolonyisotopicreproducibility

SpecimenHUD2001055VG15wasthefirstcolonyexaminedfortrendsinthe

isotopiccompositionofannualgorgoninrings.Thiscolonywascollectedaliveand

transferredtoanaquarium,wherethetissuelayereventuallydiedandsloughedoffthe

skeleton.A50cmlongmainbranchwassnappedoffthecolonyforgeochemical

sampling.Sectionsforstableisotopicanalyseswerecutfromthebaseofthemainbranch,

andfromtwodivergentbranches10cmhigherupthecolony(Fig.4.2a).Thebasal

sectionmeasured14mmindiameter.StableisotopeandC:Nprofilesfromthisspecimen

areshowninFig.4.5.The δ13 Cprofileswereidenticalamongthethreedifferentsections

(correlationcoefficients(r)ranged0.84to0.97;p<0.0001),showingtrendstowards heaviervalueswithincreasingage.Theamplitudeof δ13 Cprofileswas3‰,muchlarger

thantheanalyticalerror(0.10‰). δ15 Nprofileswerelessreproduciblebetweenthe

75 17 sectionC 17.5 sectionD sectionE C(‰) 18 13 δ 18.5

19

19.5 Gorgonin 20 12

11.5

N(‰) 11 15 δ 10.5

10

9.5

Gorgonin 9

8.5 3.25

3.2

3.15 C:N

3.1

3.05 35 30 25 20 15 10 5 0 Ringnumber(younger? ) Fig.4.5: IntracolonyisotopicandC:N profilesfromthreedifferent sectionofColonyHUD2001055VG15.(seeFig.4.2a)forlocation ofsectionsalongcolonyaxis).

differentsections(r=0.38to0.48;p=<.01to.05).Differencesamongcoevalrings,up to1.5‰,wereequivalenttotheamplitudeoftheprofiles,andcannotbeexplainedby analyticalerror.C:Nprofilesweretheleastreproducibleamongthedifferentsections(r=

0.23to0.44;p=0.02to0.78),withdifferencesamongcoevalrings(upto0.07) exceedingtheanalyticalerror(0.01).

76 23

23.5

C (‰) 24 13 δ 24.5

11.5

11

10.5 N (‰) 15

δ 10

9.5

9 8.5 8 7.5 C:N 7 6.5 6 0 10 20 30 40 50 Distancefromcolonytip(cm)

Fig.4.6: IsotopicandC:N datafromthetissuefractionof ColonyDFO2002con5 (seeFig.4.2bforlocationofsamples alongcolonyaxis).Errorbarsare1 σ.

Alargercolonyof Primnoa resedaeformis (DFO2002con5)wassubsequently

obtainedfromtheCanadianDepartmentofFisheriesandOceansandthesame

experimentwasrepeated.Thiscolonywascompletelycoveredinlivetissueandwas

frozenimmediatelyaftercollection(Fig.4.2b).Sectionsforgeochemistrywerethawed

andairdriedinthelaboratory.Thecolonyreceivedmeasured70cminlengthandhada

diameterof26mmatthebase,whichincludedathickaccumulationofcalcitecortex

(Fig.4.3).AnalysesoffivetissuesamplestakenalongthelengthofDFO2002con5

showednodifferencein δ13 C,withinanalyticalerror(Fig.4.6).Theexceptionwasthe

tissuesample20cmfromthetopofthecolony,whichhadavalue0.3‰heavierthanthe

77 17.5 sectionA1 18 sectionA5 C(‰)

13 18.5 δ 19

19.5

20 Gorgonin

20.5

11.5

11 N(‰) 15

δ 10.5

10

9.5 Gorgonin

9 60 50 40 30 20 10 0 Ringnumber(younger? ) Fig.4.7: Intracolonyisotopicprofilesfromtwodifferentsectionsof ColonyDFO2002con5 (seeFig.4.2bforlocationofsectionsalong colonyaxis).

10 rest. δ15 Nwasslightlymorevariable,withvaluesincreasingsteadilyby0.8‰fromthe tiptothebaseofthecolony.C:Nvariedbyupto2amongthedifferenttissuesamples.

Stableisotopeprofiles(Fig.4.7)ofgorgoninlayersweregeneratedfromtwosectionsat thebaseofthecolony,separatedbyadistanceof3cm.C:Nwasnotmeasured.Isotope profileswerevirtuallyidenticalamongthetwodifferentsections(r=0.69{ δ13 C}and

0.63{ δ15 N};p<.0001).

4.4.4Intercolonyisotopicreproducibility

Intercolonyisotopicreproducibilitywasassessedamongthreedifferent

colonies(Fig.4.8).Foreachcolony,ringnumberswereconvertedtocalendaragesas

78 17 HUD2001VG15:n=3 17.5 DFO2002con5:n=2 18 ROPOS639009:n=1 C(‰)

13 18.5 δ

19

19.5 Gorgonin 20

20.5

11.5

11 N(‰)

15 10.5 δ

10

Gorgonin 9.5

9 1950 1960 1970 1980 1990 2000 Year Fig.4.8: Intercolonyisotopicprofilesfromthreedifferentcolonies.Chronology isbasedongrowthringcountswithbomb14 Cvalidation(Sherwoodetal.2005a). Where"n"(numberofsectionspercolonyanalyzed)was>1,theaverageofthe profilesisplotted.

describedinSherwoodetal.,(2005a).Briefly,photographicprintsofeachsectionwere circulatedamongthreeamateurcounters,andtheaverageofthethreeagedeterminations wascalculated.Ringcountswerevalidatedbymeasurementsofbomb14 Cineachofthe

sections(Sherwoodetal.,2005a).Theintercolonyresultsparalleledintracolonyresults,

withexcellentreproducibilityof δ13 C,andpoorerreproducibilityof δ15 N(Fig.4.8).

Correlationof δ13 Ctimeseriesamongthedifferentcolonieswashighlysignificant(r=

0.67to0.86;p<0.0001).Correlationof δ15 NwassignificantbetweencoloniesHUD

79 2001055VG15andROPOS639009(r=0.44;p<0.05),butwasinsignificantinthe othertwocases.

4.4.5Comparisonofmodernandsubfossilspecimens

Thetwospecimensfromca.150and2000yrsBPwerecomparedtoothercorals

collectedalivefromtheNortheastChannel(Table4.2).C:Nratiosoftheseolder

specimens,3.4+/0.1(n=9),wereslightlyhigherthanthemodernones,3.15+/0.05(n

=260).Thesubfossilsampleswereheavierin δ13 C’(lipidnormalizedtoaccountfor differenceinC:N)by1.5‰(Fig.4.9).Partofthisdifferencemaybeexplainedbythe

Suesseffect,causedbythedepletionofatmospheric 13 Cfromtheburningoffossilfuels, withsubsequentdepletionofoceanicdissolvedinorganiccarbon(DIC;Quayetal.,

1992).The1.5‰differencebetweenthe150yroldCOHPS20011andthemostrecent samplesfromDFO2002con5isconsistentwiththedecreaseinatmospheric δ13 C betweenthemid1800sandthepresent(Franceyetal.,1999).Thelightervaluesfromca.

1920,however,exceedthemagnitudeoftheSuesseffect.Therefore,theremaybeother

oceanographicand/ortrophiclevelchangesaffecting δ13 Covershortertimescales.There wasalsoaslighttrendtowardshigherδ15 Nwithage,withthetwosubfossilspecimens havingsimilarvaluesastheoldestlayersfromDFO2002con5(Fig.4.9).

4.4.6δ 15 Ncompositionofplankton

InordertoassesstheTLof Primnoa resedaeformis collectedfromtheNortheast

Channel(seebelow) δ15 Natthebaseofthefoodwebwasassessedfrommeasurements ofPOM SUSP .Unfortunately,theNortheastChannelwasnottargetedforsamplinginyears

80 17

18 C’(‰) 13 δ 19

20

Gorgonin 21

22 a b c

12 N(‰) 15

δ 11

10 Gorgonin a b c 9 1920 1930 1940 1950 1960 1970 1980 1990 2000

Fig.4.9: Isotopicprofilesfrom:(a)ColonyFossil95,ca.2000yrold,basedon Useriesdating(Scottetal.2003);(b)ColonyCOHPS20011,ca.200yrsold, basedon 210 Pbdating;(c)ColonyDFO2002con5,calendaryrsbasedongrowth ringcounts,withbomb14 Cvalidation(Sherwoodetal.,2005a).

20002003oftheEcosystemsMonitoringSurvey(Fig.4.1).Withtheexceptionofthe

15 centralshoalsofGeorgesBank, δ NinsurfacewaterPOM SUSP wasconsistent

throughouttheentireregion(4.1+/1.2‰,n=56;Fig.4.10).Wethereforeassumethat

thisvalueisrepresentativeofPOM SUSP inwatersoverlyingtheNortheastChannel.

InAugust2004,theNortheastChannelwasoccupiedtocollectPOM SUSP alonga depthtransect(Fig.4.1).Belowtheeuphoticzoneδ15 Nincreasedrapidlytoamaximum of18.5‰at215mdepth(Fig.4.11).Whilethesedatarepresentonlyonesnapshotin

81 6

5.5 (‰) 5 SUSP 4.5

4 NPOM 15 δ 3.5

3 Scotian GOM GBshoals NEPeak GBSouth Shelf Flank

15 Fig.4.10: Average(± 1σ) δ N ofPOM SUSP insurfacewatersof thedifferentareasintheGulfofMaine/GeorgesBankregion.Site designationscorrespondtoFig.4.1

15 δ NPOM SUSP (‰) 0 5 10 15 20 0 Thisstudy

Libes&Deuser 50 1988

100

150 Depth(m)

200

250

300

15 Fig.4.11: Depthprofilesof δ N ofPOM SUSP fromtheNortheast Channel(thisstudy;seeFig.4.1forlocation),andfromWilkinson BasininsidetheGulfofMaine(Libes andDeuser,1988)

82 time,theyareconsistentwithearlierresultsreportedforWilkinsonBasin,locatedfarther insidetheGulfofMaine(LibesandDeuser,1988).

4.5DISCUSSION

4.5.1Trophiclevel

Ithasbeendemonstratedthatdeepseacoralsformtheirorganicendoskeletons

14 fromsinkingPOM(POM SINK ),basedonthepresenceofmodern C(>0‰)inthe gorgoninfractiontheirskeletons(GriffinandDruffel,1989;Roarketal.,2005;Heikoop etal.,1998;Sherwoodetal.,2005a).Reconstructionofbomb14 Cfromtheskeletonsof

Primnoa resedaeformis collectedfromtheNortheastChannel(Sherwoodetal.,2005a) wasidenticaltootherproxyrecordsderivedfromamolluscshell(WeidmanandJones,

1993)andhaddockotoliths(Campana,1997).Moreover,thetimingoftheinitialriseand peakinbomb14 CwasinphasewithdirectmeasurementsofseawaterDIC(Nydaletal.,

1998).Therefore,thegorgoninfractionisderivedfromsurfacewaterDIC,transmittedto

depthviatheplanktonfoodweb;buttheseresultsdonotindicatewhether Primnoa spp.

feeduponsinkingphytoplankton,zooplanktonorothertrophicintermediaries.Becauseof

trophiclevelfractionationof δ13 Cand δ15 N,interpretationoftimeseriesisotopicprofiles requiresknowledgeofTL.

FurtherinsighttotheTLof Primnoa spp.isprovidedby δ15 N.Thisistypically enrichedinaconsumerrelativetoitsdietbyanaverageenrichmentfactorof δ 15 N=3.4

‰(DeNiroandEpstein,1981;MinagawaandWada,1984;VanderZandenand

83 Rasmussen,2001).TheTLof Primnoa spp.maythereforebeestimatedbycomparing

ourdatawiththeisotopicsignaturesofotherorganismsofknownTL(e.g.Vander

Zandenetal.,1997;Poluninetal.,2001).Weusedprimaryconsumersasthebaseline,

15 15 andcalculatedTLbytheformula:TL consumer =( δ Nconsumer δ Nbaseline )/3.4+2(Vander

ZandenandRasmussen,2001).Whereverpossible,weusedthegorgonin,ratherthan

tissueresults,sincetheseintegrateseasonalandinterannualisotopicvariationsoccurring

atthebaseofthefoodweb.OurapproachwastoreconstructregionallyspecificTL

modelsfromliteraturedata.

Primnoa resedaeformis fromtheNortheastChannelwascomparedwiththeTL

modelofFry(1988),whichwasbasedontaxacollectedfromnearbyGeorgesBank.We

addedtothismodelisotopicdataforPOM SUSP (thisstudy)POM SINK (Macko,1981)and sizefractionatedzooplankton(FryandQuinones,1994).Mostoftheinvertebratesand fishreportedinFry(1988)andFryandQuinones(1994)werecollectedwithinthe100m

15 isobathonGeorgesBank,where δ NofPOM SUSP is1.4‰heavierthaninsurrounding waters(Fig.4.10),probablyasaresultofgreateruseofregeneratedammoniumonthe

Bank(Ostrometal.,1997;Wuetal.,1999a).Weassumethatisotopicenrichmenton

GeorgesBankistransmittedtohighertrophiclevels.Thisdifferencein δ15Nequatesto

0.4trophiclevelsandmustbeaccountedforinTLmodeloutput.

TheNortheastChannel/GulfofMaine δ15 NTLmodelisshowninFig.4.12.Data fortheGeorgesBanktaxaweresubtractedby1.4‰.Herbivorousscallopswereusedfor baseline δ15 N(Fry,1988;61.4=4.6‰).Amonglivecollected Primnoa resedaeformis

84 18 6

16 5 14 POM susp (>200m) Trophiclevel 12 4

N(‰) 10 15 δ

8 3

6 POM sink 2 4 POM susp (surface) 2 POM microZPL, meso macro shrimp benthic squid plankti demersal pisci PRIMNOA scallops, ZPL, ZPL isopods, vores vores benthic poly lrg. amphipods, chaetes poly mussels, crabs chaetes FISH anemone

INVERTEBRATES Fig.4.12: Trophiclevel(TL)δ15 N modelfortheNortheastChannel/GulfofMaine region(triangles).Wesubtracted1.4‰ fromthedataforGeorgesBanktaxa(datafrom Fry,1988;FryandQuinones,1994)toaccountforhigher δ15 N onGeorgesBank(see Discussion).(Greycircles)AdditionaldatashowingsurfacePOM SUSP (thisstudy), deepPOM SUSP (averageofdatafromthisstudyandLibes andDeuser,1988)and POM SINK (basedonsedimentdatafromMacko,1981).(Greydiamonds) P. resedae- formis data.TLdesignationsarebasedonaveragecompositionofscallops(TL2)and δ 15 N =3.4‰.ZPL;zooplankton.

fromtheNortheastChannel,theintercolonyaverage δ15 Nwas10.0+/0.3‰(n=5).

Thisvalueissimilartothe δ15 Nforlargebenthicisopods,largepolychaetes,and planktivorousfish(Fig.4.12).ThecalculatedTLis3.6.Thissuggeststhat P.

resedaeformis isprimarilycarnivorous.Wehavealsoobservedthatthepolypson P.

85 resedaeformis pointdown,suggestingthatthesecoralsmayalsofeedonresuspended

meiofauna.

AnotherfactorwhichmayaffecttheTLestimateisisotopicmodificationof particulatematterindeepwaters.Significantenrichmentof δ15 Nbelowtheeuphoticzone

(Fig.4.11)rulesoutthepossibilitythat Primnoa resedaeformis feedsonthehighly

15 degradedPOM SUSP encounteredatdepth(otherwise δ Nin P. resedaeformis wouldbe

muchhigher;Fig.4.12).POM SINK mayalsobecomeisotopicallyenrichedbelowthe euphoticzone,althoughtoamuchlesserextentthanPOM SUSP (Altabetetal.,1988;

Altabetetal.,1991;Vossetal.,1996).WeestimatethatPOM SINK intheNortheast

Channelhasa δ15 Nsignatureof6.5‰basedonsedimentdata(Macko,1981)and

15 generalsimilarityin δ NbetweensedimentsandPOM SINK (AltabetandFrancois,1994;

Vossetal.,1996;Ostrometal.,1997).Assuming δ 15 N=3.4, P. resedaeformis could feedonPOM SINK aswellaszooplankton(Fig.4.12).

Heavier δ15 Nin Primnoa willeyi fromtheNEPacific(12.8+/0.6‰,n=5),

whencomparedto Primnoa resedaeformis fromtheNWAtlantic,mayreflecteithera

differenceatthebaseofthefoodweborhigherTL.WeconstructedaTLmodelbasedon

literature δ15 Ndatafrom2inshoreBaysnearJuneau(Goeringetal.,1990)andPrince

WilliamSound,Alaska(Kline1999;note:oneofourspecimens{Smith51283}was collected in PrinceWilliamSound).Baseline δ15 Nwassetto8‰,usingthevalues reportedforherbivorouscopepods( Neocalanus cristatus ;Kline1999)andbivalves

(Goeringetal.,1990).Overlapin δ15 Nvaluesamongsimilartaxafromthesetwo

86 Alaskanbays,despiteaseparationofover600km,lendsconfidencethat δ15 Nsignatures arewellconservedwithinthecoastalNEPacificecosystem.WecalculateaTLofabout

15 3.4for P. willeyi .MeasurementsofPOM SINK fromoffVancouverIsland( δ N=89‰,

Peñaetal.,1999;Wuetal.,1999a)arealsoconsistentwiththisfractionbeingafood sourcefor P. willeyi .Lighterδ15 NinthesamplefromAtkaIsland(9.1‰)maybe explainedbylow δ15 Ninoffshoreprimaryproducers(Wuetal.,1997;seebelow).

Ithasbeenshownthatcoastalecosystemsoftenexhibitlower δ 15 Nthanthe globallyacceptedvalueof3.4‰(Wuetal.,1997;SherwoodandRose,2005).To validateourTLestimates,wealsolookedatfourtaxathatweresampledinboththeNE

PacificandNWAtlantic:euphausiids,bivalves,pollock,andsole.TLoutputsforthetwo differentecosystemswerestatisticallyequal(matchedpairsttest).Moreover,TLoutputs forbothecosystemsconformtoexpectations:bivalves(TL=2);euphausiids(TL=2.6); pollock(3.8);sole(3.5to3.8).Therefore,ouruseof δ 15 N=3.4‰forbothGeorges

BankandcoastalNEPacificecosystemsdoesnotappeartointroducebiasinourmodel outputs.

Insummary,isotopicdatasupportthefollowingthreeconclusionsaboutthediet of Primnoa corals:(1)Presenceofmodern 14 Cin Primnoa resedaeformis rulesout

DOCandDICasasignificantcarbonsourcetothegorgoninfractionoftheskeleton

(Sherwoodetal.,2005a);Measurementsof δ15 Nsuggestthat(2)zooplanktonand/or

POM SINK constitutethemaindietof P. resedaeformis and Primnoa willeyi ,and(3)the highlydegradedfractionofPOM SUSP foundatdepthisnotasignificantfoodsource.This

87 isalsosupportedbythefindingthatthedark,moregorgoninrichportionoftheannual ringcoupletsin P. resedaeformis coincidewiththetimingofthespring/summerbloom

ofphytoplanktonandzooplankton(Sherwood,2002).

LackofisotopicdatafortheSeaofJapanandtheSouthPacificintheliterature preventedasimilaranalysisoftheTLoftheremainingspecies.Itisquiteprobablethat

Primnoa pacifica and Primnoa resedaeformis notialis shareasimilartypeofdietwith P. resedaeformis and P. willeyi, sinceallthecoralshavesimilarsizedpolyps.

Aspassivesuspensionfeeders,octocoralsfeedopportunisticallyonawide spectrumofplanktonsizeclasses,fromnanoeukaryotestozooplankton(Ribesetal.,

1999;Orejas,2003;Ribesetal.,2003).Temperateandborealasymbioticspeciesfeed mainlyonzooplanktonanddetritalPOMinaboutequalproportion,withsmaller plankton(<100 m)accountingfor<10%ofenergydemand(Ribesetal.,1999;Ribes

etal.,2003).Amongzooplankton,gorgoniansingestsmaller,lowmotilitypreyitems

(Comaetal.,1994;Rossietal.,2004).Ourisotopicdataconformtothisgeneralpattern,

withtheexceptionthatthehighlydegradedPOM SUSP foundatdepthdoesnotappearto beasignificantfoodsource.Heterogeneityofpreyitemsmayexplainthedifferencesin

theintraandintercolonyreproducibilityof δ13 Cand δ15 N.Itmaybepossiblethat

differentpartsofthecolonyaremoreeffectiveatcapturingdifferentsizedpreyitems

dependingonlocalizedcurrentregimes(Comaetal.,1994).Differentialfeedingonprey

sizeclassescouldpotentiallyalter δ15 Nsignatures,duetostrongtrophiclevel fractionationof 15 N(FryandQuinones,1994).Ifthisistrue,thenanalysesofmore

88 sectionspercolonyandmorecoloniespersitearerecommendedtogettheaverage δ15 N.

Sincetrophiclevelfractionationof 13 Cismuchweaker(generally<1‰;VanderZanden andRasmussen,2001)differentialfeedingshouldexertlessinfluenceon δ13 C,thereby lendingtogreaterisotopicreproducibility .

4.5.2Surfacebenthiccouplingofisotopicsignatures

Theoverallisotopicsignatureofafoodwebisdeterminedbybiophysical processesatthelevelofprimaryproducers.Theseprocessesaremyriadandcomplex, especiallyovershortertimescales.Phytoplankton δ15 Nmainlydependsontheefficiency ofnitrogenutilization(Nakatsukaetal.,1992;AltabetandFrancois,1994;Wuetal.,

1997;1999a)andonthe δ15 Nsignatureofthenitrogenoussubstrate(Ostrometal.,1997;

13 Altabetetal.,1999).Phytoplankton δ Cmainlydependson[CO 2aq ](Rauetal.,1992;

Hoffmanetal.,2000),growthrate(Nakatsukaetal.,1992;Hoffmanetal.,2000)andcell geometry/planktonspeciescomposition(Poppetal.,1998;FryandWainright,1991),as wellasthe δ13 Csignatureofthebicarbonatesubstrate(Cullenetal.,2001).Asaresultof thesemyriadfactors,therearelargeisotopicdifferencesbetweenopenocean,slope water,andcoastalecosystems(Wuetal.,1997).Furthermore,differentpathwaysof isotopicfractionationoftenleadtodecouplingofδ13 Cand δ15 Ninnewproduction

(Ostrometal.,1997;Wuetal.,1999a;1999b).InFig.4.4b,ouruseofsurfacewater

AOUisnotmeanttoimplycontrolonisotopicfractionation,buttogivesomesenseof thedifferentsurfaceproductivityregimeswherethecoralslived.Thelightestvalueswere foundintheSouthPacific,locatednearahighnutrientlowchlorophyll(HNLC)domain, wheredespitehigh[NO 3]and[CO 2aq ]primaryproductionislimitedbymicronutrients

89 suchasiron.SimilarlylowvalueswereobservedinaspecimenfromAtkaIsland,inthe

AleutianIslands,alsolocatednearanHNLCdomain(Wuetal.,1999b).Heaviervalues werefoundintheslopewaterregionsoftheNWAtlanticandtheSeaofJapan,where primaryproductivityistypicallydominatedbybloomsoflarge,fastgrowing phytoplankton(Mousseauetal.,1996).Thesebloomsleadtonutrientdepletion,and heavier δ13 Cand δ15 N.TheheaviestvalueswereincoralsfromAlaskaandBritish

Columbia,consistentwithhighestproductivityratesinthesecoastaldomains.These

resultsdemonstratethatisotopicsignaturesoriginatingwithprimaryproducersare

transmittedto,andpreservedwithin,theorganicendoskeletonsof Primnoa spp.Itis thereforenotsurprisingthat δ13 Cand δ15 NinPrimnoaspp.arebothsotightlycorrelated withAOU(Fig.4.4b).

4.5.3Preservationoforiginalisotopiccomposition

Forisotopictrendsfromgorgonintohaveanypaleoceanographicutility,there mustnotbeanydiageneticoverprinting.Inmanyofthesubfossilspecimensdonatedto usbyfishermen,thegorgoninappearedtobemoresusceptibletodegradationthanthe inorganiccalcitecortexfraction.Onthebrokenaxesofthesedeadcolonies,theinner hornyaxisisoftenworndowninasmoothcupshapeddepression,whilethecortex remainsintact.SimilarityinC:N, δ13 Cand δ15 Nbetweenmodernandsubfossil specimenssuggeststhatisotopicsignaturesarepreservedfromthetimeoforiginal formation.Thisisalsosupportedbyidenticalaminoacidabundancesbetweenmodern andsubfossilspecimens(Sherwoodetal.,2006),sincediagenesisoftenleadstothe synthesisofmicrobialbiomasswithdifferentaminoacidandstableisotopiccomposition

90 (MackoandEstep,1984).Thedegradationobservedonsubfossilspecimensappearsto betheresultofmechanicalerosion,probablybytheactionofsuspendedsands,rather

thanorganicdiagenesis.Thisfindingisconsistentwithgorgoninbeingoneofthemost

chemicallyinertproteinsknown(Goldberg,1976).Overmillennialtimescales,therefore,

isotopicabundancesin Primnoa spp.arepreserved,makingthesecoralsdurablearchives ofpaleoceanographicinformation.

4.5.4Paleoceanographicapplications

Owingtolittletrophiclevelfractionationandexcellentintraandintercolony reproducibility, δ13 Ctimeseriesfrom Primnoaspp.couldreliablytrackvariationsin surfaceprocesses.FromFig.4.8,itappearsthatthethreecoloniesof Primnoa

resedaeformis fromtheNortheastChannelrecordedapeakin δ13 Caroundthemid twentiethcentury,withseveraldecadescaleoscillations.Thecausesofthesevariations arenotclear;buttheremaybeanimportantlinkwithknownchangesinplankton communitycompositionsincethe1960sinthisregion(Sameoto,2001).Ontheother hand,evidenceoftheoceanicSuesseffectonthe δ13 Ccompositionofmodernvs.sub fossilspecimens(Fig.4.9),andreconstructionof20 th centurybombradiocarbon

(Sherwoodetal.,2005a)areexamplesofisotopicvariabilityinsourcematerialsrecorded inthesecorals.Therefore,thereisevidencethatbothbiologicalprocesses(i.e.correlation of δ13 Cand δ15 NwithAOU)andphysicalprocesses(changesinisotopiccompositionof bicarbonatesubstrate)arereflectedingorgoninisotopiccontent.Smallerregionalstudies withmultiplecoloniesandgoodchronologicalcontrolwillberequiredtodeconvolute thesedifferentfactors.Usefulinformationmayalsobeextractedfrom δ15 Nprofiles,

91 providedthattimeseriesvariabilityislargerelativetotheintraandintercolony variability.

Theannualnatureofringformationmakes Primnoa spp.analogoustovarved sedimentcores,fromwhichmuchusefulpaleoceanographicinformationhasbeen retrieved(e.g.Tunnicliffe,2000).Insimilarfashion,annuallyresolvedisotopetime serieshavebeengeneratedfrompreservedanimalremains,suchasfishscales(Wainright etal.,1993)andwhalebaleen(Schell,2001).Longlifespans(atleast400years,probably longer;Risketal.,2002;Scottetal.,2005)lendto Primnoa spp.theadvantagesofboth varvedsedimentcores(longer, in situ timeseries)andpreservedanimalremains

(widespreaddistribution,knownTL).Isotopicreconstructionsfrom Primnoa spp.could beusefulinillustratingtemporalvariationsinmarineproductivity,aswellastrackingthe relativeimportanceoftopdownvs.bottomupinfluencesovertime(Schell,2001;Rauet al.2003;SatterfieldIVandFinney,2002).Oceanographicphenomenathatmaybe recordedincludechangesinthepositionofwatermassboundaries,upwellingstrength, terrestrialnutrientinputsandatmosphericnutrientinputs.

Deepseacoralscouldprovetobetemporalandspatialrecordersoftheefficacy oftheoceanicbiologicalpumpthattransferscarbondioxidefromtheatmospheretothe deepocean.Byunderstandingnaturalprocessesthathaveaffectedtheoperationofthis pumpovercenturytimescaleswecanbetterpredicttheeffectsofglobalchangeand potentialengineeredapproachessuchasironfertilizationonoceaniccarbon sequestration.Thewidespreadoccurrenceanddiversityofdeepseacoralsisonlynow

92 beingfullyappreciated.Asmoredeepseacoralsarediscoveredinimportant oceanographicregionstheapplicabilityofthispotentialpaleoceanographicarchiveis likelytoincrease.

4.6CONCLUSIONS

1. Measurementsof δ15 Nindicatethat Primnoa resedaeformis and Primnoa willeyi have

aTLofabout3.5.POM SINK andzooplanktonappeartoconstitutethebulkofthediet,

whereasDIC,DOCandPOM SUSP arenotconsumed.TheTLfor Primnoa pacifica and

Primnoa resedaeformis notialis couldnotbedetermined,butitislikelythatthesespecies

feedatasimilarTL,basedonsimilarsizedpolyps.

2. Average δ13 Cand δ15 Ncompositionsofthegorgoninfractionwerestronglycorrelated witheachother,andwithsurfacewaterAOU.Thisdemonstratesstrongcoupling betweensurfacebiophysicalprocessesandstableisotopiccompositionsin Primnoa spp.

3. Isotopicprofilesfromannualgorgoninringsshowedexcellentintracolonyandinter colonyreproducibilityfor δ13 C,whilefor δ15 Nthereproducibilitywasnotasgood.The latterresultmayarisefromdifferentialfeedingupondifferentsizedpreyitems, dependingonlocalizedcurrentregimes;however,moreworkisneededtoaddressthis issue.

4. SimilarityinC:N, δ13 Cand δ15 Nbetweenmodernandsubfossilspecimens demonstratesalackoforganicdiagenesisinthetoughgorgoninfraction.Isotopic

93 signaturesfromthetimeofformationarethereforepreservedovermillennialtimescales, makingthesecoralsexcellentcandidatesforretrospectivestudiesofthesurfacemarine environment.

ACKNOWLEDGEMENTS

Forprovidingcoralsamples,wearethankfultoS.Atwood,L.BuhlMortensen,S.

Cairns,D.Gordon,D.Jones,D.Mackas,P.Mortensen,A.Muir,L.Talley,V.

Tunnicliffe,andR.Wolkins.J.McKayperformedisotopicanalysesatGEOTOP.Weare

gratefultoB.Ghalebforprovidingradiometricdates.StableisotopicanalysesatUNM

wereperformedbyVAtudorei,M.Hess,andZ.Sharp.WethankJerryPreziosoof

NOAANMFS,Narragansett,RI,forkindlyprovidingPOMsamples.LawrencePlug

offeredvaluablehelpwithdigitalmapping.Wealsothank3anonymousreviewersfor

suggestionsleadingtoimprovementofthismanuscript.Fundingwasprovidedbyan

NSERCStrategicGranttoMJRandDBS,anInstituteofGeophysicsandPlanetary

Physics,LosAlamosNationalLaboratory,granttoJMH,andanNSERCpostgraduate

scholarshiptoOAS.RadiocarbonanalyseswereperformedundertheauspicesoftheU.S.

DepartmentofEnergybytheUniversityofCaliforniaLawrenceLivermoreNational

Laboratory(contractW7405Eng48).

94 CHAPTER5

LATEHOLOCENERADIOCARBONANDASPARTICACIDRACEMIZATION

DATINGOFDEEPSEAOCTOCORALS

OwenA.Sherwood 1,DavidB.Scott 1,MichaelJ.Risk 2

1 CentreforEnvironmentalandMarineGeology,DalhousieUniversity,Halifax,Canada

2SchoolofGeographyandGeology,McMasterUniversity,Hamilton,Canada

Publishedasanarticlein:

GeochimicaetCosmochimicaActa70:28062814

(June2006)

95 5.1ABSTRACT

Primnoa resedaeformis isadeepseagorgoniancoralwitha2partskeletonofcalciteand

gorgonin(afibrillarprotein),potentiallycontaininglongtermrecordsofvaluablepaleo

environmentalinformation.Forvariousreasons,bothradiocarbonandU/Thdatingof

thesecoralsisproblematicoverthelastfewcenturies.Thispaperexploresasparticacid

racemizationdatingofthegorgoninfractioninmodernandsubfossilspecimens

collectedfromtheNWAtlanticOcean.Radiocarbondatingofthesubfossilspecimen

indicatesalifespanof700±100years,thelongestyetdocumentedforanyoctocoral.

Gorgoninaminoacidcompositionswereidenticalinthesubfossilandmodern

specimens,indicatingresistancetoorganicdiagenesis.Similartobonecollagen,the

fibrillarproteinofgorgoninmayimposeconformationalconstraintsontheracemization

ofAspatlowtemperatures.Therateofracemizationofasparticacid(D/LAsp)was

similartopreviouslypublishedresultsfroman1800yearoldanemone( Gerardia) .The ageequationwas:Age(yrsBP2000AD)=[(D/L–0.020(±.002))/.0011(±.0001)] 2

(r 2=0.97,p<.001).TheerrorinanageestimatecalculatedbyD/LAspwasmarginally betterthanthatfor 14 Cdatingoverthemostrecent50200years,althoughthedatingerror

maybeimprovedbyinclusionofmoresamplesoverabroadertimerange.Theseresults

suggestthatD/LAspdatingmaybeusefulinaugmenting 14 Cdatingincaseswhere 14 C calibrationsyield2ormoreinterceptages,orinscreeningsamplesforfurther 14 Cor

U/Thdating.

96 5.2INTRODUCTION

Deepseaoctocoralsoftenhaveatwopartskeletonofcalciteandgorgonin,a

tough,hornyprotein.Basedon 14 C, δ13 Cand δ15 Nevidence,thecalcitefractionis

derivedfromdissolvedinorganiccarbon(DIC)atdepth,whilethegorgoninisderived

fromrecentlyexportedparticulateorganicmatter(POM;GriffinandDruffel,1989;

Druffeletal.,1995;Heikoopetal.,2002;Roarketal.,2005;Sherwoodetal.,2005a,b).

Thegorgonianspecies Primnoa resedaeformis hasconcentricringsinitsaxialskeleton

thatformannually(Andrewsetal.,2002;Sherwoodetal.,2005a.).Thismaybetruein

otheroctocoralspeciesaswell(Thresheretal.,2004).Together,theseobservations

suggestthathightemporalresolution,geochemicalbasedclimatereconstructionsofboth

surfaceandintermediate/deepwaterprocessesmaybemadefromtheskeletonsofdeep

seaoctocorals(Heikoopetal.,2002;Thresheretal.,2004;Sherwoodetal.,2005a,b).

Obtainingspecimensofdeepseacoralforstudyisnotatrivialmatter.Financial

andlogisticaldemandsmayrendersamplingexpeditionsverydifficult.Ontheother

hand,manylarge,pricelessspecimensareoftenavailablefromfishermenandmuseums.

Inrecentyearswehaveobtainedabouttwentylargespecimensof Primnoa resedaeformis fromlonglinefishermeninNovaScotia.Someofthesespecimensmaycontainseveral hundredsofyear’sworthofenvironmentalrecordsintheirskeletons(Risketal.,2002).

Unfortunately,mostofthelargespecimenswerecollecteddead.Thegreaterapparent availabilityofdeadvs.livespecimensinrecentdecadesmaybetheresultofincreasing habitatdestructionbythedraggerfishingfleetsincethe1950s(WatlingandNorse,1998;

97 HallSpenceretal.,2002).Inaddition,theskeletonsof P. resedaeformis maycontain death/regrowthsurfacesrepresentinghiatusesinskeletalaccretion(Chapter6).

Sinceaccuratechronologyisafundamentalrequirementinproxyreconstructions, absolutedatingmethodsarerequiredtoexploitthepotentialclimatesignalscontainedin theseskeletons.Carbon14datinghasbeenusedtodatesubfossiloctocorals.Risketal.

(2002)used14 Ctodeterminealifespanof320yearsinasubfossilspecimenof P.

resedaeformis dredgedfromGeorgesBank.Druffeletal.(1995)used 14 Ctodeterminea lifespanof1800yearsin Gerardia ,dubbingitthe“Bristleconepineofthedeepsea”.

Gerardia isananemone,notacoral,butitformsatoughorganicendoskeletonmuchlike thegorgoninin P. resedaeformis .Amajorproblemwith 14 Cistheinabilitytoresolve datesovertheperiodca.16501950ADbecauseoflocalvariationsinthemarine reservoireffectandthepossibilityformultiplecalibratedages.Uraniumseriesdating mayalsobeusedtodatedeepseaoctocorals(Thresheretal.,2004).However, uncertaintyintheextentofinitialthoriumcontamination,andlowuraniumconcentration incalcitepresentsamajorproblemwiththismethod.

Thispaperexplorestheuseofaminoacidracemizationtodatetheskeletal gorgoninfractionof P. resedaeformis .TherateofequilibrationofDandLhanded

isomers(racemization)afterdeathofanorganismdependsonageandtemperature.If

temperatureremainsconstant,whichismoreorlessexpectedforthedeepsea,the

increaseintheDisomermaybeusedtocalculateage(e.g.:Goodfriend1992).The

approachusedherewastocalibratetheracemizationrateofasparticacid(Asp)in

98 knownagesamples,thentoevaluatewhetherD/LAspwouldbeusefulindating specimensoverthelast400yearswhere14 Cdatingisproblematic.

5.3MATERIALSANDMETHODS

Livecollectedandsubfossilcoloniesof Primnoa resedaeformis wereusedinthis study.BothwerecollectedfromtheNortheastChannel,asubmarinecanyonlocatedSW ofHalifax,Canada(approx.65º40’W/42º00’N),between250475mdepth.Thelive specimen(DFO2002con5)wascollectedbytrawlinthesummerof2002(Sherwoodet al.,2005b).Thesubfossilspecimen(Fossil95;Fig1)wascollectedbyfishermenusing longlinegearin1995.Sampleswereairdriedfollowingcollection.Thebasesofcolony trunksweresectionedwitharocksaw,andthesectionsweregroundandpolishedona diamondlapwheelandphotographedwithadigitalcamerainmacromode.

RadiocarbonandAARanalyseswereperformedonthegorgoninfractionsof

Fossil95andDFO2002con5.Toisolatethegorgonin,thesectionswereplacedin0.5M

HCluntilcompletedissolutionofcalcite.Thistookupto3weeks.Gorgoninlayerswere separatedbypeelingthemapartwithtweezersandscalpelunderabinocularmicroscope.

Thepositionofeachlayerwascarefullymarkedonthedigitalphotographswhile sampling.Sampleswereplacedin5mmpolyethylenevialswith0.5MHClforan additional48hours,triplerinsedinMilliQwateranddriedfor48hoursinalow temperatureoven(~50 oC).

99 4 38

A C D

Fig.5.1: ImageofspecimenFossil95viewedincrosssection.Black barsandlettersshowsamplesisolatedfor 14 Cdating.Greybarsand lettersshowsamplesisolatedforaminoacidanalysis.Scaleonruler incm.

Samplesforradiocarbonanalysiswerecombustedinindividualquartztubesand

reducedtographiteinthepresenceofironcatalyst.Delta14 Cwasdeterminedongraphite

targetsattheCenterforAMS.Resultsincludeabackgroundand δ13 Ccorrectionandare reportedas 14 CaccordingtoStuiverandPolach(1977).

Aminoacidanalyseswereperformedbyreversephasehighperformanceliquid chromatographywithprecolumnderivatizationfollowingtheprocedureinKaufmanand

100 Manley(1998).First,samplesweredissolvedin7NHCloverthecourseof7dayswith intermittent20minuteintervalsinanultrasonicbath.Thisexpediteddissolutionbutdid notallowthesamplestoreachahighenoughtemperaturetoinduceracemization.

o Sampleswerehydrolyzedin7NHCl,sealedunderN 2andheatedto110 Cfor6hours.

o ThehydrolysateswerethendesiccatedunderaN2 atmosphereat80 Cfor~20minutes, andthenrehydratedin0.01MHClwithknownquantityofLhomoArginine(LhArg) foruseasaninternalstandard.AlthoughinitialanalysesofAspyieldedpoorpeak separation,aslowermobilephaseflowrateincreasedresolutionandthesubsequent analyseswereconsideredreliable.Analyticalerror,asdeterminedbytherangeinsample replicates,was24%.

5.4RESULTSANDDISCUSSION

5.4.1SkeletalChronology

Skeletalchronologyintheyoungercolony,DFO2002con5,wasreportedearlier

(Sherwoodetal.,2005a).Chronologywasestablishedonthebasisofgrowthringcounts performedbythreeamateurcounters,andvalidatedbythetimingofincreaseinbomb radiocarbon.Thesamplesusedhereforaminoacidmeasurementsrangedfrom1926

2002yrsAD.

Radiocarbonagesofthesubfossilspecimen,Fossil95(Fig5.1),werecalibrated withtheprogramCALIB(StuiverandReimer1993,version5)usingtheMarine04 calibration(Hughenetal.,2004).Acorrectionforlocalvariationinthemarinereservoir effect, R,wasapplied(i.e.:thedifferenceinreservoiragebetweenthelocalregionof

101

Table5 1: Calculationoflocalmarinereservoircorrectionfromknownagesamplesof P. resedaeformis .1SDerrorsinbrackets Pre Ringyear 14 14 b Ring a 1950 ∆ C Cage Modelage R Sample CAMS# no. age (‰) (yrsBP1950) (yrsBP1950) (yrs) (yrsAD) (yrs) DFO2002con5A1 37 1948(4) 2 97103 80(3) 620(30) 469 151

DFO2002con5A1 43 1942(5) 8 97104 72(3) 545(30) 460 85

DFO2002con5A1 50 1934(6) 16 97105 77(3) 595(30) 457 138

DFO2002con5A1 58 1924(6) 26 97106 72(3) 550(30) 451 99

NED2002371A 58 1947(2) 3 111330 82(4) 630(35) 464 166

Mean 128

St. dev. 35

aAveragefrom3amateurringcounters(Sherwoodetal.,2005a) bMarine04calibratedage(Hughenetal.2004)

Table5 2: Radiocarbonagesforthesubfossil P. resedaeformis specimen.1s.d.errorsinbrackets. Distance ∆14 C 14 Cage Modelage b Sample CAMS# (mm) a (‰) (yrsBP1950) (yrsBP1950)

Fossil95D238 4.5 111138 196(3) 1700(35) 1125(65)

Fossil95D24 37 111137 249(3) 2245(40) 1700(75)

aDistancefromskeletalmargin bRcorrectedMarine04calibratedage,

102 interestandthemodelocean;StuiverandBraziunas,1993).Valuesof RforNorthwest

AtlanticshelfwatersareavailablefromtheMarineReservoirCorrectionDatabase

( http://radiocarbon.pa.qub.ac.uk/marine );however,tomoreaccuratelycorrect14 Cages

fortheNortheastChannel, 14 Cmeasurementsfromknownagespecimensof Primnoa resedaeformis wereused.Thesemeasurementsspantheperiod19242002andinclude bothpreandpostnuclearbombvalues(Sherwoodetal.,2005a).Thepre1950values wereusedtocalculate R(e.g.:Surgeetal.,2003),whichaveraged128±35years

(mean±st.dev.;Table1).Thelargerangein Rreflectsthescatterinprebomb 14 C, andsuggeststheinfluenceofdifferentwatermassesovershorttimescales.TheNortheast

ChannelislocatednearasharpgradientbetweennorthwardLabradorCurrentwatersand southwardsubtropicalgyrewaters,whicharelikelytodifferinprebomb 14 C.For comparison,theMarineReservoirCorrectionDatabasereports Restimatesof94±22 years(GeorgesBank)and95±24years(southernGrandBanks).

Separateannualringsisolatedfromneartheinnerandouterskeletalregionsof

Fossil95(Fig5.1)yielded Rcorrectedmodelagesof1700±75and1125±65years

BP,respectively(Table5.2;1 σageranges).Thecorrespondingradialgrowthrate

1 1 betweensamplesis0.06±0.01mmyr .Thisvalueisveryclosetothe0.04mmyr reportedearlierinasubfossilcolonyfromGeorgesBank(Risketal.,2002).Applying thisgrowthratefromthecentertotheextremeedgeofthecolonyyieldsalifespanof690

±120years.Toourknowledge,thisisthelongestdocumentedlifespanofanydeepor shallowwateroctocoral.

103 Val D/L Glu D/L .011 0 .010 0 .014 0 .022 0 .014.015 0 0 .016 0 .015 0 d Asp .062 .025 .062 .034 .026 .027 .031 D/L d d % wt 44 52 d d AA Total 3.77 4.32 d d Arg 0.75 7.19 86 0.63 6.71 790.66 .052 7.15 84 0.31 6.05 78 0.62 6.240.80 74 8.34 98 0.63 6.71 79 .052 0.36 0.45 d d 0.10 0.08 0.09 0.36 0.10 0.840.08 8.740.10 103 .022 .011 0 0.08 0.05 0.07 d d 0.24 0.24 0.15 0.17 0.13 0.13 0.13 0.28 0.07 0.14 d d Leu Tyr Phe 0.59 0.25 0.18 0.23 0.19 0.22 0.19 0.23 0.12 0.14 d d 0.18 0.23 0.25 0.24 0.23 0.10 0.69 6.86 82 .06 .014 0 0.18 0.27 0.11 0.17 d d Met Ile 0.16 0.42 0.07 0.24 0.05 0.21 0.06 0.27 0.04 0.04 0.08 0.04 0.07 0.02 0.04 d d Val 0.48 0.37 0.33 0.43 0.29 0.29 0.36 0.38 0.42 0.17 0.26 d d 0.72 0.73 Aminoacidabundance(umol/mg) d d Gly Ala 0.33 0.57 1.36 1.71 0.91 1.17 1.26 1.58 1.02 1.30 1.02 1.30 1.06 1.36 1.00 1.20 1.03 1.22 0.56 0.61 d d Glu 0.76 0.65 0.47 0.63 0.52 0.55 0.53 0.52 0.55 0.30 0.34 d d CagesfromTable2 14 Ser 0.55 1.04 0.70 0.94 0.79 0.82 0.80 0.79 0.45 0.48 d d 0.31 0.40 0.31 0.35 0.36 0.18 0.23 Rcorrected d d Asp Thr tal.,2005a) ID AAL alculatedfrom 10859 0.8410860 0.44 1.4910861 0.41 1.07 10862 1.45 10863 1.21 10864 0.68 10865 1.25 10866 1.02 ons 10867 1.1010868 0.38 0.67 0.80 b b b b b b b c c c Age 820 760 500 1981 2002 2002 1940 1927 1967 1951 (yrsAD) a 0 Dist (mm) nin 3.9 type tissue 0 Sample gorgonin 19 gorgonin 10.4 gorgonin 12.6 gorgonin 4 gorgonin 11 gorgonin 6.1 gorgonin 9.0 :SummaryofaminoacidabundanceandD/Ldata .3 95 2 gorgonin 0.1 2000 1 C A D 10 gorgo 38 19 30 44 con5 Fossil SampleID DFO2002 Agedeterminedbycountingannualrings(Sherwoode Agedeterminedbyapplyinglineargrowthrate,asc Unreliabledata;excludedfromsubsequentcalculati Distancefromskeletalmargin Table5 a b c d

104 5.4.2AminoAcidCompositionoftheTissueandGorgonin

TheresultsofalltenaminoacidanalysesaresummarizedinTable3.Following

Goodfriend(1997),thepercentmassoftheorganicfractionaccountedforbytheamino acidswascalculatedbymultiplyingthemeanmolecularweightofeachaminoacid

(weightedbythe%compositionofeachaminoacid)bythetotalmolarconcentrationof all13quantifiedaminoacids(Table3).Valuesrangedfrom70100%ofthesample mass.Intwoanalyses(AAL#10864andAAL#10868)aminoacidconcentrationswere systematicallylower;onthisbasisthesewerejudgedunreliableandexcludedfromall subsequentcalculations.Thus,the13quantifiedaminoacidsaccountedfor,onaverage,

78%,87%and84%,respectively,ofthemassoftissue,moderngorgoninandsubfossil gorgonin.

Fig5.2comparesaminoacidprofilesinthetissueandmodernandsubfossil gorgonin.Comparedwithgorgonin,thetissuewashigherinthreonine(Thr),glutamic acid(Glu),valine(Val),methionine(Met),isoleucine(Ile),leucine(Leu),tyrosine(Tyr) andphenylalanine(Phe),andlowerinasparticacid(Asp),serine(Ser),glycine(Gly), alanine(Ala)andarginine(Arg).Thesedifferencesprobablyrelatetothedifferent proteincompositions,whichisreflectedindifferentC:Nvaluesbetweentissueand gorgonin(7vs.3,respectively;Sherwoodetal.,2005b).

Comparedwiththemoderngorgonin,thesubfossilgorgoninhadslightlylower amountsofAspandAla,andhigheramountsofVal,TyrandArg(Fig5.2).These

105 20 Moderntissue,n=1 Moderngorgonin,n=5 Fossilgorgonin,n=2 15

10

%Molarconcentration 5

0 Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe Arg Fig.5.2: Aminoacidcompositionofthetissueandgorgonin(modernandfossil) fractionsof P. resedaeformis. Errorbarsare±1s.d.

25 2000

20 1981 1967 1951 15 1927

10

%Molarcomposition 5

0 Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe Arg

Fig.5.3: Ontogenetictrendsinaminoacidcompositionofthemoderngorgonin.Each barcorrespondstoanindividualannualringisolatedfromtheskeleton,asindicated byyear.Regressionanalysisyieldednosignificantincreasesor decreasesinanyof the13aminoacidswithage.

106 differencesprobablyreflectoriginalvariabilityatthetimeofformation,sincetherewere nodifferencesintheleaststableaminoacidsThr,Ser,andMet.Asimilarresultwas foundintheorganicendoskeletonofan1800yrold Gerardia (Goodfriend,1997).

Fig5.3showsontogenetictrendsinaminoacidabundancesinthemodern

gorgonin.Therewerenosignificantincreasesordecreaseswithageofthelayer

(regressionstatisticswereinsignificantforall13aminoacids).Takentogether,the

similaritybetweenmodernandsubfossilgorgoninin:1)%massaccountedforbyamino

acids,2)aminoacidprofiles,and3)thelackofontogenetictrendsinthemodern

gorgoninargueforlittleornoorganicdiagenesisforatleastca.1500years.These

findingsareconsistentwithgorgoninbeingoneofthetoughestknownproteins

(Goldberg,1976).

Gorgoninisthoughttobecomposedofafibrillarproteinsupportedina proteinaceousmatrix(Lewisetal.,1992).Thefibrillarproteinwascharacterizedearlier

asaromaticallycrosslinkedcollagen(Goldberg,1974,1976;SzmantFroelich,1974).

Morerecently,gorgoninhasbeencharacterizedasapolyphenolcontainingfibrillar protein(H.Ehrlich.,privatecommunication).Independentevidenceforafibrillarprotein

in P. resedaeformis isprovidedherebyscanningelectronmicroscopy(Fig5.4).The voidsleftbydecalcificationinaceticacidrevealthefibrillarnatureoftheremaining organicmaterial.Theindividualfibresmeasureapprox.200nmindiameter,similarto theproteinaceousfibresobservedinshallowwatergorgonians(Lewisetal.,1992).

Althoughtheexactnatureofthegorgoninin P. resedaeformis willhavetoawaitmore

107 Fig.5.4: SEM imageofaceticacidetched P. resedaeformis viewedincrosssection. The4repeatingdiagonalbandsaresubannualbands(Risketal.2002;Sherwood 2002).Fibrillar proteinmaterialisorientedbothparallelandperpendicularto the planeofview.

detailedstudy,thepresenceoffibrillarproteinhasasignificantimplicationforD/L dating,asdiscussedbelow.

5.4.3D/LRatios

D/LratioweremeasuredforAsp,GluandVal(Table3;Fig5.5).ForAsp,there wasnodifferenceinD/Lbetweenmoderntissueandgorgonin.Therewasasignificant differencebetweenmodernandsubfossilgorgonin,asexpectedfromtherapid racemizationratesofAsp(Goodfriend,1992).ForGlu,D/Lwashigherinsubfossil

108 gorgoninthaninmoderngorgonin;butthedifferencewasnotsignificant,consistentwith slowerracemizationofGlu.TissueD/LGluwasnearlytwicethatofgorgonin.The reasonforthisisnotclear.DValcouldnotberesolvedinanyofthesamples.

Fig5.6ashowsD/LAspvs.ageforthegorgoninfractionof Primnoa resedaeformis .Thirtypercentofthetotalincreaseoccurredoverthemostrecent75years, whiletheremaining60%occurredovertheremaining1400years.Thisconvexupward patternisconsistentwithAspracemizationkineticsinotherorganisms(e.g.:Mittererand

Kriausakul,1989;Goodfriend,1991).Asparagine(Asn)isconvertedtoAspduringthe

hydrolysisstepofsamplepreparation(BrintonandBada,1995),sothemeasuredincrease

inDAspactuallyrepresentsthecombinedresponsesofAsp+Asn(Goodfriend,1991).

Bothaminoacidsarethoughttoracemizeviadeaminationtoanaminosuccinylresidue

(Asu;GeigerandClarke,1987).RacemizationintheAsuresidueissome5timeshigher

thaninfreeAsp(Radkiewiczetal.,1996).Collinsetal.(1999)attributethenonlinear

racemizationkineticstothegreatertendencyforAsn,ascomparedwithAsp,toformAsu

residues.Therefore,theearlierphaseofrapidracemizationin P. resedaeformis (Fig5.6a)

islikelydominatedbyAsn,whilethelaterphaseisdominatedbyAsp.

Thedatafor Gerardia collectedat~600monLittleBahamaBankarealsoshown

inFig5.6a.ValuesofD/LAspforthisspecimenarefromGoodfriend(1997)and

correspondingradiocarbonagesarefromDruffeletal.(1995).Tomaintainconsistency

109 0.07 Moderntissue,n=1 0.06 Moderngorgonin,n=5 0.05 Fossilgorgonin,n=3

0.04

D/L 0.03

0.02

0.01

0.00 Asp Glu

Fig.5.5: D/Lcompositionofthetissueandgorgonin(modernandfossil)fractionsof P. resedaeformis. Errorbarsare±1s.d.

inradiocarbondating,the14 CagesoriginallyreportedinDruffeletal.(1995)were

correctedwiththeMarine04calibrationanda Rvalueof36±14(FloridaandBahamas

regionalaveragefromtheMarineReservoirCorrectionDatabase).TheD/Lvaluesare

similarbetween P. resedaeformis and Gerardia ,althoughwecautionthatGoodfriend

(1997)usedadifferentsamplepreparationprocedureinobtaininghisD/Ldata,andthe organicendoskeletonin Gerardia isnotmineralized.ThelowerslopeforGerardia (Fig

5.6a)probablyreflectsthelackofdataoverthemostrecentcenturies,whereAsp

racemizationisgenerallyfastest.

Tolinearizeracemizationratesoverthetimeperiodofinterest,wetesteda

varietyoftransformationfunctionsofD/L(i.e.:ln[(1+D/L)/(1D/L)];D/Lraisedtoan

exponent>1)andtime(squarerootoftime).Inallcases,coefficientsofdetermination

(r 2)rangedfrom0.91to0.97( P. resedaeformis )and0.64to0.86( Gerardia ).InFig5.6b,

110 A 0.12 Primnoa Gerardia 0.10 y=2E05x+0.045 r2=0.81

0.08

0.06 D/LAsp

0.04

0.02 y=3E05x+0.027 r2=0.95

0.00 0 500 1000 1500 2000 Age(yrsBPAD2000) B 0.12 Primnoa Gerardia 0.10

y=0.0013(+/0.0002)x+0.0260(+/.0088) r2=0.79 0.08

0.06 D/LAsp

0.04

0.02 y=0.0011(+/.0001)x+0.0219(+/.0017) r2=0.97

0.00 0 10 20 30 40 50 SquarerootofAge(yrsBPAD2000)

Fig.5.6: D/LAspvs.calendarage(A)andsquarerootofcalendarage(B)for P. resedaeformis and Gerardia . Gerardia 14C agesoriginallyreportedinDruffel etal.(1995)havebeencalibratedandcorrectedformarinereservoireffect(seetext). Errorbarsare±1s.d.

111 theresultsforD/Lvs.thesquarerootofageareshownbecauser 2valuesarereasonably goodbothfor P. resedaeformis (0.97)and Gerardia (0.79)anditiseasiertovisualizethe spreadofvaluesalongtheregressionacrosstheentiretimeperiod.WhileD/LAspvalues are~0.007higherinGerardia ,theslopesandinterceptsofthetworegressionsarewithin

1standarderrorofeachother.Onthisbasis,weassumethatthefitfor P. resedaeformis reliablyestimatesD/Lvaluesbetweenthetwoextremesinagerepresentedbythepresent data.Thisisanempiricalcalibrationandthereisnoapriorireasontochooseone linearizationoveranother.Recently,Collinsetal.(1999)andCollinsandRiley(2000) havechallengedthepracticeoftreatingthenetracemizationasa“blackbox”,infavorof amodelingapproachthataccountsfortheunderlyingkineticsofhydrolysis,racemization anddecompositionseparately.Thepurposeofthepresentstudy,however,wassimplyto testwhetherD/LAspcouldbeusedtoresolveagesinthetimeperiodca.100400yrs

BP.

Goodfriend(1997)usedheatingexperimentstoderiveArrheniusparametersfor

AspracemizationinGerardia .Fromhisresults,thecalculatedageofthecolonywasonly

250±70yrs,inconflictwiththe1800yrsdeterminedby 14 C(Druffeletal.,1995).

Goodfriend(1997)offered4explanationsfortheconflictingageestimates:1)Possible

incorporationofolder, 14 CdepletedcarbonsourcesintheGerardia skeleton.2)Non linearityintheArrheniusrelationship,suchthattherateatambienttemperaturecannotbe reliablyextrapolatedfromratescalculatedathighexperimentaltemperatures.3)

Variationinratesamongthedifferentlayersofskeleton.4)Changeinambient temperatureduringthelifetimeoftheorganism.Goodfriend(1997)discussedeachof

112 thesepossibilitiesatlengthandlargelydiscountedtheimportanceofthelattertwo explanations.

Measurementsofbombradiocarbonintherecentlayersof Gerardia (Druffelet al.,1995)aswellasinseveralotherspeciesofdeepseagorgonian(GriffinandDruffel

1989;Roarketal.,2005;Sherwoodetal.,2005a)suggestthattheproximatesourceof carbontotheorganicendoskeletonisrecentlyexportedparticulateorganicmatter(POM).

Sincebombradiocarbonwasmeasuredintheolder(i.e.:mature)layersof Gerardia ,as wellasinyoungerlayers(<50yrs)ofmodernspecimensofothergorgonians(Sherwood etal.,2005a),thereisnoevidencethattheorganicendoskeletonincorporatesa 14 C

depletedcarbonsource,suchasDIC,dissolvedorganiccarbonorsuspendedPOMfound

atdepth,atanypointintheorganism’slifetime.Thisisalsosupportedbythesimilarity

of δ13 Cand δ15 Ninthesamemodernandsubfossilspecimensof P. resedaeformis presentedhere(Sherwoodetal.,2005b).Ontheotherhand,theultimatesourceofcarbon

couldpotentiallybeupwelledDICorDOCwithadepleted 14 Csignature,uponwhich

POMmaygrow.Theradiocarbonagesmeasuredin Gerardia increasedlinearlywith

distancefromtheedgeoftheskeleton(Druffeletal.1995).Toexplaintheapparent1800

yrlifespanintermsoffeedingon 14 CdepletedPOMwouldrequireasmoothdecreasein

upwellingintensityovertime,ascenariowefindhighlyunlikely.Therefore,wesuggest

thatGoodfriend’s(1997)explanation1,above,cansafelybediscounted.

Collinsetal.(1999)calledintoquestionthepracticeofestimatingracemization

ratesincollagenbyextrapolatingfromhighexperimentaltemperatures.Thisisbecause

113 denaturationtemperatures(approx.70 oC)occurbetweenambientandexperimental

temperatures(Collinsetal.,1999).Belowthedenaturationtemperature,thetriplehelical

structureofcollagenimposesasevereconformationalconstraintonthedeaminationof

Asp+AsntoformAsu,andthereforeontheracemizationofAspandAsn.Thereislittle

ornoracemizationwithinthehelicalstructureofcollagenitself,exceptatthefrayedends

ofthehelix(Collinsetal.,1999).Althoughtheorganicendoskeletonof Gerardia hasnot beencharacterizedbymodernsequencingtechniques,itislikelytobeafibrillarprotein

ofsomesort,andsubjecttosimilarconformationalconstraintsonracemization.The

heatingexperimentson Gerardia (Goodfriend,1997)likelyoverestimateracemization

rates,resultinginyoungerapparentage(Collinsetal.,1999).Thus,the1800yearage

estimatefrom 14 Cisprobablycorrect.Similarto Gerardia andbonecollagen,thefibrillar proteinin P. resedaeformis mayimposeaconformationalconstraintuponAsp+Asn deamination.Theobservedracemizationprobablyreflectsracemizationatthedegraded endsofproteinfibrils,and/orwithintheassociatednonfibrillarproteinmatrix.

Racemizationrateisdependentontemperatureaswellastime.Thepresent experimentwasnotdesignedtoevaluatetemperatureeffects,andiftheassumptionthat gorgoninbehaveslikecollageniscorrect,thenextrapolatingracemizationratesfrom

Arrheniusparametersdeterminedathighexperimentaltemperaturesmaybeproblematic.

However,ifweassumethatracemizationkineticsaresimilarin P. resedaeformis and

Gerardia ,thenapreliminaryevaluationmaybemadebycomparingthetwoD/LAspvs.

squarerootofagerelationships(Fig5.6b).Nousefulinformationisprovidedbythe

intercepts,orbythefactthat Gerardia D/Lvaluesaverage0.007higher,becausea

114 certainamountofracemizationisinducedduringhydrolysisinthelaboratory,andinthis case,preparationmethodsdiffered.Ontheotherhand,theslopesshouldnotbeaffected bylaboratoryprocedure.For P. resedaeformis , ambienttemperaturewas7 oC(250500m average,areaSS29fromtheOceanographicDatabase,BedfordInstituteof

Oceanography;http://www.mar.dfompo.gc.ca/science/ocean.database).For Gerardia ,

theambienttemperaturewas12.5 oC(GriffinandDruffel,1989).Sincetheslopeswere within1standarderrorofeachother,differencesinracemizationrateoveratemperature of6.5 oCcouldnotbedetermined.However,sinceracemizationrateistaxonspecific,itis possiblethatataxoneffectcompensatesfor,andmasks,atemperatureeffect.

Takingadifferentapproach,thestandarderroroftheregressionfor P.

resedaeformis (Fig5.6b)was0.0032,orabouttwicetheanalyticalerrorinD/LAsp

measurements.Muchofthisvariabilitymaybeduetoannualdecadaltemperature

fluctuations,whichcanexceed±2 oCintheNortheastChannelbetween250500m.Itis probablethatLittleIceAgetemperaturesatthisdepthwerepersistentlycoolerbecauseof southwardpenetrationoftheLabradorCurrent;thisphenomenoncharacterizedthe1960s

(MERCINA2001),whenNEChannelbottomtemperatureswereabout2.5 oCcoolerthan the19502000average.Intheanalysisbelow,weassumethattheerrorsintheregression coefficients(Fig5.6b)reflecttemperatureeffects,andthatthesetemperatureeffectsare accountedforbytheoverallsimulateddatingerror.

115 5.4.4ProspectsforD/LAspDatingof P. resedaeformis

ThepurposeofthisstudywastoevaluatewhetherD/LAspcouldbeusedtodate recent(<400yrs)coloniesof P. resedaeformis .FromFig5.6b,therelationshipbetween

D/LAspandtimeis:

Age(yrsBP2000AD)=[(D/L–0.020(±.002))/.0011(±.0001)] 2

(r 2=0.97,p<0.001) (1)

wheretheerrorsinbracketsare1 σx.Usingaspreadsheet,theerrorinanagecalculation wasestimatedwithaMonteCarlosimulationover1000iterations(e.g.:Kaufman,2003).

Valuesoftheslopeandinterceptinequation1wereappliedtospecificvaluesofD/L.

Eachiterationusedvaluesdrawnatrandomfromnormalprobabilitydistributionsdefined bythemeananderrorineachvariable.The1σxerrorwasusedforslopeandintercept.

SinceD/Lanalyseswerenotperformedoncoevalsamples,the2 σanalyticalerror(±8

%)waschosentoreflectintersamplevariabilityinD/L.The1 σerrorinaD/Lage estimatewascalculatedforarangeofdifferentages(Fig5.7).Forexample,theerrorfor a100yearoldsampleis±60years.Forcomparison,Fig5.7alsoshowslocalmodel 14 C

datingerrors,usinga Rvalueof128±35years,overthesametimeperiod.Theerror

associatedwithaD/Lageismarginallybetterthanthatof 14 Coverthelast100200

years,orwheremodel 14 Cagesareinvalid(5095yearsBPAD2000).Priorto200yrs

BP, 14 Cdatingprovidesmoreprecisemodelages,whileoverthemostrecent50years, bomb14 Cmaybeusedtoconstrainagewithahighlevelofprecision(Sherwoodetal.,

116 200 D/LAsp 175 modelage

150

125

100 RcorrectedMarine04 14 ageerror(yrs) 75 Cmodelage 1

50

25

0 0 100 200 300 400 500 600 700 800 900 1000 Modelage(yrsBPAD2000) Fig.5.7: Comparisonof1s.d.datingerrorsassociatedwithD/LAspand 14 Cdating methods.D/LAsperrorscalculatedwithMonteCarlosimulationappliedtoequation 1(seetext).Marinemodel 14 CageerrorscalculatedwithCalib 5.0,usinga 14 C ageerror±35yearsanda Rcorrectionof128±35years.Model 14 Cages<95 yearsBP2000ADareinvalid.

2005a).Thiscomparisonislimitedbythefactthatformodel 14 Cages, Risassumedto beconstantovertime.Ontheotherhand,someoftheerrorassociatedwiththeD/Lage modelitselfdependson 14 Cerror,aswellasanalyticalerrorandtheeffectofvariable temperature.

Fromthesepreliminaryresults,theprospectsfordatingdeepseacoralbyD/L

Aspracemizationoverthelast400yrsdonotlookpromising.However,analysesofmore samplesspanningagreaterrangeofagesmaybetterconstraintheageequation,and

117 therebyimproveupondatingerror.RatesofD/Lracemizationmayalsobefurther constrainedbyanalyzingthefibrillarproteinorproteinmatrixcomponentsofgorgonin separately.D/LAspdatingof P. resedaeformis maybeusefulinscreeningsamplesfor further 14 CorU/Thdating,sinceD/Ldeterminationsarerelativelyinexpensiveandcan beperformedonminutequantitiesofsamplematerial.AnotherapproachtousingD/L

Aspdatingiswherea 14 Ccalibrationyields2ormoreintercepts.TheD/LAspdata

mightclearlydiscernwhichoftheinterceptsismorelikely.

5.5CONCLUSIONS

1.Radiocarbondatingofalargesubfossilspecimenof Primnoa resedaeformis indicates

alifespanof700±100years,thelongestdocumentedlifespanofanydeeporshallow

wateroctocoral.

2.Therewerenoontologicalorlongtermtrendsinaminoacidabundancesofgorgonin

overthelast1500years.Thisindicatesthatthegorgoninmaybeadurable,longterm

archiveofpaleoenvironmentalinformation.

3.TheincreaseinD/LAspwithtimeisnonlinear,asexpectedfrompreviousstudieson

otherorganisms.Similartobonecollagen,thefibrillarproteinofgorgoninmayimpose

conformationalconstraintsontheracemizationofAspatlowtemperatures.

118 4.Comparedwith 14 Cdating,D/LAspdatingof P. resedaeformis mayoffermarginally betterageconstraintoverthelast50200years,butmoreanalysesarerequiredtorefine

theD/LAspvs.timerelationship.

ACKNOWLEDGEMENTS

WegratefullyacknowledgeSanfordAtwood,DerekJonesandRonnieWolkinsfor providingthepricelesschunkoffossilcoral,andPalMortensen,LenaBuhlMortensen

andDonGordonforprovidingthemodernspecimen.Aminoacidanalyseswere performedbyStevedeVogelatINSTAAR.Radiocarbonanalyseswereperformedby

TomGuilderson,undertheauspicesoftheU.S.DepartmentofEnergybytheUniversity

ofCalifornia'sLawrenceLivermoreNationalLaboratory(W7405Eng48).WethankH.

Ehrlich,S.deVogel,D.Kaufmanand2anonymousreviewersfortheirvaluable

commentsonthemanuscript.ThisprojectwasfundedbyaGSAstudentgrantand

NSERCpostgraduatescholarshiptoOAS,andbyanNSERCStrategicGranttoMJRand

DBS.

119 CHAPTER6

CARBON14RECORDSFROMTHECALCITEPHASEOF

DEEPSEAOCTOCORALS

OwenA.Sherwood 1,BassamGhaleb 2,DavidB.Scott 1,MichaelJ.Risk 3

1 CentreforEnvironmentalandMarineGeology,DalhousieUniversity,Halifax,Canada

2GEOTOPUQAMMcGill,Montreal,Canada

3SchoolofGeographyandGeology,McMasterUniversity,Hamilton,Canada

(notyetsubmittedforpublication)

120 6.1ABSTRACT

Primnoa resedaeformis isanextraordinarilylonglived,deepseaoctocoral.A

massivecalcite“crust”,formedfromdissolvedinorganiccarbonatdepth,comprisesthe bulkoftheskeletonsofoldercolonies.Geochemicalmeasurementsfromthecalcitemay

thereforeprovidelongterm(centuries)recordsofambientenvironmentalconditions.

ThispaperexploresPb/Caand 14 Cinspecimenscollectedfrombetween200400min theNWAtlanticslopewaters,southwestofHalifax.Growthringsinthecalcitecrust couldnotbevisualized,thereforespecialattentionwasgiventotheestablishmentof skeletalchronologywithbomb14Cand 210 Pbdatingmethods.ProfilesofcalcitePb/Ca

weremeasuredin3independentlydatedcolonies.Accuratereconstructionofthe

anthropogenicPbpulseinthe20 th centuryestablishesthispropertyasauseful environmentalproxyin P. resedaeformis .Aprofileofcalcite 14 Cprovidesnew evidenceforthevariabilityofthe 14 Creservoirageofupperintermediatewaters.

Methodspresentedhereincanbeextendedtootherregionsandwithotheroctocoral

speciestoobtainestimatesofthe 14 Creservoiragewhichwouldotherwisebe unavailable.

121 6.2INTRODUCTION

Deepsea,orcoldwatercoralsareattractingincreasingattentionasnewsources ofproxyenvironmentalinformationincoldwaterenvironments.Moststudieshave focusedonscleractinianspecies,e.g. Desmophyllum cristagalli and Lophelia pertusa , becauseoftheirwidespreaddistributionandgreatlongevity(Smithetal.,1997;Franket al.,2004;Robinsonetal.,2005).Usefulproxyinformationisalsorecordedinthelong livedskeletonsofdeepdwelling‘soft’corals;inparticular,thegorgonianoctocorals

(Thresheretal.,2004,Roarketal.,2005,Sherwoodetal.,2005a;2005b)and antipatharians(Williamsetal.,2005).Someoftheseorganismsformconcentricannual andsubannualgrowthringsintheiraxialskeletons(Risketal.,2002;Marschaletal.,

2004;Sherwoodetal.,2005a)thatallowforclimatereconstructionswithunprecedented temporalresolutionforcoldwaterenvironments.

Gorgonianoctocoralsareparticularlyinterestingaspotentialclimatearchives becausetheyform2partcalciteproteinskeletons.Thecalciteisformedfromambient dissolvedinorganiccarbonatdepth(DIC)andthegorgoninisderivedfromrecently exportedparticulateorganiccarbon(POC;GriffinandDruffel,1989;Roarketal.,2005;

Sherwoodetal.,2005a;2005b).Thisimpliesthatrecordsofbothdeepandsurfacewater processescouldbereconstructedfromthesameskeletons,inmuchthesamewaythat benthicplankticforaminiferaaresampledfromthesamecoreintervalstoreconstruct bothdeepandsurfacewaterpaleoceanography(Broeckeretal.,1990).Ourearlierwork

(Sherwoodetal.,2005a;2005b)hasfocusedon Primnoa resedaeformis becauseitisone ofthedominantcoralsintheNorthwestAtlanticslopewaters,andisextremelylonglived

122 (atleast700years;Sherwoodetal.,2006).Theaxialskeletonof P. resedaeformis containsaninner,hornyregion,andanoutermassivecalciteregion.Thehornyregionis comprisedofannuallysecretedgrowthrings.Afterabout50100yearsofgrowth,a massivecalcitecrustorcortexenvelopstheskeleton.Ascoloniescontinuetogrowforat least700years,thecalcitecrustcomprisesthebulktheskeletalmassandthusthebulkof theclimaterecord.Unfortunately,growthringsinthecalciteregionaremorediffuseand difficulttocount,atleastinspecimensfromtheNWAtlantic,andindependentdating techniquesareaprerequisiteforestablishingskeletalchronology.

Studiesonpotentialenvironmentalrecordscontainedwithinthecalcitephaseof gorgoniansareintheirinfancy.SeveralauthorsreportarelationshipbetweenMg/Caand temperature(Weinbaueretal.,2000;Thresheretal.,2004,Bondetal.,2005;Sherwood etal.,2005c);othersreportinconsistentMg/Caprofilesacrossdifferenttracksofthe samecoral,thereforemaskinganytemperaturedependency(Fallonetal.,2005;Allardet al.,2005).Becausedeepoceantemperaturevariationsaresubtle,temperatureproxies maynotbesuitablefortestingthefidelityofoctocoralsasenvironmentalrecorders.In thispaper,wereporton2verydifferentgeochemicalproperties,Pband 14 C,which experiencedlargeanthropogenicperturbationsoverthelastcentury.Asgrowthringsin thecalciteregioncannotberelieduponaschronometers,wepaycarefulattentionto skeletalchronologyusingsamplestratigraphy,bomb14 C,and 210 Pbdating.

ChronologicalaccuracyisverifiedbythereconstructionoftheanthropogenicPbpulse.

Finally,weshowthataprofileofcalcite 14 Cdocumentslargevariabilityinthe 14 C reservoirageofupperintermediatewaters.

123 6.3MATERIALSANDMETHODS

Twolargestumpsof P. resedaeformis (ColoniesCOHPS20011and

COHPS20012)werecollectedbyfishermenin2001.Thesampleswerecollectedfrom

200to400mindepth(exactdepthunknown),fromthemouthoftheNortheastChannel

(approx.42 o00N/65 o50W;Fig.6.1).Bothstumpsweredeaduponcollection,butbased ontheirrelativelygoodconditionandlackofextensiveencrustation,weoriginally estimatedthatthesediedwithinafewyearsofcollection.Additionallivecolonieswere collectedbytheremotelyoperatedsubmersibleROPOSinAugust2001,fromdepthsof

275to475m.

Geochemicalanalyseswerecarriedoutonsectionscutfromtheaxialskeletons

(Fig.6.2).For 210 Pband 226 Raanalyses,asamplewascutfromthesideofasectionusing

alowspeedsaw(Isomet),andthiswasfurthercutinto68subsamples,eachweighing

about1g.Thesubsampleswerecrushedinanagatemortar,andthepowderwas

oxidizedinperoxideheldatpH8byadditionofammoniumhydroxide,thenwashedwith

deionizedwateranddriedat60°C.Measurementof210 Pbwasdonebyalpha spectrometryofitsdaughterproduct, 210 Po(Flynn,1968),while 226 Rawasmeasuredby thermalionizationmassspectrometrywithisotopedilution(Andrewsetal.,1999).Full analyticaldetailsareprovidedinPonsBranchuetal.,2005.Precisionwasbetterthan

0.5%ontheisotopicratios.

124 50oN

NE Channel Grand o 45 N Banks Scotian Shelf Gulf of Maine Georges Bank 40oN

35oN OceanDataView 75oW 70oW 65oW 60oW 55oW 50oW

Fig.6.1: MapoftheNWAtlanticstudyarea.Bathymetriccontoursare100m,250m, 2000m,and4000m.GreyarrowsrepresentGulfStreamandassociatedwarmcorerings. Blackarrowsrepresentouter(thickerlines)andinner(thinnerlines)axesofthe LabradorCurrent.CoralswerecollectedfromtheNortheastChannel.

Samplesofbothgorgoninandmassivecalcitewereanalysedfor 14 C.Isolationof gorgoninsamplesfollowedproceduresdescribedearlier(Sherwoodetal.,2005a).

Briefly,layersofgorgoninwereisolatedbydissolvingthesectionsin5%HClforupto3 weeks,andpeelingaparttheresidualgorgoninlayers.Tosamplethecalcite,a computerizedmicromill(Merchantek)wasused.Discretesamplesofcalcitepowderwere milledalongaradialtransectofasectionofColonyCOHPS20011.Individualsamples

125 Fig.6.2: SectionoftheaxialskeletonofColonyCOHPS20011.Darkerregiontoward centreofsectionisthe“hornyaxis”,composedofannualringsofcalciteandgorgonin; lighterregiontowardsoutsideisthecalcitecortex,containing nogorgonin.“D1” and “D2” pointtodeath/regrowthsurfaces.Rectanglesindicatesamplesisolatedfor 210 Pb dating.Longerarrowsontherightpointtolocationsofgorgoninsamplesisolatedfor 14 Cdating;CAMSidentifierandcalibrated2sminmaxages(inbrackets)areshown.

measured4mmlong,0.35mmwide,and0.4mmdeep,yieldingabout1gofpowder.

Delta14 CwasdeterminedongraphitetargetsattheCenterforAMS.Inaninitialrun,the

1gofpowderwasinsufficient,andinsubsequentruns,theadjacentsampleswere

“doubledup”.Resultsincludeabackgroundand δ13 Ccorrectionandarereportedas 14 C accordingtoStuiverandPolach(1977).

126 AsgorgoninisderivedfromsinkingPOM,radiocarbonagesmaybecalibratedto thesurfacewater 14 Chistory.WeusedtheCALIBprogram(StuiverandReimer,1993, version5.0)andtheMarine04dataset(Hughenetal.,2004).Ageswerecorrectedfor localvariationinthemarinereservoireffectbasedonpreviousmeasurementsofthe gorgoninof P. resedaeformis fromtheNortheastChannel( R=128±35yr;Sherwood etal.,2006).Useofthisvalueassumesthatlocalwatermasseffectson 14 Cofdissolved inorganiccarbonhaveremainedconstantovertime.Becausethesamplesarerelatively young(<400yrs),aplateauintheradiocarboncalibrationledtomultiplecalibratedages.

Here,calibratedagesarereportedastheprobabilityweightedmeanofthe2 σages,and errorsarereportedasthe2 σminimummaximumranges.

TraceelementalanalysiswasperformedbyLaserAblationICPMS.Sections

werecleanedbyimmersioninhot(90 oC)lithiumhypochloriteforoneweekwithperiodic ultrasonicagitation,thenrinsedin0.1%(v/v)HNO 3,followedbytriple,20minute ultrasonicbathsinmilliQwater.Thisprocedurewasdesignedtoremoveorganicand detritalphases;however,thezoneofcleaningpenetratedtoadepthofonly1mmfrom thesurfaceofthesections.Thecleanedsectionswereembeddedinepoxyandgroundand polishedonadiamondlap.PolishedsectionswereultrasonicallycleanedinMilliQwater

onceagain,andwipedwithacetonepriortoanalysis.LAICPMSanalyseswere performedalongradialtraversesoftheoutercalcitecortexregionofeachsection.

AnalyticalparametersarelistedinTable6.1.Isotopeabundancesof8differentelements

wereblanksubtracted, 43 CanormalizedandstandardizedtoNIST612glass.Analytical

reproducibilitywasdeterminedbyrepeating3or4pointanalysesatthebeginning,

127 Table 6. 1: Analyticalparametersused duringLAICPMSanalysis

Laser conditions Type NdYAG Pulserate 2Hz Power 0.8mJ Spotdiameter 75 m Spotincrement 100150 m ICP-MS conditions Type Magneticsector Mode Lowresolution,peakjumping Acquisitiondelay 30sec. Replicates 20 Scantime 15sec.

Table6.2 :Radiocarbondataandagecalibrations Section 14 C(±1 σ) 14 Cage(±1 σ) Calibratedage ColonyName CAMS# σσ σσ ID (‰) (yrsBP) (yrsAD) COHPS20011 A12 111130 74(3.5) 565(35) Invalid a,b COHPS20011 A15 111131 80(3.5) 620(35) 17101950 a,c COHPS20011 A116 111132 87(3.5) 680(35) 16701900a COHPS20011 E21 111133 37(4) >Modern 19792001 d COHPS20011 YB26 120203 52(5) >Modern 19681991 d COHPS20011 YB27 120204 27(4) 165(35) 19621964d COHPS20012 D243 111134 82.9(3.5) 640(35) 17001910a

aAgesbasedonMarine04calibrationusing R=128±35yrs.2σminmaxagesarereported. bCalibratedageisyoungerthan1950. cCalibratedageissuspectduetoimpingementontheendofthecalibrationdataset dAgesbasedonintersectionwithbomb14 Ccurve;seeFig.6.3.Minmaxinterceptagesarereported

128 middleandendofeachtraverse,andcalculatedbytheaveragedifferenceinreplicate measurements.WereporthereonlythePb/Caresults,asthiswastheonlyelementwhere themeasuredvariability(>100%)waslargerelativetoanalyticalreproducibility(~10

%).

6.4RESULTS

6.4.1Growthhiatuses

Conspicuousdarkbands,describedpreviouslyinSherwood(2002),werepresent

inthecalcitecortexregionofbothcolonies(Fig.6.2).Thebandscontainedfinegrained

siliciclasticmaterial,fungalboringsandspongespicules.Thesebandsrepresentahiatus

ingrowth,wherethelivingtissuediedandtheskeletonwasexposedtobioerosion.In

eachofthedeadstumpsweidentified2conspicuousbands,ayoungerone(D1)nearthe

outsideofthecolony,andanolderone(D2)closertothecentre.Thesewereusedas

stratigraphichorizons,forcorrelatinggeochemicalprofilesbetweendifferentsectionsof

thesamecolony.

Below,weshowthatD1andD2wereformedcontemporaneouslyinthe2

independentlydatedstumps.Wedidnotobservegrowthhiatusesinyoungercolonies

comprisingmostlyhornymaterial.Together,theseobservationssuggestthatacommon

environmentaltriggerleadstodeathofthebasaltissues,butnotoftheupperbranches.

129 6.4.2 14 Cdating

Toconstrainabsolutechronology, 14 Cdatingwasperformedon6gorgonin

samplesisolatedfromColonyCOHPS20011andonesampleisolatedfromColony

COHPS20012(Fig.6.2andTable6.2).Forthepremodernsamples,theerrorsin

calibratedageswereverylarge(>100yrs)becauseofaplateauintheradiocarbon

calibrationoverthelastfewhundredyears.Theoldestagesforeachcolonywere1670

1900(COHPS20011A116)and17001951(COHPS20012D243).ForColony

COHPS20011,thedecreaseinagefrominsidetooutsideofthecolonieswasconsistent

withsamplestratigraphy,andindicatedanageofpossiblyupto300years.

ThreeoftheyoungestsamplesfromCOHPS20011wereisolatedfrom1)just beforeD1,2)justafterD1,and3)neartheoutermarginoftheskeleton(Fig.6.3and

Table6.2).All3sampleshad 14 Cvaluescloseto,orgreaterthan0‰,indicatingthe

influenceofbomb14 C.Therefore,agescouldbeestimatedbyreferencingalocalsurface waterbomb14 Ccurvebaseduponpreviousmeasurementsofthegorgoninof P. resedaeformis fromtheNortheastChannel(Sherwoodetal.,2005a)andaclamshell

fromGeorgesBank(WeidmanandJones,1993).Ageswereestimatedgraphicallyfrom

theintersectionofsample 14 C(mean±2 σ)intervalsonthe95%predictionbands

aroundthereference 14 Ccurve.Ageestimatesfortheperiod19581970werethemost precisebecause 14 Cwaschangingrapidlyduringthisinterval.Thesamplefromjust beforeD1(YB27)wasdatedto19621964.Theothertwosamples(YB26,E21)had

maximumagesof1964and1977,respectively;minimumagescouldvnotbedetermined becausethe 14 Cintervalsdidnotintersectthereferencecurveattheupperlimit.

130 Fig.6.3: Calibrationofbomb14 CdatafromayoungerbranchofColonyCOHPS20011. InsetphotographshowslocationsofsamplesrelativetoD1.Referencecurve() definedbydatafrom(? )independentlydatedclamshell( A. islandica ;Weidmanand Jones,1993)and(? ) Primnoa colonies(Sherwoodetal.2005a).Errorbars,where available,are1 σ.Thickblacklinesenclosethe95%predictionintervalsaroundthe referencecurve.Agesestimatedbytheintersectionof 14 C(± 2σ)datawiththe referencecurve(coloured polygons).

SincetheoldestofthesethreesampleswaslocatedjustbeforeD1onthesectionof

skeletonfromwhichitwasisolated,D1musthaveformedaround1965 ±5.

6.4.3210 Pbdating:

Activitiesof 210 Pbrangedfrombelowdetectionlimitstoahighof2dpm/g,and showedtheexpecteddecayfromtheoutermargintowardsthecenterofaxialsections

131 (Table6.3).Activitiesof226 Rawerefairlyuniform,withamean(±1se)of0.104±0.002

dpm/g.Inallbutthecentermostsubsamples 210 Pb: 226 Raactivityratioswere>1,

210 210 indicatingunsupportedorexcess Pb( Pb ex )waspresent.Inthecentermostsub

samples 210 Pbhaddecayedtosecularequilibriumwith 226 Ra,indicatinganageof>110

years,consistentwiththe 14 Cdating.

FollowingAndrewsetal.(2002)thedatawerelinearizedbyplottednaturallog

210 transformedvaluesof Pb ex againstdistance(Fig.6.4)andgrowthrateswerecalculated

from:

r= λ/m (1)

whererisgrowthrate,mistheslopeofthelinearregression,and λisthe 210 Pbdecay

1 210 constant(0.03067yr ).Theeffectofgrowthhiatusesonthe Pb ex decayprofilesis

evident:inbothcoloniesthemostrecentvalueappears“compressed”alongthe

horizontalaxis(Fig.6.4).Growthratescalculatedfromalinearfitonallthevalues,

therefore,wouldlikelyunderestimatethetruegrowthrate.Toaddressthisproblem,

growthrateswerecalculatedusing(1)alldatapointsand(2)onlythedatabetweenD1

andD2(Table6.4).Thecalculatedgrowthrates(0.0740.180mmyr 1)werewithin

rangeofpreviousstudiesondeepseagorgonians(Andrewsetal.,2002;Risketal.,2002;

Thresheretal.,2004).Inthefirstcase,thetimeintervalbetweenD1andD2is~120yrs

inbothcolonies.ThissuggestsanageforD2of≥155years(sincetheageofD1≥35

132 210 Table6.4: Pb ex calculatedgrowthratesandtimeintervalsbetweenD1andD2 (1 σerrorsinbrackets)forCase1(alldata)andCase2(onlythedatabetweenD1 andD2used)scenarios.

Case 1 Case 2 Dist.D1D2 GrowthRate Time GrowthRate Time Colony (mm) (mmyr 1) (yrs) (mmyr 1) (yrs) COHPS20011 8.5 0.074(0.010) 114(15) 0.122(0.021) 70(12) COHPS20012 10.8 0.088(0.018) 122(24) 0.180(0.011) 60(4)

Table 6. 3: Resultsof 210 Pband 226 Raanalyses (indpmg 1;1 σerrorinbrackets;b.d;belowdetection) Distance 210 Pb 226 Ra 210 Pb (mm) ex Colony COHPS2001-1, section K 0–1.6 0.772(0.044) 0.108(0.012) a 0.664(0.044) a 1.9–3.5 0.234(0.016) 0.108(0.012) 0.126(0.016) a 3.8–5.4 0.218(0.016) 0.108(0.012) 0.110(0.016) a 5.7–7.3 0.162(0.014) 0.108(0.012) 0.054(0.014) a 7.6–9.2 0.140(0.014) 0.108(0.012) 0.032(0.014) a 9.5–11.1 0.115(0.012) 0.108(0.012) 0.007(0.012) a 11.4–14.9 0.053(0.006) 0.108(0.012) 0.055(0.006) a 15.2–18.8 0.064(0.008) 0.108(0.012) 0.044(0.008) Colony COHPS2001-2, section B 0–1.7 1.998(0.068) 0.103(0.001) 1.895(0.068) 2.0–4.0 0.363(0.025) 0.105(0.011) 0.258(0.025) 4.3–6.7 0.276(0.021) 0.099(0.001) 0.177(0.021) 7.0–10.2 0.196(0.012) 0.096(0.001) 0.100(0.012) 10.5–14.7 b.d. 0.102(0.002) 0 15.0–20.0 b.d. 0.103(0.001) 0

(a)Notmeasuredonthissection.Average(±halftherange)of5 226 Raanalysesperformedonanadjacentsectionarereported

133 1.0 a Case1: 0.0 y=0.42x0.35,r 2=0.94 1.0

2.0

3.0 Case2: y=0.25x1.25,r 2=0.94 4.0

5.0 ln

6.0 210

12 11 10 9 8 7 6 5 4 3 2 1 0 Pb ex

1.0 g (dpm

b Case1: y=0.35x+0.40,r 2=0.80 0.0 1 ) 1.0

2.0

Case2: 3.0 y=0.17x0.82,r 2=1

4.0

5.0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Distancefromskeletalmargin(mm)

210 Fig.6.4: Plotsofnaturallogtransformed Pb ex vs.distancefromthegrowingedge, (a)COHPS20011,(b)COHPS20012.Valuesonabscissaarereversed,sotimeincreases totheleft.Horizontalerrorbarsindicatewidthofskeletalsamples.Verticalerrorbars 210 are2 σ errorsinln Pb ex .

years,basedonbomb14 CconstraintsonthetimingofD1;Fig.6.3).Inthesecondcase thetimeintervalisaround65yrs,suggestinganageforD2of≥100years.TheageofD2

210 mustbeyoungerthan~110yrs,because Pb ex wasdetectedinthispartoftheskeleton.

Therefore,thesecondcaseisabetterestimateofthetruegrowthrate.

134 ThedurationofthegrowthhiatusatD1maybeestimatedbysolvingthelinear

210 regressionsinFig.6.4,inputtingthemostrecentvalueof Pb ex ,andconvertingthe lengthof‘missingskeleton’toatimeequivalent.ForColonyCOHPS20011,the durationofthegrowthhiatusis~30years;forColonyCOHPS20012,itis~50years.

Thesevaluesmayoverestimatethetrueduration,sincegrowthratesprobablyslowed beforeoraftertheformationofthegrowthhiatuses.Indeed,itisveryunlikelythat growthrateswereconstant,ascoloniesmaytwistduringtheirlifetimetoremainoriented toprevailingcurrents(WainwrightandDillon,1969);thismayexplainthescatterabout thelinearmodelsinFig6.3.Thescattermayalsobeexplainedbyvariabilityinthe

210 amountofinitial Pb ex overtime.

Finally,our 210 PbresultssuggestthatD1andD2wereformedcontemporaneously

210 betweenthe2colonies.Thisisevidencedbysimilarityin1)theactivityofln Pb ex wherethelinearfitsintersectD1andD2,and2)thecalculateddurationbetweenD1and

D2.

6.4.4Pb/Caprofiles

Profilesof Pb/CaareshowninFig.6.5.Gapsintheprofilesindicatewherehorny materialorgrowthhiatusesweretraversedandcorrespondingPb/Cavalueswereanorder ofmagnitudehigherthaninthecalcite.ShenandBoyle(1988)outlinedaprocedureof minimizingPbcontaminationinreefcoralsinvolvingaseriesofoxidativeandreductive leachesoncrushedsamples.Sucharigorouscleaningprocedurecouldnotbeusedhere becauseitwasnecessarytomaintainsmoothsurfacesonthesamplesforLAICPMS.It

135 D1:~1895 D2:~1965

200 Pb/Ca(nmol/mol) a 150

100

50

0 1211109 8 7 6 5 4 3 2 1 0

200 Pb/Ca(nmol/mol) b 150

100

50

0 9 8 7 6 5 4 3 2 1 0 Distancefrommargin(mm)

200 P b / C

PeakinPb/Ca:19781990 150 a ( n

100 m o l / m

50 o

c l ) 0 3 2 1 0 Fig.6.5: LAICPMSprofilesofPb/Cameasuredacrossthecalcitecortexof: (a)COHPS20011;(b)COHPS20012;(c)ROPOS637052.Valuesonabscissaare reversed,sotimeincreasestotheleft.ErrorinPb/Cais~10%.Verticalgreylines indicatepositionsofD1andD2inthe2oldercolonies;notesimilarpositionof Pb/CamaximaafterD1.Theyoungercolonywascollectedlivein2001;assuminga growthrateof0.15 ± 0.1mmyr 1,Pb/Camaximaoccurredbetween19781990.

appearedthatourprocedurewasineffectiveatremovingcontaminantsassociatedwith hornylayersanddetritalmaterials.ThePb/Caprofileswerethereforefilteredby evaluatingeachdatumonacasebycasebasisandremovinganydatathatappeared spurious(generally,anydata>4s.d.fromtheoverallmean).Atotalof15%ofthedata werefilteredout.

136 ThePb/Caprofilesincreasedgraduallyfrom30nmol/molintheoldestskeleton, toahighof180nmol/molinrecentlyformedskeleton,justafterD1(Fig.6.5).Following thispeak,valuesdecreasedrapidlyto~80nmol/mol.Theshapeoftheprofiles,and timingofgrowthhiatuseswithrespecttoPb/Caprovidesfurthersupportfor contemporaneousformationofD1andD2betweenthetwocolonies.Incolony

COHPS20012,Pb/CaincreasesmoreslowlybeforeD1,thensuddenlyincreasesjust afterD1;thisprobablyreflectsalongergrowthhiatuscomparedtoCOHPS20011.

Wealsoanalyzedasmallcolonyof P. resedaeformis thatwascollectedalivein

2001(ColonyROPOS637052).ThePb/Caprofilefromthiscolonycloselymatchedthe

mostrecentintervalsinthe2deadcollectedcolonies,withaPb/Camaximumof180

nmol/mol,andadeclineto80nmol/molnearthegrowingsurface(Fig.6.5c).Assuminga

growthrateof0.15±0.1mmyr 1,thePb/Camaximaoccurredbetween1978and1990.

Otherlivecollectedcolonieswereanalyzed,buttheyweremostlyhornyincomposition,

andthePb/Cadataweredeemedunreliable.

TheshapeofthePb/Caprofilesissimilartopreviouslypublishedrecordsfrom aragoniticcoralsfromBermuda(ShenandBoyle1987),acalciticsclerospongefrom

Bahamas(Lazarethetal.,2000)andbivalveshellsfromcoastalNorthCarolina(Gillikin etal.,2005).TheseotherrecordsindicateagradualincreaseinPb/Casincethe1920s, withapeakinthemidlate1970’s,andsubsequentdecline.Theslightlylaterappearance ofaPb/CapeakinourcoralsisconsistentwithlongerresidencetimeofPbinupper intermediatewaters(~10years)comparedwithsurfacewaters(~2years;WuandBoyle,

137 1997).TherangeofPb/Cameasuredin P. resedaeformis issimilartothatofthebivalve

record(40to230nmol/mol)andintermediatebetweenthecoral(10to70nmol/mol)and

sclerospongerecords(300to1200nmol/mol).ThesePb/Catrendsprimarilyreflect

anthropogenicemissionsofleadfromtheburningofcoalandleadedgasoline.Declining

Pbtothepresentdayisaresultofdecreasinganthropogenicemissionsasmandatedby

theCleanAirActof1970.

FollowingShenandBoyle(1988),CdandBawerealsoexaminedasgeochemical analoguesofPb.Therewerenosimilarincreasesineitherofthesetwoelements.

Therefore,thePb/CaconcentrationsinFig.6.5appeartoreflectlatticebound,not contaminantPb.

6.4.5 14 Cprofiles

Toinvestigatepastvariationsinseawater 14 Cwith P. resedaeformis ,we measured 14 CinalongaradialtraverseofasectionofColonyCOHPS20011(Fig.6.6).

SamplesweremilledfromtheregionofskeletonbetweenD1andD2,representingthe prebomb14 Cperiod,andonesamplewasmilledfromjustafterD1,representingthe bomb14 Cperiod.ThechronologyinFig.6.6isbasedonusingD1(1965 ±5;Fig.6.3)as atieinpoint,andthe 210 Pbderiveddurationofgrowthfortheregionofskeletonbetween

D1andD2(70 ±12yrs;Table6.4).Theprebombvaluesfluctuatedquasidecadally between106‰and72‰(average90‰).ThesamplefromjustafterD1measured

27‰,indicatingpenetrationofbomb14 Ctodepth.Comparedwithpreviouslypublished

valuesofsurfacewater 14 Cbasedonthegorgoninfractionof P. resedaeformis

138 100 80 Calcite 60 Gorgonin 40 20 0

C(‰) 20 14

40 60 80 100 120 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 CalendarYear Fig.6.6: Recordsof 14 C fortheNortheastChannelderivedfromthecalcite(this study)andgorgonin(Sherwoodetal.,2005a)fractionsof Primnoa resedaeformis . PrebombcalciterecordisfromtheregionbetweenD1andD2onColony COHPS20011.ChronologybasedonD1tieinpoint(1965 ± 5;Fig.6.3)and 210 Pb derivedlengthoftime betweenD1andD2(70 ± 12yrs;Table6.4).

(Sherwoodetal.,2005a),thecalcite 14 Crecordis20‰moredepleted(ttest,p0.001),

andthebomb14 Cresponseislaggedby1020years.

Marinereservoirage,R(t),isthedifferencebetweenthe 14 Cageofamarine

sampleandthecontemporaneous 14 Cageoftheatmosphere(StuiverandBarziunas,

1993).Analysisofthe 14 Cageofknownageshellorskeletalmaterialdepositedpriorto bomb 14 CcontaminationisoneofthefewavailablemeansofevaluatingR(t).Usingthe

IntCal04dataset(Reimeretal.,2004)forthe 14 Cageoftheatmosphere,andthecalcite

14 Cagedata,thereservoirageoflocalupperintermediatewaters,R(t) 200400m ,averages

590±90yrs(1s.d.).Usingthegorgonindataasaproxyforsurfacewaters(Sherwoodet

139 al.,2005a),thereservoirageoflocalsurfacewaters,R(t) surface ,averages420±30years.

Upperintermediatewatersareolder,asexpected,butexhibitgreatervariabilityin

reservoirage.

6.5DISCUSSION

Thedatingofrelativelyyoungoctocoralspecimenscanbeproblematic.Theuse

of 14 Cdatingisnotsufficientlypreciseoverthelastfewhundredyearsbecauseofa plateauinthe 14 Cagecalibration.U/Thdatingmayprovidehighprecisiondateson

youngcorals,butthishasonlybeendemonstratedonthearagoniteskeletonsof

scleractiniancorals(e.g.:Franketal.,2004;Robinsonetal.,2005).Thecalciteskeletons

ofoctocoralscontainanordermagnitudelessUthanaragonite,andmaythereforebe

moredifficulttodate(e.g.Thresheretal.,2004).Thepresentstudyreliedon3different

methodstoderiveanabsolutechronologyforthecalciteregionof Primnoa

resedaeformis .First,growthhiatusesprovidedstratigraphichorizonsforcorrelating resultsobtainedondifferentsectionsofthesamecolony.Second,asampleofbomb14 C

contaminatedgorgoninisolatedfromjustbeforeD1providedatieinpoint.Finally, 210 Pb

resultsprovidedanestimateofthegrowthdurationbetweenD1andD2.Fromthese

results,theregionofskeletonbetweenD1andD2formedbetween1895 ±13and1965 ±

5.ProfilesofskeletalPb/Catrackingtheanthropogenicinputtotheenvironmentlend supporttheaccuracyoftheskeletalchronological.

ItisinterestingtonotethatthetimingsofD1(~1965 ±5)andD2(~1895 ±13) coincide,withinerror,withtwoextremecoldwaterevents.Theseeventsarerelatedto

140 thesouthwardpenetrationofLabradorSlopeWater(LSW)alongtheshelfbreak, displacingWarmSlopeWater(WSW)furtheroffshore(PetrieandDrinkwater,1993;

MERCINA,2001).Theyoungerofthetwoeventslastedformostofthe1960s.Theolder event,in1882,wasinferredfromreportsofamassmortalityofburrowingtilefishinthe

MidAtlanticBightregion(Marshetal.,1999).Virtuallynothingisknownaboutthe biologyandenvironmentaltolerancesof P. resedaeformis ,soitisunclearhowacold eventcouldhaveledtothetemporarydeathofcolonies.Coloniesinhabitingtheupper slopealongtheScotiaMainemarginmaybeadaptedtoarelativelynarrowrangeof temperatures(BryanandMetaxas,inpress).Temperatureanomaliesof4 oCassociated

withLSW(PetrieandDrinkwater1993)maybesufficienttokillcolonies.Alternatively,

thereisgrowingevidencethatprimaryproductivityismorenutrientlimitedintheScotia

MaineregionwhenLSWisdominant(PetrieandYeats,1999;Thomasetal.,2003).

Since P. resedaeformis feedsonsinkingparticulateorganicmatter(Sherwoodetal.,

2005a),coloniesmayhavestarvedduringtheextremecoldwatereventsof1882andthe

1960s.Boththesehypotheseswarrantfurtherexploration.

Manypreviousstudieshavedemonstrateda1:1relationshipbetweenthe 14 Cof

coralcarbonateandambientseawater(DruffelandLinick,1978;Adkinsetal.,2002;

Roarketal.,2005);thisisthebasisforreconstructingpaleo14 Cfromindependently

datedcoralcolonies(Franketal.,2004;Robinsonetal.,2005).Itisalsoonthisbasisthat

therecordof 14 Cmeasuredinthecalcitephaseof P. resedaeformis (Fig.6.6) maybe

interpretedasarecordofseawater 14 C.Unfortunately,therewerenomeasurementsof

14 CinNWAtlanticslopewaterspriortobombcontaminationwhichcouldbeusedfor

141 directcomparisonwiththe P. resedaeformis data.Broeckeretal.(1960)reported2 measurementsfromtheMidAtlanticBightarea,butthesewerefrom0m.Bythetimeof theGEOSECS1972survey(StuiverandOstlund,1980)bomb14 Chadcontaminatedthe

upper800m.TheTransientTracersintheOcean–NorthAtlantic(TTNA)surveyin

1981sampledmanystationsalongthecontinentalmargin(Fig.6.7),butagain,theupper

watershadbeencontaminatedbybomb14 C.Estimatesofnatural 14 CintheGLODAP

dataset(Keyetal.,2004)underestimatestherangeofnatural 14 Cvariabilitymeasured

in P. resedaeformis,possiblybecausetheGEOSECSdatauponwhichthenatural 14 C

calibrationisbasedwerealreadycontaminatedabove800m.

InlookingattheTTNAdataset(Fig.6.7),theyoungestwaters(highest 14 C)are

foundintheLabradorSea.Here,downwellingsuppliesrecentlyventilatedwatersto

depth.Evenbelow3000m,thereisevidenceofbomb 14 Ccontaminationatstations44193

and44224.Atthe2stationsclosesttotheNortheastChannel(44246and44003),the bomb14 Ccontaminationisrestrictedtotheupper1500m.Belowthis,thevaluesof 14 C

(65 ±10‰)areconsiderablyhigherthanthatmeasuredin P. resedaeformis (90 ±10

‰).OnlytheabyssalwatersofthecentralNorthAtlanticandintermediatewatersofthe

equatorialAtlantichave 14 Cvaluesthatoverlapwiththe P. resedaeformis data.

Therefore,the P. resedaeformis datasuggestthatupwellingofabyssalwatersmaybean

importantprocessalongtheScotiaMainemargin(Petrie,1983).Thismayhelptoexplain

theoccurrenceofthebenthicforaminiferid, Nuttalides umbonifera livingattachedto

thesecorals;thisspeciesisanAntarcticwaterindicatorandhadnotbeenobservedin

abundanceatthisdepthpreviously(HawkesandScott,2005).

142 Fig.6.7: SelectedTTNA surveyresults.Leftpanel,stationlocations.Right panel,correspondingprofilesofseawater 14 C.LabradorSeawatersamples areyounger(higher 14 C)thanmoresoutherlywaters.Blackrectangleoutlines thevariability (± 1sd)measuredinthecalcitefractionof P. resedaeformis .

AdvectionofWSWvs.LSWmayalsobeimportanttothe 14 Ccompositionof

slopewater.LSWwouldbeexpectedtohavea 14 Ccompositionsimilartothatofthe

LabradorSea(65‰;StuiverandOstlund,1980),whereitoriginates.Thewatermass

characteristicsofWSWarelargelyderivedfromsubsurfaceGulfStreamwatersthrough

isopycnaladvectionandwarmcoreringsandstreamers(CsanadyandHamilton,1988).

ThewatermassunderlyingtheGulfStreamissometimesidentifiedasAntarctic

IntermediateWater(AAIW),basedonnutrientandsalinitycharacteristics(Richardson,

1977;Atkinson,1983;CsanadyandHamilton,1988).MixingwithAAIWmayimparta

morenegative 14 CsignaturetoWSW,aspreviouslysuggestedbyTanakaetal.(1990).

Ifthisisthecase,thenthequasidecadalperiodicityinthe P. resedaeformis profile(Fig.

143 6.6)mayreflectthequasidecadalperiodicityinherenttotheinteractionsofWSWand

LSW(PetrieandDrinkwater,1993;Marsh,2000;Loder,2001).Longerrecordsof 14 C

fromoldercolonies,orpatchedtogetherfromseveralcolonies,couldpotentiallybeused

toinferpastvariationsintheslopewatersystemofftheScotiaMaineregion.However,

furtherstudyisneededtoassesstheextenttowhichAAIWwouldbedilutedbymixing

withWSW.

Variationsin 14 CcompositionofLSWitselfmayalsobeimportanttothe 14 C

recordin P. resedaeformis .Analysisofpre1950agedmolluscshowsthat 14 Creservoir

agesofArcticcoastalwaterscanbeasoldas800years(MangerudandGulliksen,1975;

Barberetal.,1999).Icecoverlimitstheequilibrationofsurfacewaterwiththe

atmosphereandmayexplainsomeoftheseresults.AsArcticwaterspartlyfeedLSW,the

LSWmaybemore 14 Cdepletedthanwouldotherwisebeexpected.Ifthisisthecase,

thenthemorenegativevaluesinthe P. resedaeformis recordmayreflectthepresenceof

LSWratherthanWSW.

WithsuchadynamicoceanographicenvironmentastheScotiaMainemargin,it

isdifficulttostateunequivocallywhichprocessisthemostimportantindetermining

14 Cin P. resedaeformis .Nevertheless,themethodspresentedherecanbeexpandedto othertypesofoctocoralsandotherlocationstoprovideproxydatawhereoceanographic dataarelacking.The 14 Cdatacouldalsobepairedwithadditionalanalysisofmore

conservativewatermasstracers(suchas δ18 O)toprovideadditionalinformationonwater

masscirculation.

144 6.6CONCLUSIONS

Obviously,theformationofgrowthhiatusesisanundesirabletraitinaproxy

environmentalrecorder.Ourdatingresultssuggestthatthesehiatusesmaylastdecades.

Fortunately,theseeventsleaveavisiblebandintheskeletonandarethereforeeasyto

detect.Attheveryleast,growthhiatusesmaybeusefulasstratigraphichorizons,aswe

havedemonstratedhere.

In3different,independentlydatedcolonies,thepulseofanthropogenicPbtothe

oceanswasaccuratelyrecordedinskeletalcalcite.ThissuggeststhatskeletalPb/Camay beareliablerecorderofambientPbconcentrationsatdepth,andmayhavefurther paleoceanographicapplicationsintrackingoceaniccirculationorupwelling.Giventhe

welldocumentedincreaseandphaseoutofanthropogenicPb,weproposethatPb/Ca profilesmaybeusedasaninexpensive,althoughsomewhatlesspreciseanaloguetothe bomb14 Cdatingmethodindeepseacoralskeletons.

Atimeseriesrecordof 14 C,spanning18951965,wasgeneratedfromthecalcite

fractionofoneofthecolonies.Therecordoscillatedonaquasidecadalscale,between

105and70‰.Thesevaluesareinterpretedtodirectlyreflectthe 14 Cofupper

intermediatewaters;however,itisunclearwhichoceanographicprocesscouldhaveled

tothemorenegativerangeofvalues.

145 ACKNOWLEDGEMENTS

WearegratefullyindebtedtoDerekJones,SanfordAtwoodandtheCaptainandcrewof

theCGS Martha Black forcollectingspecimens.Radiocarbonanalyseswereperformed byThomasGuildersonatLLNL.KurtKyserandDonChipleykindlyprovidedtimeon

theQueensLAICPMS.BrianPetrieandKumikoAzetsuScottofferedvaluable

commentsonthephysicaloceanography.ThisprojectwassupportedbyanNSERC

strategicgranttoMJRandDBSandanNSERCpostgraduatescholarshiptoOAS.

146 CHAPTER7

STABLECANDNISOTOPICRECORDSFROMDEEPSEAOCTOCORALS

PARALLELRECENTCHANGESINTHESLOPEWATERSYSTEM

OFFNOVASCOTIA

OwenA.Sherwood1,MoritzLehmann2,KumikoAzetsuScott3,

DavidScott1,MichaelRisk4

1 CentreforEnvironmentalandMarineGeology,DalhousieUniversity,Halifax,Canada

2GEOTOPUQAMMcGill,Montreal,Canada

3 BedfordInstituteofOceanography,Halifax,Canada

4SchoolofGeographyandGeology,McMasterUniversity,Hamilton,Canada

147 7.1ABSTRACT

TheslopewatersoffNovaScotiaarecharacterizedbymodalshiftsinthe

dominanceofLabradorCurrentderivedwatersandwarmGulfStreamderivedwaters.

Observationalrecordsshowthatwarmsourcewatershavebecomeincreasinglydominant

overthelast50years.Coincidentwiththesechanges,atrophiccascadeontheScotian

shelfwasinitiatedaround1990bytheoverfishingofgroundfish.StableCandNisotopic

recordsfromtheskeletonsof Primnoa corals,aproxyforsurfacewaterprocesses,reflect manyofthesechanges.Thiscoralsecretesanannuallybanded,twopartskeletonof calciteandgorgonin,thelatterbeingastableprotein.Thegorgoninisderivedfrom sinkingPOM,andthusiswellsuitedtostudyingprocessesoccurringintheeuphoticzone overextendedtimeperiods.Theannualringsof9colonieswereisolatedandanalyzedfor

δ13 Cand δ15 Ntoproduceasetofoverlappingrecordscoveringmostofperiod17002000

AD.Anadditionalrecordfrom~300800ADwasobtainedfromasubfossilsample.

Valuesof δ15 Nwerepersistentlyhighermostofthelast~2000years,butdeclined

significantlyinthe20 th century,withmostofthedeclinecoincidingwiththeobserved shifttowarmerconditions.Whiletheexactmechanismfortheisotopicvariabilityin

Primnoa remainsunclear,resultssuggestarecentweakeningoftheLabradorCurrent maysignalareturntomidHolocenehypsithermallikeconditions.

148 7.2INTRODUCTION

Recentstudieshaveemphasizedmodalshiftsintheslopewaterregionextending fromtheMidAtlanticBighttotheGrandBanks(PetrieandDrinkwater,1993;Pickartet al.,1999;Loderetal.,2001).Duringpositivemodesofthisslopewatersystem,Warm

SlopeWater(WSW)derived,inpart,fromtheGulfStreamandGulfStreamrings, residessouthwardoftheshelfbreak.Duringnegativestatescold/freshLabradorSlope

Water(LSW)advanceswestwardfromtheGrandBanks,displacingWSWfurthertothe south.TheNorthAtlanticOscillation(NAO)isthoughttohaveasignificantinfluenceon theslopewatersystem,suchthatnegativeNAOanomaliestendtocorrelatewith increasedtransportoftheLabradorCurrentaroundthetailoftheGrandBanks(Petrie andDrinkwater,1993).Asslopewatersflowontotheshelvesviasubmarinecanyons,the relativeproportionofWSWvs.LSWhasamajorinfluenceonshelfhydrography.A widespreadcoldeventontheScotianshelfandGulfofMaineassociatedwithnegative

NAOanomaliespersistedthroughmuchofthe1960sandagainin1998(Petrieand

Drinkwater,1993;MERCINA,2001;Drinkwateretal.,2003;GreeneandPershing,

2003).

ShelfhydrographicconditionsrelatingtotherelativedominanceofWSWvs.

LSWhaveamajorinfluenceonthemarinefoodweb.Continuousplanktonrecorder

(CPR;MERCINA,2001)andremotesensing(Thomasetal.,2003)datasuggestthat warm(cold)statesoftheslopewatersystemsupporthigherabundancesofphytoplankton.

Thismaybedrivenbydifferencesinthenutrientcompositionoftheslopewaters,with

LSWbeingrelativelynutrientpoor(PetrieandYeats,1993;Drinkwateretal.,2003;

149 Thomasetal.,2003);thisreflectsabroaderpatternofnutrientdepletionintheLabrador

Sea,relativetothecentralNorthAtlantic(Townsend,etal.2006).Otherstudiesinthe

GulfofMainedocumentpositivecorrelationsbetweenNAO,temperatureandabundance of Calanus finmarchicus (GreeneandPershing,2000;Conversietal.,2001;MERCINA

2001).Itisnotclear,however,whether Calanus populationsresponddirectlytochanges

inprimaryproductivitybroughtonbythenutrientcompositionofslopewaters,ortosome

othermechanism,suchascrossshelfadvection(GreeneandPershing,2000).

DespitetheScotiaMaineregionbeingoneofthemostintenselysurveyed

oceanographicrealmsonearth,routinehydrographicsurveysextendbacktoonlyabout

the1950s.Ontheotherhand,muchofthehydrographicvariabilityassociatedwiththe

NAOoccursovermultidecadaltimescales.Inaddition,theshelfecosystemhasbeen

seriouslyalteredbythewelldocumentedcollapseofthegroundfisheryintheearly

1990s(Choietal.,2004;Bundy,2005;Franketal.,2005),whichcouldhavemodifiedor

obscuredanyclimateecosysteminteractionoverthepastfewdecades.Forexample,at

thebaseofthefoodweb,Sameoto(2001)documentedadecreaseintheabundanceof

largecopepods,andanincreaseintheabundancesofsmallercopepodsand phytoplanktonbetweentheperiods19611974and19911998.Hediscussedseveral

environmentalvariablesthatcouldhaveledtothechanges.Morerecently,Franketal.

(2005)suggestedthatchangesintherelativeabundancesofphytoplanktonand

zooplanktonareconsistentwithatrophiccascadeinitiatedwiththeremovalofdemersal piscivores.Clearly,longertermdatafromproxyrecordswouldallowforabetter

150 understandingoftherelativeinfluenceoftopdownversusbottomupcontrolson ecosystemdynamics,aswellasonthenatureoftheslopewatersystemitself.

Unfortunately,sedimentarycorerecordsfromthisregionarenotoriously bioturbated,andtheeffectivetemporalresolution,despitetherelativelyhigh sedimentationratesinshelfbasins,isontheorderofcenturies(Levac,2001).Previous workonScotianShelfcoressuggestedthatamajorcoolingassociatedwiththeincursion ofLabradorsourcewaterstookplacearound2500yearsago(Scottetal.,1984;1989;

Levac,2001).FurtherworkbyKeigwinetal.(2003)suggestedthatareturntowarmer conditionsoccurredwithinthelast~150years.Tosummarizethepresentunderstanding oftheslopewatersystem:incontextoftheinstrumentalrecords,the1960swerean unusuallycolddecade;inthecontextofcorerecords,the1960swerethevestigeofa prolonged2500yearlongcoldperiod.

Thedeepseacoral Primnoa resedaeformis, oneofthedominantgorgonian speciesalongtheedgeoftheScotianshelf,maybeanimportantnewsourceofproxy climatedata(Sherwoodetal.,2005a;2005b).Thispaperfocusesonstableisotopic recordsfromtheannuallybandedhornyregionof Primnoa skeletons.Unlikethecalcite, whichisderivedfromdissolvedinorganiccarbonatdepth,thegorgoninisderivedfrom sinkingPOMandmaythusprovideannuallyresolvedrecordsofprocessesoccurring nearthebaseofthefoodweb(Sherwoodetal.,2005b).Here,wedocumentsimilaritiesin thetemporaltrendsof δ13 Cand δ15 N,withthatofNAO,temperature/salinityand

151 Calanus abundanceoverthelast50years.Overthelongerterminterval~300to1950

AD,valuesof δ15 Nwereconsistentlyhigher.Possiblecausesforthistrendareevaluated.

7.3MATERIALSANDMETHODS

7.3.1Coralcollectionandprocessing

Specimensof P. resedaeformis werecollectedfromtheNortheastChannel(Fig.

7.1)atdepthsofbetween250475m.Thisstudyincorporatesdatafromthefivecolonies presentedearlier(Sherwoodetal.,2005b;completesamplingdetailsprovidedtherein),

withnewdatafrom3“recent”(last100years),and5“subfossil”(~AD300AD1900)

colonies(Table7.1).Briefly,sectionswerecutfromthecolonytrunks.Theannual

gorgoninringswereisolatedbydissolvingsectionsin5%HCl.Stableisotopicanalyses

ofgorgoninwereperformedbyElementalAnalyzer/ContinuousFlowIsotopeRatio

MassSpectrometryat GEOTOPUQAMMcGill.Isotoperatiosarereportedin

13 conventionaldeltanotation,where(exampleforcarbon): δ C=[(R sample /R standard )–1]x

1000;andR= 13 C/ 12 C.StandardsusedwerePDB( δ13 C)andair( δ15 N).Analyticalerror,

asmeasuredbythestandarddeviationofduplicatemeasurements,averaged0.10‰for

δ13 Cand δ15 N.Wheremultiplesectionspercolonywereanalyzed,thetimeseriesrecords wereaveragedforthewholecolony.Inadditiontostableisotopicanalyses,someofthe gorgoninsamplesweresenttotheCentreforAcceleratorMassSpectrometryforanalysis of 14 C.RadiocarbonanalyticaldetailsareprovidedinSherwoodetal.(2005a).

152

Fig.7.1: MapoftheNWAtlanticshowingmajorcurrentpatternsandlocationsof datausedinthisstudy.Blackpolygonsaretheareasofhydrographicobservations; coralsampleswerecollectedfromtheNortheastChannel,AreaSS29.Shaded polygonistheareaofCPRobservations.Symbolsarethelocationsofselected hydrographicstationsdiscussedintext.

153 Table 7. 1: Summaryofdatingandisotopicdataaveragedbycoralcolony.Ageranges

reflectthesumsofdatingerrors(2 σ)andcolonyagespans.

CoralI.D. Datingmethod Age±½range δδδ13 C±sd δδδ15 N±sd N (yrsAD) (‰) (‰)

Fossil95 14 C 480 ±450 18.00 ± 0.43 10.93 ± 0.35 39

COHPS20011 14 C 1800 ± 130 17.82 ± 0.39 10.91 ±0.50 15

COHPS20012 14 C 1830 ± 130 18.34 ± 0.42 10.75 ±0.47 37

ROPOS6400016 14 C 1860 ± 140 17.88 ± 0.46 10.84 ± 0.44 50

DFO2002con5 Ringcounting/bomb14 C 1958 ± 39 19.05 ± 0.53 10.31 ±0.37 56

NED2002371A Ringcounting/bomb14 C 1966 ± 34 19.20 ± 0.64 10.30 ±0.45 53

ROPOS639009 Ringcounting/bomb14 C 1973 ± 20 19.12 ± 0.50 9.99 ±0.43 24

HUD2001055VG15 Ringcounting/bomb14 C 1977 ± 20 18.89 ± 0.60 10.22 ±0.40 35

ROPOS6400013 Ringcounting/bomb14 C 1989 ± 15 19.54 ± 0.40 10.20 ±0.33 26

HUD200020VG2 Ringcounting/bomb14 C 1994 ± 8 19.38 ±0.28 9.70 ±0.29 12

7.3.2Chronology

Inmostcases,eachisotopicanalysiswasperformedonanindividualannualring.

Conversionofringnumbertocalendaryearfollowed1of2methods(Table7.1).For recentcolonies,calendaryearswereestablishedastheaverageofgrowthringcounts performedby3amateurcounters,withvalidationbythebomb14 Cmethod(Sherwoodet

al.,2005a).Forthesubfossilcolonies,oneortwooftheringswereradiocarbondatedas

atieinpoint.CalibrationwasperformedwithCALIBsoftware(StuiverandReimer,

1993,version5),usingtheMarine04calibration(Hughenetal.,2004)andalocal

correctionforthemarinereservoireffect( R=128±35years;Sherwoodetal.,2006).

Calibrated 14 Cdateswerecalculatedasprobabilityweightedmeans±2 σranges.Threeof thesubfossilcolonieshadmeancalibrateddatesof17501860;correspondingerrorsof

154 upto±120yearsreflectaplateauintheradiocarboncalibrationbetween~16501950

AD.

7.3.3Hydrographicdata

TheNortheastChannelisaregionofextremecurrents.Boththeshallowanddeep currentstendtobedirectedintotheGulfofMaineontheeastsideofthechannel,andout oftheGulfonthewestside(Smithetal.,2001).Selectionofhydrographicdatafor comparisontotheisotoperecordswasguidedbythelikelihoodthatfoodsourcesfor

Primnoa donotnecessarilyoriginatewithintheNortheastChannel,butinsurrounding regionsaswell.Datafrom5predefinedregionssurroundingandincludingtheNortheast

Channel(Fig.7.1)wereretrievedfromtheBedfordInstituteofOceanography hydrographicdatabase(availableonlineathttp://www.mar.dfo mpo.gc.ca/science/ocean.database/data_query.html).Temperatureandsalinitydatawere retrievedfrom15±15mand200±50m.Thefirstintervalwaschosentoreflecthigh frequencyvariabilityassociatedwithatmosphericphenomena,andthesecondtoreflect lowfrequencyvariabilityassociatedwithmodalshiftsintheslopewatersystem(Petrie andDrinkwater,1993).Foreachregion,monthlyanomaliesoftemperatureandsalinity werecomputedbysubtractingclimatologicalmonthlymeansfortheperiod19712000 fromeachmonthlyobservation.Annualanomalieswerecalculatedasthemeanofthe monthlyanomaliesforeachyear.Datagapswerefilledusinglinearinterpolation.

Empiricalorthogonalfunction(EOF)analysiswasusedtoidentifythedominantmodes ofvariabilityamongthedifferentregions.Inallcases,theleadingmodeexplained between6075%ofthetotalvariance.Regionalindicesoftemperatureandsalinitywere

155 computedasaweightedaverage,withtherecordsfromeachregionweightedbytheir respectivemode1eigenvectorweightings.Aregionalstratificationindexwascomputed inasimilarmannerusingdifferencesindensitybetween0±5mand50±5m

(Drinkwateretal.,2003),however,aleadingmodecouldnotbeidentified.

7.3.4Nutrientdata

NortheastChannelnutrientdatawereobtainedfromD.Townsend’s“Nutphyto”

dataset,whichwasacquiredinthespringtimeof19971999aspartoftheGLOBEC

GeorgesBankprogram(http://globec.whoi.edu/jg/dir/globec/gb/).Stationslocatedwithin

theNortheastChannelwereselectedandnutrientdistributionswereplottedwithOcean

DataView(ODV)software(Schlitzer,2004).Toevaluatetheeffectofspringtime

nutrientdrawdownon δ15 Nofphytoplankton,monthlyvaluesofverticallyintegrated

nitrateandnitrite(NO 3+NO 2)at50mdepthwerecalculated,using,wherenecessary,a polynomialfitofintegratedNO 3+NO 2vs.depth.

13 Additionaldataonthecarbondioxide([CO 2]aq )andisotopic( δ C)contentof

warmandcoldslopewaterswasobtainedfromtheGlobalOceanDataAnalysisProject

(GLODAP;Keyetal.,2004).AsubsetofthesedatawascollectedduringWorldOcean

CirculationExperiment(WOCE)meridionaltransectsoftheNWAtlantic.CruiseA20

(~52 oW)sampledcoldslopewatersouthoftheGrandBanks.CruiseA22(~66 oW)

sampledwarmslopewatersouthofGeorgesBank(Fig.7.1).

156 15 15 InMayJune2005watersamplesformeasurementofthe δ Nofnitrate( δ NNO3 )

werecollectedopportunisticallyduringroutinehydrographicsurveysconductedbythe

BedfordInstituteofOceanography.Sampleswerecollectedfromtheuppersloperegions

(Fig.7.1)of1)theLabradorShelf(54.8 oN/54.5 oW)and2)theScotianShelf,southof

BanquereauBank(44.5oN/57.5 oW)andEmeraldBank(43.3 oN/61.1 oW).Waterwas

sampledwiththeCTDrosetteevery50mbetween0400m(ordeepest).Subsamples

werecollectedintoprewashed(5%HClanddeionizedwater)60mlpolyethylenebottles

15 andfrozenimmediatelyuponcollection.Measurementof δ NNO3 followedthebacterial

denitrifiermethod(Sigmanetal.,2001).Briefly,samplenitrateisconvertedtonitrous

oxide(N 2O)bydenitrifyingbacteriathatlackN 2Oreductaseactivity.Isotopicanalysis

wasthenperformedontheN 2OgasbyContinuousFlowIsotopeRatioMass

Spectrometryat GEOTOPUQAMMcGill.

7.3.5Statisticalanalysis

Toinvestigatepotentialsourcesofisotopicvariability,linearcorrelationsofthe

Primnoa δ13 Cand δ15 Nrecordswiththevarioushydrographicandclimaticrecordswere performed.ThelatterdataincludethewinterNorthAtlanticOscillationIndex(Hurrellet

al.,2001)andanindexofContinuousPlanktonRecorder Calanus abundanceinthe centralGulfofMaine(MERCINA,2001)whichweassumetobebroadlyrepresentative ofproductivityfortheregionincludingtheNortheastChannel.Mostofthetimeseries weresignificantlyautocorrelatedat12yearlags,whichcouldleadtospurious correlationsbetweentimeserieswhenoneisnaturallylaggedwithrespecttotheother.In addition,fortheisotopetimeseriesweestimateachronologicaluncertaintyof~2years.

157 Althoughtherearemethodstodealwiththeproblemsofbothautocorrelation(Pyperand

Peterman,1998)andchronologicalerror(WormandMyers,2003),wehavetakena simplerapproachbybinningthetimeseriesintoappropriatesizebins(3years).The statisticaltestismoreconservativeowingtoonethirdfewerdegreesoffreedom.Wealso reasonthatbinningaveragesoutthechronologicalerrorwhilepreservinglowfrequency variability,whichisourmaininterest.

7.4RESULTS

7.4.1Longtermtrends

Toavoidmisrepresentingtemporalrelationshipsamongtheimpreciselydated

17501900ADcolonies,colonyaverageswereplottedinsteadofthecompletetimeseries records(Fig.7.2).Formostofthenear2000yrlongrecord, δ13 Cand δ15 Nwere

relativelyconstant.Then,inthe20 th century,both δ13 Cand δ15 Ndecreasedmarkedly.

Thedeclinein δ13 CparallelstheSuesseffect,i.e.thedecreaseinatmospheric δ13 C

causedbytheburningoffossilfuels.Basedonproxyrecords(Bohmetal.,2002;Swart

etal.,2002)anddirectmeasurements(KortzingerandQuay,2003)the δ13 Cperturbation

inupperNorthAtlanticwatersislaggedbyroughlyadecaderelativetotheatmosphere.

Areference δ13 Ccurve,derivedfromAntarcticicecores(Franceyetal.,1999)is

thereforeplottedwitha10yearlaginFig.7.2.TakingintoaccounttheSuesseffect,

therewaslittleapparentdifferenceinmodernvs.subfossilvaluesof δ13 C.Incontrastto

δ13 C,thereisnoatmosphericeffecton δ15 Nofseawater.Therefore,weinterpretthe δ15 N

recordasasignificantdeclineofabout1‰.

158 17 0.5 a

0 18

0.5

19 1 CPrimnoa(‰) 13 CSuessanom.(‰) δ

1.5 13 20 δ

2 0 200 400 600 800 1700 1750 1800 1850 1900 1950 2000

b

11

10.5

10 NPrimnoa(‰) 15 δ 9.5

0 200 400 600 800 1700 1750 1800 1850 1900 1950 2000 CalendarYear

Fig7.2: Longtermtrendsin δ13 C(a)and δ15 N(b)averagedbycoralcolony. Horizontalerrorbarsare2 σ minmaxages.Verticalerrorbarsare95% confidencelimits.Greycurvein(a)istheSuessanomalyfortheNorthAtlantic, derivedfromapolynomialsmoothingoftheatmosphericrecord(Franceyetal., 1999)andlaggedby10yearstoreflectNorthAtlanticsurfacewaterresponse(see textforrationale).

159 7.4.2Recenttrends

Isotopicrecordsfromthe6recentcoloniesareshowninFig.7.3.Theoverlapping recordsshowedexcellentreproducibilityfor δ13 C.Amean δ13 Ccurve,takenasthemean

ofallmeasurementsineachyear,exhibitedaweakbutstatisticallysignificantdecline

(linearregression:r 2=0.09;p<.01).Afternormalizingthemean δ13 Crecordforthe

Suessanomaly,thedeclinewasnolongersignificant(r 2=0.00,p=0.6).For δ15 Nthe

reproducibilitywassomewhatpoorer,butadecreasingtrendwassignificant(r 2=0.74, p<.000).Valuesof δ15 Ntowardstheearlierpartofthe1900sweresimilartothoseofthe

subfossilcolonies(~10.7‰).Themajordeclineoccurredaround1980,withashiftto

valuesofaround9.7‰.

7.4.3Correlationwithenvironmentalrecords

Recordsofselectedenvironmentalvariablesand δ13 Cand δ15 Narecomparedin

Fig.7.4.Thefirst3records(winterNAOindex,T200mand Calanus abundance)are reproducedfromMERCINA(2001),butwithT200mrecalculatedforthevicinityofthe

NortheastChannel.Persistentnegative(positive)anomaliescharacterizedthe environmentalrecordsformostoftheperiodbefore(after)1971.Amajordropinthe

NAOindexin1996alsowasalsorelatedtonegativetemperatureand Calanus anomalies in1998.The δ13 Cand δ15 Nanomaliesexhibitedthereversetrends,withmorepositive

(negative)valuesbefore(after)theearly1970s.Theisotopicrecordsdidnotregister positivevaluesaround1998;however,shorttermeventsof<2yearsaresmoothedoutby

averagingandchronologicalerror.

160 17 0.5 a

0 18

0.5

19 1 CPrimnoa(‰) 13 CSuessanom.(‰) δ

1.5 13 20 δ

2 1930 1940 1950 1960 1970 1980 1990 2000

b

11

10.5

10 HUDVG2 ROP640

NPrimnoa(‰) HUDVG15 15

δ ROP639 9.5 DFOCon5 NED371A Average

1930 1940 1950 1960 1970 1980 1990 2000 CalendarYear

Fig7.3: Isotopicrecordsfrom6recentcolonies.Analyticalerror~±0.1‰. Estimateddatingerror~±2years.Greycurvein(a)istheSuessanomaly

AcorrelationmatrixofallenvironmentalandisotopicrecordsisshowninFig.

7.5.Theenvironmentaldataaremutuallycorrelated,thegeneralinterpretationbeingthat

negativeNAOphasesleadtoanincreaseinthewestwardtransportoftheLabrador

Current,bringingcoldandfreshLSWintotheScotiaMaineregion(Petrieand

Drinkwater,1993).Beinglowinnutrients(PetrieandYeats,1999)theLSWsupports

161 3 2 1 0 1 NAOIndex 2 C) o 1 0 1 2

T200mAnom.( 3

1

0

1 CalanusAnom.

1

Anom.(‰) 0 corr C 13

δ 1

1

0 NAnom.(‰) 15 δ 1 1930 1940 1950 1960 1970 1980 1990 2000 CalendarYear

Fig7.4: Timeseriesanomaliesofthewinter(DJFM)NAO,regionaltemperatureat 200mdepth, Calanus abundance(MERCINA2001),andaverage δ13 Cand δ15 N recordsfrom Primnoa . δ13 CrecordcorrectedfortheSuesseffect.Thinlinesare annualaverages,boldlinesare3yrdecimations

162 T15m T200m S15m S200m Calanus δ13C(corr) δ15N .37 .61* .51* .37 .44 .36 .36 O A N

.70** .72** .78**** .18 .43 .38 T15m

.61* .82**** .47 .69** .61** T200m

.78**** .27 .30 .42 S15m

.27 .42 .33 S200m

.62* .47 Calanus

.30 C 13 δ

Fig7.5: Correlationmatrixofanomaliesofenvironmentalvariablesand Primnoa δ13 C (correctedforSuesseffect)and δ15 N.Recordsweredecimatedinto3yearbinsbefore correlation.NumbersinboxesareSpearman'srankr,withsignificantcorrelationsinbold. Significancelevelsare:*0.05,**0.01,***0.001,****.0001

163 reducedproductivityofphytoplankton(Thomasetal.,2003)andpossiblyalso Calanus

(MERCINA,2001).Notethepositivecorrelationsbetweenshallow(15±15m)anddeep

(200±50m)temperatureandsalinity.ThesedatasuggestthatbothLabradorSlopeWater

(LSW),concentrated>150mindepth,andLabradorShelfWater(LShW),concentrated

<150mindepth(HoughtonandFairbanks,2001)areassociatedwithwestwardadvances oftheLabradorCurrent.The δ13 Cand δ15 Nrecords,overall,wereanticorrelatedwiththe environmentalrecords.For δ13 CthereweresignificantanticorrelationswithT200mand

Calanus abundance.For δ15 N,therewasasignificantanticorrelationwithT200m.

Finally, δ13 Cand δ15 Nwerepositivelycorrelated,butthecorrelationwasnotsignificant.

7.4.4NortheastChannelnutrientdistribution

Fig.7.6showsthedistributionoftemperature,salinity,nutrientsandchlorophyll intheNortheastChannel(areaSS29intheBIOdatabase)fortheperiod19971999.

Conditionsin1997/1999versusthoseof1998representwarmandcoldstates, respectivelyoftheslopewatersystem(GreeneandPershing,2003;Drinkwateretal.,

2003).UsingtheTSclassificationofHoughtonandFairbanks(2001),thecold/fresh watersin1998representLShWfrom50150mandLSW>150m.Reduced concentrationsofnutrientsandchlorophyllcharacterize1998,aspreviouslyobserved

(PetrieandYeats,1999;MERCINA,2001;Thomasetal.,2003).

164 Fig7.6: DepthTimepatternsintemperature(a),salinity(b),NO 3+NO 2 (c)and Chlorophylla(d)fortheNortheastChannel(region29).Nutrientandchlorophyll datafromD.Towsend.Notecold/fresheventin1998,coincidentwithlower nutrientsandchlorophyll.

165 a b c d 0

100 WSW LShW

200

LSW 300 Depth(m) WOCE1997A20 WOCE1997A22 400

500 0 10 20 30 3233 34 35 36 0.5 1 1.5 2 10 15 20 25 Temp.(oC) Salinity(psu)δ13C(/mille) CO2(M/kg)

13 Fig.7.7: Depthprofilesof(a)temperature,(b)salinity,(c) δ C and(d)[CO 2]aq from WOCE cruisesA20(southofGrandBanks)andA22(southofGeorgesBanks).See Fig.7.1forlocationsofstations.Notecold/freshwatersoffGrandBanks,and warmer/saltierwatersoffGeorgesBank.

1 26 a b 0.9 24

0.8 22 M/kg) 0.7 20 r2=.04 ( aq CDIC(‰) 2

13 0.6 18 r2=.17 δ CO 0.5 16

0.4 14 33 34 35 36 33 34 35 36 Salinity(psu) Salinity(psu)

13 Fig.7.8: Regressionsof(a) δ C ofseawaterand(b)CO 2aq againstsalinity usingtheWOCE datafromFig.7.7.Datafromupper100mexcluded.Neither regressionissignificant.

166 7.4.5Isotopiccompositionofsourcenutrients

δ13 C-DIC:

WOCEcruisesA20(southofGrandBanks)andA22(southofGeorgesBank;

Fig.7.1)weretheonlyavailablesourcesofslopewater δ13 Cdata.Temperatureand salinityprofiles(Fig.7.7a,b)fromslopewaterstations(i.e.bottomdepth<2500m) clearlyshowthecold/freshLSWandLShWoffGrandBanks,andwarmer/saltierWSW offGeorgesBank.WatermassdesignationsfollowTSpropertiesofHoughtonand

Fairbanks(2001).Profilesof δ13 Crevealnodifferencesbetweenthewatermasses(Fig.

7.7c).Alsoshown(Fig.7.7d)areprofilesof[CO 2]aq .Inthediscussionthatfollows,

13 [CO 2]aq isconsideredasapotentialfactorindetermining δ Cinphytoplankton.Slightly

higher[CO 2]aq wasmeasuredintheLShW.Takingsalinityasanindependent, conservativedelineatorofLSW,LShWandWSW,however,theredonotappeartobe

13 statisticallysignificantdifferencesin δ Cor[CO 2]aq ofthedifferentwatermasses(Fig.

7.8).

15 δ N-NO 3:

WatersamplescollectedopportunisticallyfromtheLabradorandEasternScotian

15 shelvesweremeasuredfor δ NNO3 (Fig.7.1).Sampleswerelocatedmoretowardsthe

shelfcomparedwiththeWOCEcruises,sothe2datasetsarenotexactlycomparable.

Nevertheless,profilesoftemperatureandsalinity(Fig.7.9a,b)clearlyshowcold/fresh

LSWandLShWofftheLabradorShelfandat1stationoffBanquereauBank,nearthe

LaurentianChannel.The2otherstationsfromfurtherwestwardalongtheScotianshelf

wereoccupiedbywarmer/saltierWSW.Ascollectionsweremadeinsummer,euphotic

167

a b c d 0

100 LShW WSW

200 LSW

300 Depth(m)

400 HUD2005016 TEL2005613

500 OceanDataView 0 5 10 15 30 32 34 36 0 5 10 15 20 5 6 7 8 9 10 o Temp.( C) Salinity(psu) NO3+NO2(M) δ15NNO3(/mille)

Fig.7.9: Depthprofilesof(a)temperature,(b)salinity,(c),NO 3+NO 2 and(d) 15 δ NNO3 measuredduringtheHudsonandTeleost cruises.SeeFig.7.1forstation locations.LabradorsourcewatersweredetectedatoneoftheTeleost stations (nearBanquereau Bank)andattheHudsonstationsoffLabrador.Atallstations,

NO 3+NO 2 wasexhaustedbythespringbloom.

7

6.5

6 (‰) 3 5.5 NNO 2 15 5 r =.64 δ p<.000 4.5

4 33 33.5 34 34.5 35 35.5 Salinity(psu) 15 Figure7.10: Regressionof δ NNO3 vs.salinityusingtheHudson andTeleost datafromFig.7.9.Valuesfromupper100mexcluded duetoisotopicenrichmentbyphytoplanktonuptake.

168 15 zoneNO 3+NO 2wasexhaustedbythespringbloom(Fig.7.9c).Profilesof δ NNO3 were

heavieralongtheLabradorshelf(Fig.7.9d).Theheaviestvalues,upto10‰intheupper

50m,reflectisotopicenrichmentofresidualnitrate.AtScotianShelfstations,therewas

15 insufficientnitrateintheupper50mtomeasure δ NNO3 .Thesubsurfacewatersappearto beisotopicallylighterintheScotianShelfsamples.Below200m,alltheprofilesof

15 δ NNO3 convergeontheglobaldeepwatermean~5‰(Sigmanetal.,2000).Regression

15 2 of δ NNO3 onsalinitywasnegativeandsignificant(r =0.43;p<0.01;Fig.7.9).The

LShWappearstobethesourceofheaviernitrate,therebeingnodiscernabledifferencein

15 the δ NNO3 ofLSWvs.WSW.Frommassbalanceconsiderations,thesmallervolumeof

LShW,relativetoLSWandWSW,wouldbemorereadilystrippedofNO 3+NO 2,with correspondingincreaseinisotopiccompositionoftheresidualnutrient.

7.5DISCUSSION

Inthediscussionthatfollows,weconsiderthepossiblereasonsfortheobserved correlationsof δ13 Cand δ15 Nwiththeenvironmentalvariables.Foreachof δ13 Cand

δ15 N,weconsiderisotopicfractionationsthatmayoriginate1)amongsourcenutrients,2) duringgrowthofphytoplankton,3)duringtrophictransfer,or4)duringsinkingofPOM throughthewatercolumn.Ourdiscussionfocusesontheisotopicconsequencesofthe warmvs.coldsourcewaters,since δ13 Cand δ15 Nbroadlycorrelatewiththerelative

dominanceofthesewatermassesoverthe50yearsofinstrumentalrecords.

169 7.5.1Possiblecausesof δδδ13 Cvariability

δ13 C-DIC:

BasedontheWOCEdata(Figs.7.7and7.8),therewerenosignificantdifferences inthe δ13 Ccompositionofwarmvs.coldsourcewaters.Assumingthat δ13 Cisconserved

duringtransitoftheLabradorCurrenttotheNortheastChannel,differencesinseawater

δ13 Cdonotsupporttheobservedvariabilityinthe Primnoa δ13 Crecords.

Phytoplankton effects:

Isotopicfractionationduringgrowthofphytoplanktonisfrustratinglycomplex andvariable.Whileearlierresearchemphasized[CO2]aq indeterminingphytoplankton

δ13 C(Jasperetal.,1994;Rau,1994)morerecentstudiespointtogrowthrate,cell geometry,nutrientandlightlimitationandactivecarbonuptake(asopposedtopassive diffusion)asequally,ifnotmore,important(seereviewsinFreemanetal.,2001;Lawset al.,2002).LookingagainattheWOCEdata,differencesin[CO2] aq donotsupportthe

variabilitymeasuredin Primnoa .Inalllikelihood,somecombinationofbiological

factorssuchasgrowthrateandspeciescompositioncontributestomost,ifnotall,ofthe

observedvariabilityinthe δ13 Crecords.AstudyonGeorgesBankhighlightedunusually

high δ13 Cindiatoms(FryandWainwright,1991).Hence,adeclineintherelative

abundanceofdiatoms:dinoflagellates,asobservedovermostoftheNorthAtlantic

(Letermeetal.,2005)couldpotentiallyaccountforadeclinein δ13 Csincethe1960s.

Likewise,adecreaseinphytoplanktongrowthrate,perhapsassociatedwithsome

combinationofnutrientconcentrationandverticalmixingcouldaccountforthedecline.

170 Unfortunately,itisnotpossiblewiththeavailabledatatoquantitativelyevaluatethe relativeimportanceofthesedifferentprocesses.

Trophic effects :

Trophicfractionationof δ13 Caveragesabout1‰pertrophiclevel(DeNiroand

Epstein,1978;FryandSherr,1984).Basedonpreviousstudiesintothedietsofshallow

watergorgonians(e.g.:Ribesetal.,1999),and δ15 Nevidence(Sherwoodetal.,2005b),it ispossiblethat Primnoa consumesbothsinkingPOMandzooplankton.Byextension,

Primnoa couldshiftbetweenmorephytoplanktonrichtomorezooplanktonrichdiets

overtime.However,assumingthatthemaximumpreysizeislimitedtothediameterof polyps(4mm),thelargestzooplanktoninthe Primnoa dietshouldbelimitedto

mesozooplankton.Thedifferenceinapparenttrophiclevelbetweenmesozooplanktonand

sinkingPOMisnegligible(Sherwoodetal.,2005b);hence,atrophiceffectshouldnot

contributetovariabilityinthe δ13 Crecords.However,morecomplexplanktonfoodwebs,

involvingmultipletransfersfrom,say,nanophytoplanktontomicrozooplanktonto

mesozooplankton,mayaccumulatemultipletrophicfractionationsandbecome

significant(Wuetal.,1999a).

Microbial degradation:

MicrobialdegradationofsinkingPOMcanexertafractionationeffecton δ13 C

(MackoandEstep,1984;Lehmannetal.,2002).Somesedimenttrapexperiments

documentenrichmentofupto12‰inthesinkingflux(Wuetal.,1999a;Loureyetal.,

2004)whileothersdocumentnochangewithdepth(Ostrometal.,1997;Woodworthet

171 al.,2004).Ourearlierworkon 14 Cand δ15 Nin Primnoa indicatesthatrefractoryPOM

isnotconsumed(Sherwoodetal.,2005a;2005b).Elsewhere,intheLabradorSea,

isotopiccompositionof12differentspeciesofsoftcoralsexhibitednodeptheffect between501500m(Sherwood,Edinger,etal.,unpubl.).Thus,softcoralsexhibita preferencefor“fresh”POMofhighernutritionalvalue.Onthesegroundsitisunlikely

thatinterannualvariabilityinfood“freshness”couldaccountforthe δ13 Cvariability.

13 Insummary,differencesinthe δ Cand[CO 2]aq ofwarmvs.coldsourcewaters

donotsupporttheobservedvariabilityinthe Primnoa δ13 Crecords.Mostofthe

interannualvariabilityin Primnoa δ13 Cprobablyarisesduringgrowthofphytoplankton

insurfacewaters.Thenumberoftrophicintermediariesbetweenphytoplanktonand

Primnoa mayalsobeimportantoninterannualtimescales.Therelativedominanceof

warmvs.coldsourcewaterscouldpotentiallyinfluenceeitheroftheseprocesses,through

modificationofthephysical(i.e.verticalmixing)orchemical(nutrients)conditions.

7.5.2Possiblecausesof δδδ15 Nvariability

15 δ N-NO 3:

Salinityanomaliesofupto0.9characterizecoldeventsassociatedwith

15 LSW/LShW(Fig.7.6).Regressionof δ NNO3 vs.salinity(Fig.7.10)predicts

15 correspondingincreasesin δ NNO3 ofabout0.5‰.Additionalsupportfordifferencesin

15 15 δ NNO3 betweenwarmandcoldsourcewatersmaybeobservedinacomparisonof δ N ofsedimentsandvariousinvertebrateandfishspeciesfromtheGulfofMaineand

Labradorshelf(Fig.7.11).Thesedataconfirmthatasystematicoffsetin δ15 Nof1.1‰,

172

14 LabradorShelf GulfofMaine

12

10 N(‰) 15 δ 8

6 Cod Plaice Shrimp SedOM Primnoa Euphasiids

Fig.7.11: δ15 N valuesforsedimentaryorganicmatter(Macko,1981; Muzuka andHilliareMarcel,1990), Primnoa tissue(Sherwoodetal., 2005b) andrepresentive invertebratesandfishfromLabrador(Sherwood andRose,2005)andGulfofMaine(Fry,1988).Errorbars(where available) are±1se.

15 extendsupwardthroughthefoodweb.Thedifferencein δ NNO3 of0.51.1‰issimilar inmagnitudetotherecentdeclineinthe Primnoa δ15 Nrecord(1‰)sincearound1980.

15 Wethereforeconcludethatdifferencesin δ NNO3 aresufficienttoaccountforcorrelation of Primnoa δ15 Nwiththerelativedominanceofwarmvs.coldsourcewaters.

Nutrient utilization:

Variationsinthe δ15 Nofphytoplanktonarecommonlyattributedtonutrient

utilizationefficiency,suchthat,whennitrateutilizationisincomplete, 14 Nis

173 400 5 a 1997 b 1998 300 1999 4 NPOM(‰) 050m(‰) 200 3 3 15 δ

NNO 100 2 15 δ

0 Theoretical 1 JFMAMJ JFMAMJ Month Month Fig.7.12: (a)Comparisonofnutrientdrawdowninupper50mincold(1998) vs. warm(1997/1999)statesoftheslopewatersystem.Rateofdrawdownisnofasterin 1998thanin1997or1999.Finalconcentrationsaresimilarinallyears.Nutrient datafromD.Townsend.(b)Theoreticaleffecton δ15 N usingequation1intext. POM

preferentiallyassimilated,leadingtoisotopicallydepletedbiomass(Nakatsukaetal.

1992,AltabetandFrancois,1994,Wuetal.,1997;1999a).Toexaminewhetherlower

15 nutrientsandproductivityaffect δ NPOM ,springtimenutrientdrawdownwasevaluated between1998and1999(Fig.7.12a).ByMayofbothyears,verticallyintegrated(050m)

15 NO 3+NO 2wasconsumedtonearexhaustion.Correspondingvaluesof δ NPOM foreach

monthweremodeledwithaRayleightypefractionationequation(Mariottietal.,1981):

15 15 δ NPOM = δ NNO3 –ε(lnf)[f/(1f)] (1)

15 where: δ NNO3 istheisotopiccompositionofsourcenutrientsbeforedrawdown(5.5‰),

εisphytoplanktonfractionationconstant(5‰),andf=thefractionofinitialnutrient remaining.Equation1representstheaccumulatedproduct,whichisappropriatefor

174 15 sinkingPOM.Theoreticalvaluesof δ NPOM wereidenticalbetweenyears,withvaluesin

Mayapproaching4‰(Fig.7.12b).Itisworthnotingthatsimilarvaluesweremeasured inPOMthroughouttheGulfofMaine(Sherwoodetal.,2005b),thus,ourchoiceof

15 valuesfor δ NNO3 and εiscredible.Interspecificdifferencesin εamongphytoplankton

(Needobaetal.,2003)shouldhavelittleimpactonourcalculations,sincenutrient

utilizationnearedcompletion.Overall,itappearsthatdifferencesininitialnutrient

concentrationbetweenwarmandcoldstatesoftheslopewatersystemdonotsupportthe

longtermvariabilityin δ15 N,becausenutrientsareultimatelyconsumedtothepoint

15 15 wherevaluesof δ NPOM convergeonthatof δ NNO3 .

Trophic level :

Inanearlierpaper(Sherwoodetal.,2005b),wespeculatedthattrophic fractionationof δ15 N(~3.4‰/trophiclevel)mayaccountforpoorerintraandinter colonyreproducibilityof δ15 N,relativeto δ13 C.Forinstance,differentpartsofcolonies

maybemoreeffectiveatcapturingdifferentpreysizeclasses.Insurfacewaters,the

complexityoftheplankticfoodwebcouldhaveasignificantimpacton δ15 Nin Primnoa .

Sherwoodetal.(2005b)documentedhigher δ15 NonGeorgesBankcomparedwiththe surroundingGulfofMaine,apparentlyduetorecyclingofnutrientswithinthemixed layer(TownsendandPettigrew,1997).Asstatedinaprevioussection,althoughsinking

POMandmesozooplanktonhaveaboutthesameapparenttrophiclevel,multipletrophic intermediariesbetweenprimaryproductionand Primnoa couldpotentiallycontribute

significantlytothe δ15 Nvariability.

175 Microbial degradation:

The δ15 NofPOMincreasesbyabout3.4‰asitinitiallysinksoutoftheeuphotic zone,but,itgenerallydoesnotchangemuchasitcontinuestosink(Altabet1988;

Altabetetal.,1991;Ostrometal.,1997).Previousargumentsconcerningtheimpactof food“freshness”on δ13 Capplyto δ15 Naswell.Hence,itisunlikelythatvariationsin foodfreshnessaccountforobservedvariationsin Primnoa δ15 N.

15 15 Insummary,themostlikelysourcesof δ Nvariabilityaredifferencesin δ NNO3 betweenwarmandcoldsourcewaters,andpossiblyalsodifferencesintrophic

complexitybetweenwarmandcoldstates.

7.5.3:Subfossildiagenesis

Inapreviousstudywedetectedslightlyhigherlipidcontentinasubsetofthesub

fossilcoloniespresentedhere(Sherwoodetal.,2005b).Aslipidstendtobelighterin

δ13 C(DeNiroandEpstein,1978),thesubfossilvaluesmaybeslightlymoreenriched

(about0.5‰)relativetotherecentvalues.ItisnotclearwhatledtothehigherC:N valuesinthesubfossilcolonies;sampleswerevisiblyfreeofallochthonousmaterialand aminoacidanalysessuggestnoorganicdiagenesisintheproteinfractionofthegorgonin

(Sherwoodetal.,2006).AsC:Nwasnotmeasuredinallofthecolonies,thelongterm trendsin δ13 Cshouldbeinterpretedwithcaution.

176 7.5.4: δδδ15 Nrecord:slopewatershift,ortrophiccascade?

The Primnoa δ15 Nrecordexhibitedasignificantdeclineoverthe20 th century withthemajordeclineoccurringaround1980(Fig.7.3).Overthelast50years, δ15 Nwas

significantlyanticorrelatedwithtemperatureat200m(Fig.7.5).Onthisbasis,alongwith

apparentlyhigher δ15 Ninnitrate,sediments,andvariousorganisms(Fig.7.10,7.11),we concludethathighervaluesof δ15 NinthepastcouldbeanindicationthatLabrador sourcewaters(LSWandLShW)weremorepredominantduringmostofthelast2000 yearsthantheyhavebeenmorerecently.Thisfindingissupportedbypreviousstudies indicatingthata“neoglacial”periodoffNovaScotiawasinitiatedaround2500yearsago byinvasionofLabradorsourcewaters(Scottetal.,1984;1989;Levac,2001).Keigwinet al.(2003)suggestedthatarapidreturntowarmerconditionsoccurredsometimewithin thelast150years.TheresolutionoftheKeigwinetal.(2003)studywaslimitedby bioturbationinthecore.Ourrecordssuggestthatthischangeoccurredveryrecentlyand coincideswithaprolongedpositivephaseoftheNAOsincearound1971.Recenttrends intheslopewatersystemmaythereforesignalananthropogenicinducedreturnto hypsithermallikeconditions

Whileashifttowarmersourcewatersmayexplainthe δ15 Ndecline,theimpactof atrophiccascadewarrantsfurtherinvestigation.Fromthe1970stothe1990s,theEastern

Scotianshelfshiftedfromanecosystemdominatedbylargebenthicfish,toone dominatedbysmallerpelagicfish(Choietal.,2004;Bundy,2005).Temporaltrendsin thebiomassoffish,seals,benthicinvertebrates,zooplanktonandphytoplanktonare consistentwithatrophiccascadeinitiatedbyoverfishingoflargebenthicpiscivores

177 (Franketal.,2005).Amongplankton,therewasarelativeincreaseintheratioof phytoplanktonandsmallzooplanktonvs.largerzooplankton,including Calanus

copepods(Sameoto,2001;Franketal.,2005).Thetransitionintheplanktoncommunity

occurredsometimebetween1974and1991,duringagapinContinuousPlankton

Recorderobservations(Sameoto,2001).However,itisunclearwhetherthechangeinthe planktoncommunitywastriggeredbybottomup,ortopdownforces.Similartemporal patternswereobservedintheGulfofMaine,buttheincreaseinphytoplanktonandsmall

zooplanktonwasattributedtobottomupforces,namely,anincreaseinautumn

stratification(Pershingetal.,subm.).

Anincreaseintheratioofphytoplanktonandsmallzooplanktonvs.larger

zooplanktoncouldpotentiallyexplainthedeclineinthePrimnoa δ15 Nrecord,insofaras zooplanktontendtobeisotopicallyheavier(FryandQuiñones,1994).Severallinesof evidenceargueagainstthishypothesis.1)Asstatedearlier,itisunlikelythat Primnoa eat

largezooplankton,becausetheyareconsiderablylargerthan Primnoa polypdiameters(4 mm),andanimalscanonlyingestwhattheycanfitintheirmouths.Previous δ15 N

evidenceisalsoinconsistentwithadietoflargezooplankton(Sherwoodetal.,2005b).2)

WhiletherewasagapintheContinuousPlanktonrecorderobservationsfrom19741991, biomassdatasuggestthatthemajorregimeshiftintheScotianshelfecosystemoccurred

around1990(Franketal.,2005).AssumingthatconditionsontheEasternScotianShelf

extendedtotheWesternScotianShelfandGulfofMaine,thentheregimeshiftwas

delayedbyaboutadecaderelativetothedeclinein Primnoa δ15 Naround1980(Fig.7.3).

178 3)AnecosystemmodeloftheEasternScotianShelfsuggeststhattrophiclevelofbenthic invertebratesremainedunchangedthroughcollapseofthegroundfishery(Bundy,2005).

Examinationofpotentialcausesof δ15 Nvariabilityin Primnoa suggeststhat

severaldifferentfactorscouldaccountforthelongtermvariability.Whichexplanation

15 dowefavor?The δ NNO3 hypothesisoffersamoreparsimoniousexplanation,butthis

maybebecauseitwasmorereadilyquantifiableinthepresentstudy.Inreality,thebulk

isotopicanalysispresentedhereisa“blunttool”withwhichtoprobepaleoceanographic

variability.Futurestudies,nodoubt,willfocusoncompoundspecificanalyses.For

instance,the δ15 Nofphenylalaninedoesnotincreasewithtrophiclevel,whilethatof glutamicacidincreasesbyabout7‰(McClellandandMontoya,2002).Separate analysisoftheseaminoacidscouldthereforebeusedtodistinguishchangesrelatingto

15 δ NNO3 fromchangesrelatingtotrophiccomplexity.Wesuggestthatsuchstudiescould beusedtounravelcompetingeffectsoftrophiclevelandisotopicsignatureofsource

waters.

179 7.6CONCLUSIONS

1.Recordsof δ13 Cand δ15 Nmeasuredinthegorgoninfractionof6differentPrimnoa coloniesfromtheNortheastChannelexhibitedexcellentreproducibility,indicatingthat theseparametersrespondinaconsistentmannertoenvironmentalprocessesoccurringin surfacewaters.

2.Recordsof δ13 Cand δ15 NwerebroadlyanticorrelatedwiththerecordsofNAO, temperature,salinityandproductivity.Thecommonunderlyingcauseofhydrographic andbiologicalvariabilityistherelativedominanceofcoldsourcewatersassociatedwith theLabradorCurrentandwarmsourcewatersassociatedwiththeGulfStream.

3.Thelongterm δ13 Crecorddeclinedfrom18‰duringmostofthelast2000years,to

19.5‰duringthelatterhalfofthe20 th century,anamountconsistentwiththeoceanic

Suesseffect.Thecauseofthehighfrequencyinterannualvariabilityremainsunknown.

4.Thelongterm δ15 Nrecorddeclinedfrom10.7‰duringmostofthelast2000years,to

9.7‰during20 th century.Themagnitudeofthedeclineisconsistentwithashiftfrom

15 δ NNO3 heavierLabradorsourcewaters,toisotopicallylighterGulfStreamderived

waters.Therecentshifttowarmersourcewatersmaysignalananthropogenicinduced

shifttohypsithermallikeconditions.

5.Atrophiccascade,leadingtoanincreaseintheproportionofisotopicallylighter phytoplanktoninthecoral’sdiet,offersanalternative,lessparsimoniousexplanation.

180 Futurecompoundspecificisotopeanalysiscouldbeusedtosortoutdifferentfactors leadingtoisotopicvariabilityin Primnoa andothersoftcorals.

ACKNOWLEDGEMENTS

WethankDerekJonesandSanfordAtwoodforprovidingthesubfossilspecimens,and

DonGordon,PalMortensenandtheCaptainandcrewoftheCGS Martha Black forthe recentspecimens.RadiocarbonanalyseswereperformedbyTomGuildersonatLLNL.

SpecialthankstoJenniferMcKayatGEOTOPforprocessingthelargenumberofstable isotopicanalyses.KevinPaulykindlycollectedwatersamples.ThanksalsotoAndrew

Pershingforprovidingthe Calanus data.Thismanuscriptwasgreatlyimprovedbythe

suggestionsofEvanEdinger.

181 CHAPTER8

GENERALCONCLUSIONS

Proxyrecordsfrom Primnoa andotherannuallybandedgorgoniancoralsoffer unprecedentednewopportunitiestogaininsightsintopaleoceanographicvariability.The workpresentedinthisthesisdocumentsthat:

1) Primnoa resedaeformis secretesannualgrowthringsoforganicgorgoninthatmaybe isolatedandanalyzedchemicallytoobtainproxydataonpastenvironments.

2)Thestableisotopiccompositionofgorgoninringsin Primnoa isrelatedtoavarietyof processesoccurringinsurfacewaters,includingtheisotopiccompositionofsource nutrients,andplanktonproductivity.

3)Lifespansofindividualcoloniesmayexceed700years,making Primnoa oneofthe

oldestanimalsinthesea.

4)Usefulproxyenvironmentaldatamaybeobtainedfromboththecalciteandgorgonin

fractionsofcolonies.Measurementsof 14 Cfromthecalcitefractionareparticularly useful,astheyaredirectlyrelatedtothe 14 Cofambientwatermasses.

5)ForcoloniescollectedoffNovaScotia,proxyrecordsfrom Primnoa indicatethatthe

recentshifttowarmerconditionssince1970islargelyanomalouswithrespecttothelast

2000years.

6)Thepaleoceanographicpotentialofoctocoralshasjustbarelybeentapped.Future

studiesonawidervarietyofspecimenswillnodoubtshednewlightintoclimateocean

interactionsoverlongtimeperiods.

182 REFERENCES Adkins,J.F.,Boyle,E.A.1997.Changingatmospheric 14 Candtherecordofdeepwater paleoventilationages.Paleoceanography.12,337344. Adkins,J.F.,Cheng,H.,BoyleE.A.,Druffel,E.R.M.,Edwards,R.L.,1998.Deepsea coralevidenceforrapidchangeinventilationofthedeepNorthAtlantic15,400years ago.Science.280,725728. Adkins,J.F.,Griffin,S.,Kashgarian,M.,Cheng,H.,Druffel,E.R.M.,Boyle,E.A., Edwards,R.L.,Shen,C.C.,2002.Radiocarbondatingofdeepseacorals.Radiocarbon. 44:567580. Adkins,J.F.,Boyle,E.A.,Curry,W.B.,Lutringer,A.,2003.Stableisotopesindeepsea coralsandanewmechanismfor“vitaleffects”.GeochimicaetCosmochimicaActa.67, 11291143. Adkins,J.F.,Henderson,G.M.,Wang,S.L.,O’Shea,S.,Mokadem,F.,2004.Growth ratesofthedeepseascleractinian Desmophyllum cristagalli and Enallopsammia rostrata .EarthandPlanetaryScienceLetters.227,481490. Allard,G.,Sinclair,D.J.,Williams,B.,HillaireMarcel,C.,Ross,S.,Risk,M.2005. Dendochronologyinbamboo?Geochemicalprofilesandreproducibilityinaspecimenof thedeepwaterbamboocoral Keratoisis spp.Proc.3 rd InternationalSymposiumonDeep SeaCorals.Miami,USA,pp.204. Andrews,A.H.,Coale,K.H.,Nowicki,J.L.,Lundstrom,C.,Palacz,Z.,Burton,E.J., Cailliet,G.M.1999.Applicationofanionexchangeseparationtechniqueandthermal ionizationmassspectrometryto 226 Radeterminationinotolithsforradiometricage determinationoflonglivedfishes.CanadianJournalofFisheriesandAquaticSciences. 56,1329–1338.

183 Andrews,A.H.,Cordes,E.E.,Mahoney,M.M.,Munk,K.,Coale,K.H.,Cailliet,G.M., Heifitz,J.,2002.Age,growthandradiometricagevalidationofadeepsea,habitat forminggorgonian( Primnoa resedaeformis )fromtheGulfofAlaska.Hydrobiologia. 471,101110. Andrews,A.H.,Cailliet,G.M.,Kerr,L.A.,Coale,K.H.,Lundstrom,C.,DeVogelaere, A.P.2005.Investigationsoftheageandgrowthforthreedeepseacoralsfromthe DavidsonSeamountoffcentralCalifornia.In:Freiwald,A.,Roberts,J.M.(Eds.),Cold WaterCoralsandEcosystems.Springer,Berlin,pp.10211038. Altabet,M.A.1988.Variationsinnitrogenisotopiccompositionbetweensinkingand suspendedparticles:implicationsfornitrogencyclingandparticletransformationinthe openocean.DeepSeaResearch.35,535554. Altabet,M.A.,McCarthyJ.J.1985.Temporalandspatialvariationsinthenatural abundanceof 15 NinPONfromawarmcorering.DeepSeaResearch.32,755772. Altabet,M.A.,Francois,R.1994.Sedimentarynitrogenisotopicratioasarecorderfor surfaceoceannitrateutilization.GlobalBiogeochemicalCycles.8,103116. Altabet,M.A.,DeuserW.G.,Honjo,S.1991.Seasonalanddepthrelatedchangesinthe sourceofsinkingparticlesintheNorthAtlantic.Nature.354,136139. Altabet,M.A.,Francois,R.,Murray,D.W.,Prell,W.L.1995.Climaterelatedvariations indenitrificationintheArabianSeafromsediment 15 N/ 14 Nratios.Nature.373,506508. Altabet,M.A.,Pilskaln,C.,Thunell,R.,Pride,C.,Sigman,D.,Chavez,F.,Francois,R. 1999.Thenitrogenisotopebiogeochemistryofsinkingparticlesfromthemarginofthe easternNorthPacific.DeepSeaResearch.46,655679.

184 Atkinson,L.P.1983.DistributionofAntarcticIntermediateWaterovertheBlakePlateau. JournalofGeophysicalResearch.88(C8),46994704. Barber,D.C.,Dyke,A.,HillaireMarcel,C.,Jennings,A.E.,Andrews,J.T.,Kerwin, M.W.,Bilodeau,G.,McNeely,R.,Southon,J.,Morehead,M.D.,Gagnon,J.M.1999. Forcingthecoldeventof8200yearsagobycatastrophicdrainageofLaurentidelakes. Nature.400,344348. Bard,E.,Fairbanks,R.G.,Hamelin,B.,Zindler,A.,ChiTrach,H.1991.Uranium234 anomaliesincoralsolderthan150000years.GeochimicaetCosmochimicaActa.55, 23852390. Bard,E.,Arnold,M.,Fairbanks,R.G.,Hamelin,B.1993. 230 Th234 Uand 14 Cages obtainedbymassspectrometryoncorals.Radiocarbon.35,191199. Barnes,D.J.,1970.Coralskeletons:Anexplanationoftheirgrowthandstructure. Science.170,13051308. Bauer,J.E.,Druffel,E.R.M.,Wolgast,D.M.,Griffin,S.2002.Temporalandregional variabilityinsourcesandcyclingofDOCandPOCinthenorthwestAtlanticcontinental shelfandslope.DeepSeaResearch.(II).49,43874419. Beuck,L.,Freiwald,A.,2005.BioerosionpatternsinadeepwaterLopheliapertusa thicket(PropellerMound,northernPorcupineSeabight.)In:Freiwald,A.,Roberts,J.M. (Eds.),ColdwaterCoralsandEcosystems.Springer,Berlin,pp.915936. Boerboom,C.M.,Smith,J.E.,Risk,M.J.,1998.Bioerosionandmicritisationinthedeep seacoral Desmophyllum cristagalli .HistoricalBiology.13,5360. Bohm,F.,HaaseSchramm,A.,Eisenhauer,A.,Dullo,W.C.,Joachimski,M.M.,Lehnert, H.,Reitner,J.2002.Evidenceforpreindustrialvariationsinthemarinesurfacewater

185 carbonatesystemfromcorallinesponges.GeochemistryGeophysicsGeosystems.3(3): 1019,doi:10.1029/2001GC000264. Bond,Z.A.,Cohen,A.L.,Smith,S.R.,Jenkins,W.J.,2005.Growthandcompositionof highMgcalciteintheskeletonofaBermudiangorgonian( Plexaurella dichotoma ): Potentialforpaleothermometry.GeochemistryGeophysicsGeosystems.6,Q08010, doi:10.1029/2005GC000911. Bosley,K.L.,Wainright,S.C.1999.Effectsofpreservationandacidificationonthestable isotoperatios( 15 N: 14 N, 13 C: 12 C)oftwospeciesofmarineanimals.CanadianJournalof FisheriesandAquaticSciences.56,2181–2185. Breeze,H.,Davis,D.S.,Butler,M.,Kostylev,V.1997.Distributionandstatusofdeep seacoralsoffNovaScotia.EcologyActionCentre,MarineIssuesCommitteeSpecial PublicationNumber1,58pp. Brinton,K.L.F.,Bada,J.L1995.Commenton“Asparticacidracemizationandprotein diagenesisincoralsoverthelast350years”byG.A.Goodfriend,P.E.Hare,andE.R.M. Druffel.GeochimicaetCosmochimicaActa.59,415416. Broecker,W.S.,Gerard,R.,Ewing,M.,Heezen,B.C.1960.Naturalradiocarboninthe AtlanticOcean.JournalofGeophysicalResearch.65(a),29032931. Broecker,W.S.,Klas,M.,Clark,E.,Trumbore,S.,Bonani,G.,Wolfli,W.,Ivy,S.1990. Acceleratormassspectrometricmeasurementsonforaminiferashellsfromdeepsea cores.Radiocarbon.32,119133. Bromley,R.G.2005.PreliminarystudyofbioerosioninthedeepwatercoralLophelia, Pleistocene,Rhodes,Greece.In:Freiwald,A.,Roberts,J.M.(Eds.),ColdwaterCorals andEcosystems.Springer,Berlin,pp.895914.

186 Bryan,T.L.,Metaxas,A.Predictingsuitablehabitatfordeepwatercoralinthefamilies Paragorgiidae and Primnoidae ontheAtlanticandPacificcontinentalmarginsofNorth America.MarineEcologyProgressSeries.(inpress). Bryan,W.B.,Hill,D.,1941.Spheruliticcrystallizationasamechanismofskeletalgrowth inthehexacorals.ProceedingsoftheRoyalSocietyofQueensland.52,7891. Bryden,H.L.,Longworth,H.R.,Cunningham,S.A.2005.SlowingoftheAtlantic meridionaloverturingcirculationat25 oN.Nature.438:655657. Bundy,A.2005.StructureandfunctioningoftheeasternScotianShelfecosystembefore andafterthecollapseofgroundfishstocksintheearly1990s.CanadianJournalof FisheriesandAquaticSciences.62:14531473. Cairns,S.D.l981.MarinefloraandfaunaofthenortheasternUnitedStates.. NOAATechnicalReport.NMFSCircular.438:l4pp. Campana,S.E.1997.Useofradiocarbonfromnuclearfalloutasadatedmarkerinthe otolithsofhaddock Melanogrammus aeglefinus .MarineEcologyProgressSeries.150, 49–56. Carriquiry,J.D.,Risk,M.J.,1988.Timingandtemperaturerecordfromstableisotopesof the19821983ElNiñowarmingeventinEasternPacificcorals.Palaios.3,359364. Cheng,H.,Adkins,J.A.,Edwards,R.L.,Boyle,E.A.,2000.UThdatingofdeepsea corals.GeochimicaetCosmochimicaActa.64,24012416. Choi,J.S.,Frank,K.T.,Legget,W.C.,Drinkwater,K.2004.Transitiontoanalternate stateinacontinentalshelfecosystem.CanadianJournalofFisheriesandAquatic Sciences.61,505510.

187 Cline,J.D.,Kaplan,I.R.1975.Isotopicfractionationofdissolvednitrateduring denitrificationintheeasterntropicalnorthPacificOcean.MarineChemistry.3,271299. Cohen,A.L.,McConnaughey,T.A.,2003.Geochemicalperspectivesoncoral mineralization.ReviewsinMineralogyandGeochemistry.54,151187. Cohen,A.L.,Lundälv,T.,Thorrold,S.R.,Corliss,B.H.,Smith,S.R.,George,R.Y.Sr/Ca variabilityintheskeletonofacoldwaterscleractinian, Lophelia pertusa .Manuscript submittedtoGeochemistry,Geophysics,Geosystems. Collins,M.J.,Waite,E.R.,vanDuin,A.C.T.1999.Predictingproteindecomposition:the caseofasparticacidracemizationkinetics.PhilosophicalTransactionsoftheRoyal SocietyofLondon.B.354:5164. Collins,M.J.,Riley,M.S.2000.Aminoacidracemizationinbiominerals:theimpactof proteindegradationandloss.In: Perspectives in Amino Acid and Protein Geochemistry (eds.G.A.,Goodfriend,M.J.Collins,M.L.Fogel,S.A.Macko,andJ.F.Wehmiller). OxfordUniv.Press,NewYork.pp.120142. Coma,R.,Gili,J.M.,Zabala,M.,Riera,T.1994.Feedingandpreycapturecyclesinthe aposymbionticgorgonian Paramuricea clavata MarineEcologyProgressSeries.115, 257270. Constanz,B.R.1986.Coralskeletonconstruction:Aphysicochemicallydominated process.Palaois.1,152157. Conversi,A.,Piontkovski,S.,Hameed,S.2001.Seasonalandinterannualdynamicsof Calanus finmarchicus intheGulfofMaine(NortheasternUSshelf)withreferencetothe NorthAtlanticOscillation.DeepSeaResearchII.48:519530 Csanady,G.T.,Hamilton,P.1988.Circulationofslopewater.ContinentalShelf

188 Research.8,565624. Cuif,J.P.,Dauphin,Y.,2005.Thetwostepmodeofgrowthinthescleractiniancoral skeletonsfromthemicroscaletotheoverallscale.JournalofStructuralBiology.150, 319331.

Cullen,J.T.,Rosenthal,Y.,Falkowski,P.G.2001.TheeffectofanthropogenicCO 2on thecarbonisotopecompositionofmarinephytoplankton.LimnologyandOceanography. 46,996998. DeNiroM.J.,Epstein,S.1978.Influenceofdietonthedistributionofcarbonisotopesin animals.GeochimicaetCosmochimicaActa.42,495–506. DeNiro,M.J.,Epstein,S.1981.Influenceofdietonthedistributionofnitrogenisotopes inanimals.GeochimicaetCosmochimicaActa.45,341–351. Drinkwater,K.F.B.,Petrie,B.,Smith,P.C.2003.ClimatevariabilityontheScotianShelf duringthe1990s.ICESMarineScienceSymposium.219,4049. Druffel,E.R.M.1989.DecadetimescalevariabilityofventilationintheNorthAtlantic: Highprecisionmeasurementsofbombradiocarboninbandedcorals.Journalof GeophysicalResearch.94,32713285. Druffel,E.M.,Linick,T.W.1978.RadiocarboninannualcoralringsofFlorida. GeophysicalReseachLetters.5(11):913916. Druffel,E.R.M.,King,L.L.,Belastock,R.A.,Buesseler,K.O.1990.Growthrateofa deepseacoralusing 210 Pbandotherisotopes.GeochimicaetCosmochimicaActa.54, 14931500.

189 Druffel,E.R.M.,Griffin,S.,Witter,A.,Nelson,E.,Southon,J.,Kashgarian,M.,Vogel, J.,1995. Gerardia :Bristleconepineofthedeepsea?GeochimicaetCosmochimicaActa. 59,50315036. Edwards,R.L.,Beck,W.J.,Burr,G.S.,Donahue,D.J.,Chappell,J.M.A.,Bloom,A.L., Druffel,E.R.M.,Taylor,F.W.1993.Alargedropinatmospheric 14 C/ 12 Candreduced meltingintheYoungerDryas,documentedwith 230 Thagesofcorals.Science.260,962 967. Edwards,R.L.,Gallup,C.D.,Cheng,H.2003.Uraniumseriesdatingofmarineand lacustrinecarbonates.ReviewsinMineralogyandGeochemistry.52,363405. Emiliani,C.,HudsonJ.H.,ShinnE.A.,GeorgeR.Y.,Lidz,B.1978.Oxygenandcarbon isotopicgrowthrecordinareefcoralfromtheFloridaKeysandadeepseacoralfrom BlakePlateau.Science.202,627629. Epstein,S.,Buchsbaum,R.,Lowenstam,H.A.,Urey,H.C.1953.Revisedcarbonate waterisotopictemperaturescale.BulletinoftheGeologicalSocietyofAmerica64,1315 1325. Etnoyer,P.,Morgan,L.2003.Occurrencesofhabitatformingdeepseacoralsinthe NortheastPacificOcean.ReporttoNOAAOfficeofHabitatConservation.Marine ConservationBiologyInstitute,RedmondWashington.31pp. Fallon,S.J.,White,J.C.,McCulloch,M.T.,2002.Poritescoralsasrecordersofmining andenvironmentalimpacts:MisimaIsland,PapuaNewGuinea.Geochimicaet CosmochimicaActa.66,4562. Fallon,S.J.,Roark,E.B.,Guilderson,T.P.,Dunbar,R.B.,Weber,P.2005.Elemental imagingandproxydevelopmentinthedeepseacoral, Corallium secundrum .

190 Proceedingsofthe3rdInternationalSymposiumonDeepSeaCorals.Miami,USA,pp. 187. Flynn,W.W.,1968.Thedeterminationoflowlevelsofpolonium210in environmentalmaterials.AnalyticaChimicaActa.43,221–227. Fosså,J.H.,Mortensen,P.B.,Furevik,D.M.2002.Thedeepwatercoral Lophelia pertusa inNorwegianwaters:distributionandfisheryimpacts.Hydrobiologia.471:112. Francey,R.J.,Allison,C.E.,Etheridge,D.M.,Trudinger,C.M.,Enting,I.G., Leuenberger,M.,Langenfelds,R.L.,Michel,E.,Steele,L.P.1999.A1000yearhigh 13 precisionrecordof δ CinatmosphericCO 2.Tellus.51B,170193. Frank,K.T.,Petrie,B.,Choi,J.S.,Legget,W.C.2005.Trophiccascadesinaformerly coddominatedecosystem.Science.308,16211623. Frank,N.,Paterne,M.,Ayliffe,L.,vanWeering,T.,Henriet,J.P.,Blamart,D.,2004. EasternNorthAtlanticdeepseacorals:tracingupperintermediatewater 14 Cduringthe Holocene.EarthandPlanetaryScienceLetters.219,297309. Frank,N.,Lutringer,A.,Paterne,M.,Blamart,D.,Henriet,J.P.,vanRooij,D.,van Weering,T.C.E.2005.DeepwatercoralsofthenortheasternAtlanticmargin:carbonate moundevolutionandupperintermediatewaterventilationduringtheHolocene.In: Freiwald,A.,Roberts,J.M.(Eds.),ColdWaterCoralsandEcosystems.Springer,Berlin, pp.113133. Freeman,K.H.2001.Isotopicbiogeochemistryofmarinecarbon.Reviewsin MineralogyandGeochemistry.43,579605. Fry,B.1988.FoodwebstructureonGeorgesBankfromstableC,N,andSisotopic compositions.LimnologyandOceanography.33,1182–1190.

191 Fry,B.,Sherr,E.B.1984.δ13 Cmeasurementsasindicatorsofcarbonflowinmarineand freshwaterecosystems.ContributionstoMarineScience.27,13–47. Fry,B.,Wainright,S.C.1991.Diatomsourcesof 13 Crichcarboninmarinefoodwebs. MarineEcologyProgressSeries.76,149157. Fry,B.,Quiñones,R.N.1994.Biomassspectraandstableisotopeindicatorsoftrophic levelinzooplanktonofthenorthwestAtlantic.MarineEcologyProgressSeries.112, 201204. Furla,P.,BénazetTambutté,S.,Jaubert,J.,Allemand,D.,1998.Diffusionalpermeability ofdissolvedinorganiccarbonthroughtheisolatedoralepitheliallayersofthesea anemone, Anemonia viridis .JournalofExperimentalMarineBiologyandEcology.230, 7188. Gagnon,A.C.,Adkins,J.F.,2005.Multipleproxy“vitaleffects”inadeepseacoral. Proceedingsofthe3rdInternationalSymposiumonDeepSeaCorals.Miami,USA,pp. 188. Ganeshram,R.S.,Pederson,T.F.,Calvert,S.E.,Murray,J.W.1995.Largechangesin oceanicnutrientinventoriesfromglacialtointerglacialperiods.Nature.376,755757. Geiger,T.,Clarke,S.1987.Deamidation,isomerization,andracemizationat asparaginylandaspartylresiduesinpeptides.Succinimidelinkedreactionsthat contributetoproteindegradation.JournalofBiologicalChemistry262,785794. Gilliken,D.P.,Dehairs,F.,Baeyens,W.,Navez,J.,Lorrain,A.,André,L.2005. InterandintraannualvariationsofPb/Caratiosinclamshells( Mercenaria mercenaria ):Arecordofanthropogenicleadpollution?MarinePollutionBulletin. 50,15301540.

192 Gladfelter,E.H.1982.Skeletaldevelopmentin Acropora cervicornis :I.Patternsof calciumcarbonateaccretionintheaxialcorallite.CoralReefs.1,4551. Goering,J.,Alexander,V.,Haubenstock,N.1990.Seasonalvariabilityofstablecarbon andnitrogenisotoperatiosoforganismsinaNorthPacificbay.EstuarineCoastaland ShelfScience.30,239–260. Goldberg,W.M.1974.Evidenceofasclerotizedcollagenfromtheskeletonofa gorgoniancoral.ComparativeBiochemistryandPhysiology.49B,525529. Goldberg,W.M.1976.Comparativestudyofthechemistryandstructureofgorgonian andantipathariancoralskeletons.MarineBiology.35,253267. Goldberg,W.M.1991.Chemistryandstructureofskeletalgrowthringsintheblackcoral Antipathes fiordenis (,Antipatharia).Hydrobiologia.217/216,403409. Goldstein,S.J.,Lea,D.W.,Chakraborty,S.,Kashgarian,M.,Murrell,M.T.2001. Uraniumseriesandradiocarbongeochronologyofdeepseacorals:implicationsfor SouthernOceanventilationratesandtheoceaniccarboncycle.EarthandPlanetary ScienceLetters.193,167182. GoodfriendG.A.1991.Patternsofracemizationandepimerizationofaminoacidsinland snailsoverthecourseoftheHolocene.GeochimicaetCosmochimicaActa.55,293302. Goodfriend,G.A.1992.Rapidracemizationofasparticacidinmolluscshellsandthe potentialfordatingoverrecentcenturies.Nature.357,399401. Goodfriend,G.A.,1997.Asparticacidracemizationandaminoacidcompositionofthe organicendoskeletonofthedeepwatercolonialanemone Gerardia :Determinationof longevityfromkineticexperiments.GeochimicaetCosmochimicaActa.61,19311939.

193 Goreau,T.F.,1959.ThephysiologyofskeletalformationincoralsI.Amethodfor measuringtherateofcalciumdepositionbycoralsunderdifferentconditions.Biological Bulletin.116,5975. Grasshoff,M.,Zibrowius,H.,1983.KalkkrustenaufAchsenvonHornkorallen. SenckenbergianaMaritima.15,111145. Greene,C.H.,Pershing,A.J.2000.TheresponseofCalanusfinmarchicuspopulationsto climatevariabilityintheNorthwestAtlantic:basinscaleforcingassociatedwiththe NorthAtlanticOscillation.ICESJournalofMarineScience.57,15361544. Greene,C.H.,Pershing,A.J.2003.TheflipsideoftheNorthAtlanticOscillationand modalshiftsinslopewatercirculationpatterns.LimnologyandOceanography.48,319 322. Griffin,S.,Druffel,E.R.M.,1989.Sourcesofcarbontodeepseacorals.Radiocarbon.31, 533543. Grigg,R.W.1974.Growthrings:annualperiodicityintwogorgoniancorals.Ecology. 55,876881. Grossman,E.L.,Ku,TL.,1986.Oxygenandcarbonisotopefractionationinbiogenic aragonite:Temperatureeffects:ChemicalGeology.(IsotopeGeoscienceSection)59,59 74. HallSpencer,J.,Allain,V.,Fosså,J.H.2002.TrawlingdamagetoNortheastAtlantic ancientcoralreefs.ProceedingsoftheRoyalSocietyofLondon.269(1490),50711.

194 Haug,G.H.,Pederson,T.F.,Sigman,D.M.,Calvert,S.E.,Nielsen,B.,Peterson,L.C. 1998.Glacial/interglacialvariationsinproductionandnitrogenfixationintheCariaco Basinduringthelast580kyr.Paleoceanography.13,427432. Hawkes,A.,Scott,D.B.,2005. Primnoa resedaeformis habitatcharacterizationusingan associateassemblageofattachedbenthicforaminifera.In:Freiwald,A.,Roberts,J.M. (Eds.),ColdwaterCoralsandEcosystems.Springer,Berlin.pp.881894. Heikoop,J.M.,TsujitaC.JandM.J.Risk.1996.Coralsasproxyrecordersofvolcanic activity:BandaApi,Indonesia.Palaois.11:286292. Heikoop,J.M.,Risk,M.J.,Lazier,A.V.,Schwarcz,H.P.1998. δ18 Oand δ13 Csignatures ofadeepseagorgoniancoralfromtheAtlanticcoastofCanada.EOS.79(supplement 17),S179. Heikoop,J.M.,Hickmott,D.D.,Risk,M.J.,Shearer,C.K.,Atudorei,V.2002.Potential climatesignalsfromthedeepseagorgoniancoral Primnoa resedaeformis . Hydrobiologia.471,117124. Henderson,G.M.2002.Seawater( 234 U/ 238 U)duringthelast800thousandyears.Earth andPlanetaryScienceLetters.199,97110. HendyE.J.,GaganM.K.,AlibertC.A.,McCullochM.T.,LoughJ.M.,Isdale,P.J.,2002. AbruptdecreaseintropicalPacificseasurfacesalinityatendofLittleIceAge.Science. 295,15111514. Hoffman,M.,WolfGladrow,D.A.,Takahashi,T.,Sutherland,S.C.,Six,K.D.,Maier Reimer,E.2000.Stablecarbonisotopedistributionofparticulateorganicmatterinthe ocean:amodelstudy.MarineChemistry.72,131150.

195 Houghton,R.W.,Fairbanks,R.G.2001.WatersourcesforGeorgesBank.DeepSea Research.II.48,95114. Hughen,K.A.,Baillie,M.G.L.,Bard,E.,Bayliss,A.,Beck,J.W.,Bertrand,C.J.H., Blackwell,P.G.,Buck,C.E.,Burr,G.S.,Cutler,K.B.,Damon,P.E.,Edwards,R.L., Fairbanks,R.G.,Friedrich,M.,Guilderson,T.P.,Kromer,B.,McCormac,F.G.,Manning, S.W.,BronkRamsey,C.,Reimer,P.J.,Reimer,R.W.,Remmele,S.,Southon,J.R., Stuiver,M.,Talamo,S.,Taylor,F.W.,vanderPlicht,J.,Weyhenmeyer,C.E.2004. Marine04Marineradiocarbonagecalibration,260kaBP.Radiocarbon.46,1059 1086. Hurrell,J.W.,Kushnir,Y.,Visbeck,M.2001.TheNorthAtlanticOscillation.Science. 291:603605. IPCC(IntergovernmentalPanelonClimateChange)2001.ClimateChange:The ScientificBasis.CambridgeUniv.Press,Cambridge.880pp. Jasper,J.P.,Hayes,J.M.,Mix,A.C.,Prahl,F.G.1994.Photosyntheticfractionationof 13 C andconcentrationsofdissolvedCO 2inthecentralequatorialPacificduringthelast 255,000years.Paleoceanography.9,781798. Johnston,I.S.1980.Theultrastructureofskeletogenesisinhermatypiccorals. InternationalReviewofCytology67,171214. Kalish,J.M.1993.Preandpostbombradiocarboninfishotoliths.EarthandPlanetary ScienceLetters.114,549554. Kaufman,D.S.,Manley,W.F.1998.AnewprocedurefordeterminingDLaminoacid ratiosinfossilsusingreversephaseliquidchromatography.QuaternaryGeochronology. 17,9871000.

196 Kaufman,D.2003.Datingdeeplakesedimentsbyusingaminoacidracemizationin fossilostracodes.Geology.31,10491052. Keigwin,L.D.,Sachs,J.P.,Rosenthal,Y.2003.A1600yearhistoryoftheLabrador CurrentoffNovaScotia.ClimateDynamics.21,5362. Keil,R.G.,Fogel,M.L.2001.Reworkingofaminoacidinmarinesediments:Stable carbonisotopiccompositionofaminoacidsinsedimentsalongtheWashingtoncoast. LimnologyandOceanography.46,1423. Kerr,L.A.,Andrews,A.H.,Munk,K.,Coale,K.H.,Frantz,B.R.,Cailliet,G.M.,Brown, T.A.2005.Agevalidationofquillbackrockfish( Sebastes maliger )usingbomb radiocarbon.FisheryBulletin.103,97107. Key,R.M.2001.Radiocarbon.In:Steele,J.,Thorpe,S.,Turekian,K.(Eds.), EncyclopediaofOceanSciences.AcademicPress,London,pp.23382353. Key,R.M.,Kozyr,A.,Lee,K.,Wanninkhof,R.,Bullister,J.L.,Feely,R.A.,Millero,F.J., Mordy,C.,Peng,T.H.2004.Aglobaloceancarbonclimatology:ResultsfromGlobal DataAnalysisProject(GLODAP).GlobalBiogeochemicalCycles.18,GB4031. doi:10.1029/2004GB002247. Kline,T.C.1999.Temporalandspatialvariabilityof 13 C/ 12 Cand 15 N/ 14 Ninpelagicbiota ofPrinceWilliamSound,Alaska.CanadianJournalofFisheriesandAquaticSciences. 56(supp1),94117. Knapp,A.N.,Sigman,D.M.,Lipschultz,F.2005.Nisotopiccompositionofdissolved organicnitrogenandnitrateattheBermudaAtlantictimeseriessite.Global BiogeochemicalCycles.19,GB1018.doi:10.1029/2004GB002320.

197 Knutsen,D.W.,Buddemeier,R.W.,Smith,S.V.1972.Coralchronometers:Seasonal growthbandsinreefcorals.Science.177,270272. 13 Kortzinger,A.,Quay,P.D.2003.RelationshipbetweenanthropogenicCO 2andthe C SuesseffectintheNorthAtlanticOcean.GlobalBiogeochemicalCycles.17(1),1005. doi:10.1029/2001GB001427. 13 Kroopnick,P.1985.Thedistributionof Cof∑CO 2intheworldoceans.DeepSea Research.32,5784. Laws,E.A.,Popp,B.N.,Cassar,N.,Tanimoto,J.2002. 13 Cdiscriminationpatternsin

oceanicphytoplankton:likelyinfluenceofCO 2concentratingmechanisms,and implicationsforpalaeoreconstructions.FunctionalPlantBiology.29,323–333. Lazareth,C.E.,Willenz,P.,Navez,J.,Keppens,E.,Dehairs,F.,Andre´,L.,2000. Sclerospongesasanewpotentialrecorderofenvironmentalchanges:Leadin Ceratoporella nicholsoni .Geology.28,515–518. Lazier,A.V.,Smith,J.E.,Risk,M.J.,1999.Theskeletalstructureof Desmophyllum cristagalli :theuseofdeepwatercoralsinsclerochronology.Lethaia.32,119130. Lehmann,M.F.,Bernasconi,S.M.,Barbieri,A.,McKenzie,J.A.2002.Preservationof organicmatterandalterationofitscarbonandnitrogenisotopecompositionduring simulatedandinsituearlysedimentarydiagenesis.GeochimicaetCosmochimicaActa. 66,35733584. Leterme,S.C.,Edwards,M.,Seuront,L.,Attrill,M.J.,Reid,P.C.,John,A.W.G.2005. Decadalbasinscalechangesindiatoms,dinoflagellates,andphytoplanktoncoloracross theNorthAtlantic.LimnologyandOceanography.50,12441253.

198 Levac,E.2001.HighresolutionHolocenepalynologicalrecordfromtheScotianShelf. MarineMicropaleontology.43,179197. Levitus,S.,Boyer,T.1994.WorldOceanAtlas1994,Volume2:Oxygen.NOAAAtlas NESDIS2,U.S.DepartmentofCommerce,Washington,D.C. Lewis,J.C.,Barnowski,T.F.,Telesnicki,G.J.,1992.Characteristicsofcarbonatesof gorgonianaxes.BiologicalBulletin.183,278296. Libes,S.M.,Deuser,W.G.1988.Theisotopegeochemistryofparticulatenitrogeninthe PeruUpwellingAreaandtheGulfofMaine.DeepSeaResearch.35,517533. Linnaeus,C.1758.Systemanaturae.Editiodecima,reformata.1.Holmiae:Impensis Direct.LaurentiiSalvii.pp.iiv+1824 Loder,J.W.,Shore,J.A.,Hannah,C.G.,Petrie,B.D.2001.Decadalscale hydrographicandcirculationvariabilityintheScotiaMaineregion.DeepSea Research.II.48,335. Lomitschka,M.,Mangini,A.1999.PreciseTh/Udatingofsmallandheavilycoated samplesofdeepseacorals.EarthandPlanetaryScienceLetters.170,391401. Lourey,M.J.,Trull,T.W.,Sigman,D.M.,2004.SensitivityofdeltaN15ofnitrate, surfacesuspendedanddeepsinkingparticulatenitrogentoseasonalnitratedepletionin theSouthernOcean.GlobalBiogeochemicalCycles.17(3),1081. Ludwig,K.R.,Titterington,D.M.1994.Calculationof 230 Th/Uisochrons,agesand errors.GeochimicaetCosmochimicaActa.58,50315042.

199 Lutringer,A.,Blamart,D.,Frank,N.,Labeyrie,L.2005.Paleotemperaturesfromdeep seacorals:scaleeffects.In:Freiwald,A.,Roberts,J.M.(Eds.),ColdWaterCoralsand Ecosystems.Springer,Berlin,pp.10811096. Macintyre,I.G.,Bayer,F.M.,Logan,M.A.,Skinner,H.C.W.2000.Possiblevestigeof earlyphosphaticbiomineralizationingorgonianoctocorals(Coelenterata).Geology.28, 455458. MacIsaac,K.,Bourbonnais,C.,Kenchington,E.,GordonD.C.Jr.Gass,S.2001. ObservationsontheoccurrenceandhabitatpreferenceofcoralsinAtlanticCanada.In: J.H.M.Willisonetal.(Eds.)ProceedingsoftheFirstInternationalSymposiumonDeep SeaCorals,EcologyActionCentreandNovaScotiaMuseum,Halifax,NS,pp.5875. Macko,S.A.1981.Stablenitrogenisotoperatiosastracersoforganicgeochemical processes.PhDthesis,UnivTexas,Austin.182pp. Macko,S.A.,Estep,M.L.1984.Microbialalterationofstablenitrogenandcarbon isotopiccompositionsoforganicmatter.OrganicGeochemistry.6,787790. Mangerud,J.,Gulliksen,S.1975.Apparentradiocarbonagesofrecentmarineshellsfrom Norway,Spitsbergen,andArcticCanada.QuaternaryResearch.5,263273. Mangini,A.,Lomitschka,M.,Eichstadter,R.,Frank,N.,Vogler,S.1998.Coralprovides waytoagedeepwater.Nature.392,347348. Mariotti,A.,Germon,J.C.,Hubert,P.,Kaiser,P.,Letolle,R.,Tardieux,A.,Tardieux,P. 1981.Experimentaldeterminationofnitrogenkineticisotopefractionation:some principles;illustrationforthedenitrificationandnitrificationprocesses.PlantandSoil. 62,413430.

200 Marschal,C.,Garrabou,J.,Harmelin,J.G.,Pichon,M.,2004.Anewmethodfor measuringgrowthandageinthepreciousredcoralCorallium rubrum (L.).CoralReefs. 23,423432. Marsh,R.,Petrie,B.,Weidman,C.R.,Dickson,R.R.,Loder,J.W.,Hannah,C.G.,Frank, K.,Drinkwater,K.1999.The1882tilefishkill–coldeventinshelfwatersoffthenorth easternUnitedStates?FisheriesOceanography.8(1),2949. Marsh,R.2000.ModelingchangesinNorthAtlanticcirculationundertheNAO minimumwindforcingof18771881.AtmosphereOcean.38,367393. McConnaughey,T.,McRoy,C.P.1979.Foodwebstructureandthefractionationof carbonisotopesintheBeringSea.MarineBiology.53,257262. McConnaughey,T.A.,1989a. 13 Cand 18 Oisotopedisequilibriainbiologicalcarbonates. 1.Patterns.GeochimicaetCosmochimicaActa.53,151162. McConnaughey,T.A.,1989b. 13 Cand18 Oisotopedisequilibriainbiologicalcarbonates. 2.Invitrosimulationofkineticisotopeeffects.GeochimicaetCosmochimicaActa.53, 163171. McConnughey,T.A.,2003.Subequilibriumoxygen18andcarbon13levelsin biologicalcarbonates:carbonateandkineticmodels.CoralReefs.22,316327. McClelland,J.W.,Montoya,J.P.2002.Trophicrelationshipsandthenitrogenisotopic compositionofaminoacidsinplankton.Ecology.83,2173–2180. MERCINA(MarineEcosystemsResponsestoClimateIntheNorthAtlanticworking group).Pershing,A.J.,Greene,C.H.,Hannah,C.,Mountain,D.G.,Sameoto,D.,Head, E.,Jossi,J.W.,Benfield,M.C.,Reid,P.C.,Durbin,T.G.2001.Oceanographicresponses toclimateintheNorthwestAtlantic.Oceanography.14,7682.

201 Minagawa,M.,Wada,E.1984.Stepwiseenrichmentof δ15 Nalongfoodchains:further evidenceandtherelationbetween 15 Nandanimalage.GeochimicaetCosmochimica Acta.48,1135–1140. Mitterer,R.M.,Kriausakul,N.1989.Calculationofaminoacidracemizationratesbased onapparentparabolickinetics.QuaternaryScienceReviews.8,353357. Montagna,P.,McCulloch,M.,Taviani,M.,Remia,A.,Rouse,G.2005.Highresolution traceelementcompositionsindeepwaterscleractiniancorals( Desmophyllum dianthus ) fromtheMediterraneanSeaandtheGreatAustralianBight.In:Freiwald,A.,Roberts, J.M.(Eds.),ColdWaterCoralsandEcosystems.Springer,Berlin,pp.11091126. Mortensen,P.B.,Rapp,H.T.,1998.Oxygenandcarbonisotoperatiosrelatedtogrowth linepatternsinskeletonsofLopheliapertusa(L.)(,Sclleractinia):Implications fordeterminationoflinearextensionrates.Sarsia.83,433446. Mousseau,L.,Legendre,L.,Fortier,L.1996.Dynamicsofsizefractionated phytoplanktonandtrophicpathwaysontheScotianShelfandattheshelfbreak, NorthwestAtlantic.AquaticMicrobialEcology.10,149163. Muzuka,A.N.N.,HillaireMarcel,C.1999.Burialratesoforganicmatteralongthe easternCanadianmarginandstableisotopeconstraintsonitsoriginanddiagenetic evolution.MarineGeology.160:251270. Nakatsuka,T.,Handa,N.,Wada,E.,Wong,C.S.1992.Thedynamicchangesofstable isotopicratiosofnitrogenandcarboninsuspendedandsedimentedparticulateorganic matterduringaphytoplanktonbloom.JournalofMarineResearch.50,267–296.

202 Needoba,J.A.,Waser,N.A.,Harrison,P.J.,Calvert,S.E.2003.Nitrogenisotope fractionationin12speciesofmarinephytoplanktonduringgrowthonnitrate.Marine EcologyProgressSeries.255,8191. Nydal,R.,Brenkert,A.L.(ed),Boden,T.A.(ed)1998.Carbon14measurementsin

surfacewaterCO 2fromtheAtlantic,IndianandPacificOceans,19651994. ORNL/CDIAC104,NDP057A.Carbondioxideinformationanalysiscenter,OakRidge NationalLaboratory,OakRidge,Tennessee. Orejas,C.,Gili,J.M.,Arntz,W.2003.Roleofsmallplanktoncommunitiesinthedietof twoAntarcticoctocorals( Primnoisis antarctica and Primnoella sp.).MarineEcology ProgressSeries.250,105116. Ostrom,N.E.,Macko,S.A.,Deibel,D.,Thompson,R.J.1997.Seasonalvariationinthe stablecarbonandnitrogenisotopebiogeochemistryofacoastalcoldoceanenvironment. GeochimicaetCosmochimicaActa.61,29292942. Overpeck,J.T.,OttoBleisner,B.L.,Miller,G.H.,Muhs,D.R.,Alley,R.A.,Kiehl,J.T. 2006.Paleoclimaticevidenceforfutureicesheetinstabilityandrapidsealevelrise. Science.17471750. Peña,M.A.,Denman,K.L.,Calvert,S.A.,Thomson,R.E.,Forbes,J.R.1999.The seasonalcycleinsinkingparticlefluxesoffVancouverIsland,BritishColumbia.Deep SeaResearch.II.46,29692992. Pershing,A.J.,Greene,C.H.,Durbin,E.G.,Head,E.J.,Hakkinen,S.,Mountain,D.G., Jossi,J.W.,Runge,J.A.,Bailey,B.A.,Brodziak,J.,Green,J.R.,Incze,L.S.,Kane,J., Kenney,R.D.,O’Brien,L.,Overholtz,W.J.,Patrician,M.R.,Pringle,J.M.,Roberts,Y.L., Sameoto,D.RemoteforcingofmarineecosystemdynamicsintheNorthwestAtlantic. ManuscriptsubmittedtoScience

203 Petrie,B.1983.Currentresponseattheshelfbreaktotransientwindforcing.Journalof GeophysicalResearch.88(C14),95679578. Petrie,B.,Drinkwater,K.1993.TemperatureandsalinityvariabilityontheScotianShelf andintheGulfofMaine19451990.JournalofGeophysicalResearch.98(C11),20079 20089. Petrie,B.,Yeats,P.1999.Annualandinterannualvariabilityofnutrientsandtheir estimatedfluxesintheScotianShelf–GulfofMaineregion.CanadianJournalof FisheriesandAquaticSciences.57,25362546. Pickart,R.S.,McKee,T.K.,Torres,D.J.,Harrington,S.A.1999.Meanstructureand interannualvariabilityoftheslopewatersystemsouthofNewfoundland.Journalof PhysicalOceanography.29,25412558. Polunin,N.V.C.,MoralesNin,B.,Pawsey,W.E.,Cartes,J.E.,Pinnegar,J.K.,Moranta,J. 2001.FeedingrelationshipsinMediterraneanbathyalassemblageselucidatedbystable nitrogenandcarbonisotopedata.MarineEcologyProgressSeries.220,1323. PonsBranchu,E.,HillaireMarcelC.,DeschampsP.,GhalebB.,Sinclair,D.J.2005. EarlydiagenesisimpactonpreciseUseriesdatingofdeepseacorals:Exampleofa100– 200yearold Lophelia pertusa samplefromthenortheastAtlantic.Geochimicaet CosmochimicaActa.69,48654879. Popp,B.N.,Laws,E.A.,Bidigare,R.R.,Dore,J.E.,Hanson,K.L.,Wakeham,S.G.1998. Effectofphytoplanktoncellgeometryoncarbonisotopicfractionation.Geochimicaet CosmochimicaActa.62(1),69–77. Pyper,B.J.,Peterman,R.M.1998.Comparisonofmethodstoaccountforautocorrelation incorrlelationanalysesoffishdata.CanadianJournalofFisheriesandAquaticSciences. 55,21272140.

204

Quay,P.,Tilbrook,B.,Wong,C.1992.OceanicuptakeoffossilfuelCO 2:Carbon13 evidence.Science.256,7479. Radkiewicz,J.L.,Zipse,H.,Clarke,S.Houk,K.N.1996.Acceleratedracemizationof asparticacidandasparagineresiduesviasuccinimideintermediates:anabinitio theoreticalexplorationofmechanism.J.Am.Chem.Soc.118,91489155. Rau,G.H.,Takahashi,T.,DesMarais,D.J.,Repeta,D.J.,Martin,J.H.1992.The 13 relationshipbetween δ Coforganicmatterand[CO 2(aq)]inoceansurfacewater:data fromaJGOFSsiteinthenortheastAtlanticOceanandamodel.Geochimicaet CosmochimicaActa.56,1413–1419. Rau,G.H.1994.Variationsinsedimentaryorganic δ13 Casaproxyforpastchangesin oceanandatmospheric[CO2].In:Zahn,R.,Kamiski,M.,Labeyrie,L.D.,Pedersen,T.F. (Eds.),CarbonCyclingintheGlacialOceanConstraintsontheOcean'sRoleinGlobal ClimateChange.Springer,Berlin,pp.307322. Rau,G.H.,Ohman,M.D.,PierrotBults,A.2003.Linkingnitrogendynamicstoclimate variabilityoffcentralCalifornia:a51yearrecordbasedon 15 N/ 14 NinCalCOFI zooplankton.DeepSeaResearch.II.50,24312447. Reimer,P.J.,Baillie,M.G.L.,Bard,E.,Bayliss,A.,Beck,J.W.,Bertrand,C.J.H., Blackwell,P.G.,Buck,C.E.,Burr,G.S.,Cutler,K.B.,Damon,P.E.,Edwards,R.L., Fairbanks,R.G.,Friedrich,M.,Guilderson,T.P.,Hogg,A.G.,Hughen,K.A.,Kromer,B., McCormac,F.G.,Manning,S.W.,Ramsey,C.B.,Reimer,R.W.,Remmele,S.,Southon, J.R.,Stuiver,M.,Talamo,S.,Taylor,F.W.,vanderPlicht,J.,Weyhenmeyer,C.E.2004. IntCal04Terrestrialradiocarbonagecalibration,260kaBP.Radiocarbon.46,1029 1058.

205 Remia,A.,Taviani,M.2004.ShallowburiedPleistoceneMadreporacoralmoundsona muddycontinentalslope.TuscanArchipelago,NETyrrhenianSea.Facies.50,doi: 10.1007/s1034700400292. Ribes,M.,Coma,R.,Gili,J.M.1999.Heterogeneousfeedinginbenthicsuspension feeders:thenaturaldietandgrazingrateofthetemperategorgonian Paramuricea clavata (Cnidaria:Octocorallia)overayearcycle.MarineEcologyProgressSeries.183,125 137. Ribes,M.,Coma,R.,Rossi,S.2003.Naturalfeedingofthetemperateasymbiotic octocoralgorgonian Leptogorgia sarmentosa (Cnidaria:Octocorallia).MarineEcology ProgressSeries.254,141150. Richardson,P.L.1977.OnthecrossoverbetweentheGulfStreamandtheWestern BoundaryUndercurrent.DeepSeaResearch.24,139159. Risk,M.J.,Heikoop,J.M.,Snow,M.G.,Beukens,R.,2002.Lifespansandgrowth patternsoftwodeepseacorals: Primnoa resedaeformis and Desmophyllum cristagalli . Hydrobiologia.471,125131. Risk,M.J.,HallSpenser,J.andB.Williams.2005.ClimaterecordsfromtheFaroe ShetlandChannelusing Lophelia pertusa (Linnaeus,1758).In:Freiwald,A.,Roberts, J.M.(Eds.),ColdWaterCoralsandEcosystems.Springer,Berlin,pp.10971108. Roark,E.B.,Guilderson,T.P.,FloodPage,S.,Dunbar,R.B.,Ingram,B.L.,Fallon,S.J., McCulloch,M.,2005.Radiocarbonbasedagesandgrowthratesofbamboocoralsfrom theGulfofAlaska.GeophysicalResearchLetters.32,L04606. doi:10.1029/2004GL021919.

206 Robinson,L.F.,Adkins,J.F.,Keigwin,L.D.,Southon,J.,Fernandez,D.P.,Wang,S.L., Scheirer,D.S.2005.RadiocarbonvariabilityintheWesternNorthAtlanticduringthe Holocene.Science.310,14691473. Robinson,L.F.,Adkins,J.F.,Fernandez,D.P.,Burnett,D.S.,Wang,S.L.,Gagnon,A.C., Krakauer,N.2006.PrimaryUdistributioninscleractiniancoralsanditsimplicationsfor Useriesdating.GeochemistryGeophysicsGeosystems.7,Q05022. RollionBard,C.,Blamart,D.,Cuif,J.P.,2003.MicroanalysisofCandOisotopesof azooxanthellateandzooxanthellatecoralsbyionmicroprobe.CoralReefs.22,405415. Rossi,S.,Ribes,M.,Coma,R.,Gili,JM.2004.Temporalvariabilityinzooplanktonprey capturerateofthepassivesuspensionfeeder Leptogorgia sarmentosa (Cnidaria: Octocorallia),acasestudy.MarineBiology.144,8999. Saino,T.,Hattori,A.1987.Geographicalvariationinthewatercolumndistributionof suspendedparticulateorganicnitrogenandits 15 NnaturalabundanceinthePacificandits marginalseas.DeepSeaResearch.I.34,807827. Sameoto,D.2001.Decadalchangesinphytoplanktoncolorindexandselectedcalanoid copepodsincontinuousplanktonrecorderdatafromtheScotianShelf.CanadianJournal ofFisheriesandAquaticSciences.58,749761. Sarnthein,M.,Winn,K.,Jung,S.J.A.,Duplessy,J.C.,Labeyrie,L.,Erlenkeuser,H., Ganssen,G.1994.ChangesineastAtlanticdeepwatercirculationoverthelast30,000 years:Eighttimeslicereconstructions.Paleoceanography.9,209267. Satterfield,F.R.IV,Finney,B.P.2002.StableisotopeanalysisofPacificsalmon:insight intotrophicstatusandoceanographicconditionsoverthelast30years.Progressin Oceanography.53,231246.

207 Schell,D.M.2000.DecliningcarryingcapacityintheBeringSea:isotopicevidencefrom whalebaleen.LimnologyandOceanography.45,459–462. Schlitzer,R.,2004.OceanDataView,http://www.awibremerhaven.de/GEO/ODV. SchröderRitzrau,A.,Mangini,A.,Lomitschka,M.2003.Deepseacoralsevidence periodicreducedventilationintheNorthAtlanticduringtheLGM/Holocenetransition. EarthandPlanetaryScienceLetters.216,399410. SchröderRitzrau,A.,Freiwald,A.,Mangini,A.(2005)U/Thdatingofdeepwatercorals fromtheeasternNorthAtlanticandtheweaternMediterraneanSea.In:Freiwald,A., Roberts,J.M.(Eds.),ColdWaterCoralsandEcosystems.Springer,Berlin,pp.157172. Scott,D.B.,Mudie,P.J.,Vilks,G.,Younger,C.1984.LatestPleistoceneHolocene paleoceanographictrendsonthecontinentalmarginofeasternCanada:foraminiferal, dinoflagellateandpollenevidence.MarineMicropaleontology.9,181218. Scott,D.B.,Baki,V.,Younger,C.1989.LatePleistoceneHolocenepaleoceanographic changesontheeasternCanadiancontinentalmargin.PalaeogeographyPalaeoclimatology Palaeoecology.74,279295. Scott,D.B.,Risk,M.J.,2003.EndmorainesontheupperScotianSlope:Relationshipto deepseacoralandfishhabitats.Abstractsofthe2ndInternationalSymposiumonDeep SeaCorals,Erlangen,Germany.p.78. Shackleton,N.J.1967,OxygenisotopeanalysesandPleistocenetemperaturesreassessed. Nature.215,15–17. Shen,G.T.,Boyle,E.A.1987.Leadincorals—reconstructionofhistoricalindustrial fluxestothesurfaceocean.EarthandPlanetaryScienceLetters.82,289–304.

208 Shen,G.T.,Boyle,E.A.1988.Determinationoflead,cadmium,andothertracemetalsin annuallybandedcorals.ChemicalGeology.67,4762. Sherwood,G.D.,Rose,G.A.2005.Stableisotopeanalysisofsomerepresentativefish andinvertebratesoftheNewfoundlandandLabradorcontinentalshelffoodweb. EstuarineCoastalandShelfScience.63,537549. Sherwood,O.A.2002.Thedeepseagorgoniancoral Primnoa resedaeformis asan oceanographicmonitor.M.Sc.thesis,McMasterUniversity,Hamilton,Canada.65pp. Sherwood,O.A.,Scott,D.B.,Risk,M.J.,Guilderson,T.P.2005a.Radiocarbonevidence forannualgrowthringsinthedeepseaoctocoral Primnoa resedaeformis .Marine EcologyProgressSeries.301.129134. Sherwood,O.A.,Heikoop,J.M.,Scott,D.B.,Risk,M.J.,Guilderson,T.P.,McKinney, R.A.2005b.Stableisotopiccompositionofdeepseagorgoniancorals Primnoa spp.:a newarchiveofsurfaceprocesses.MarineEcologyProgressSeries.301,135148. Sherwood,O.A.,Heikoop,J.M.,Sinclair,D.J.,Scott,D.B.,Risk,M.J.,Shearer,C., AzetsuScott,K.2005c.SkeletalMg/CainPrimnoaresedaeformis:relationshipto temperature?In:Freiwald,A.,Roberts,J.M.(Eds.),ColdWaterCoralsandEcosystems. Springer,Berlin,pp.10611079. Sherwood,O.A.,Scott,D.B.,Risk,M.J.2006.LateHoloceneradiocarbonandaspartic acidracemizationdatingofdeepseaoctocorals.GeochimicaetCosmochimicaActa.70, 28062814. Shirai,K.,Kusakabe,M.,Nakai,S.,Ishii,T.,Watanabe,T.,Hiyagon,H.,Sano,Y.,2005. Deepseacoralgeochemistry:Implicationforthevitaleffect.ChemicalGeology.224, 212222.

209 Sigman,D.M.,Altabet,M.A.,McCorkle,D.C.,Francois,R.,Fischer,G.2000.The δ15 N ofnitrateintheSouthernOcean:Nitrogencyclingandcirculationintheoceaninterior. JournalofGeophysicalResearch.105(C8),1959919614. Sigman,D.M.,Casciotti,K.L.,Andreani,M.,Barford,C.,Galanter,M.,Bohlke,J.K. 2001.Abacterialmethodforthenitrogenisotopicanalysisofnitrateinseawaterand freshwater.AnalyticalChemistry.73,41454153. Sinclair,D.J.,2005.Correlatedtraceelement“vitaleffects”intropicalcorals:Anew geochemicaltoolforprobingbiomineralization.GeochimicaetCosmochimicaActa.69, 32653284. Sinclair,D.J.,Sherwood,O.A.,Risk,M.J.,HillaireMarcel,C.,Tubrett,M.,Sylvester,P., McCulloch,M.,Kinsley,L.2005.TestingthereproducibilityofMg/Caprofilesinthe deepwatercoral Primnoa resedaeformis :puttingtheproxythroughitspaces.In: Freiwald,A.,Roberts,J.M.(Eds.),ColdWaterCoralsandEcosystems.Springer,Berlin, pp.10391060. Sinclair,D.J.,Williams,B.,Risk,M.J.,McCulloch,M.T.Traceelement“vitaleffects” aubiquitousfeatureofscleractiniancoralskeletons.ManuscriptsubmittedtoScience, Dec2005. Sinclair,D.J.,Risk,M.J.Anumericalmodeloftraceelementcoprecipitationina physicochemicalcalcificationsystem:Applicationtocoralbiomineralizationandtrace element‘vitaleffects’.GeochimicaetCosmochimicaActa.(inpress). Smith,J.E.,Risk,M.J.,Schwarcz,H.P.,McConnaughey,T.A.,1997.Rapidclimate changeintheNorthAtlanticduringtheYoungerDryasrecordedbydeepseacorals. Nature.386,818820.

210 Smith,J.E.,Schwarcz,H.P.,Risk,M.J.,McConnaugheyT.A.,andN.Keller.2000. Paleotemperaturesfromdeepseacorals:overcoming“vitaleffects”.Palaois.15,2532. Smith,J.E.,Schwarcz,H.P.,Risk,M.J.2002.Patternsofisotopicdisequilibriain azooxanthellatecoralskeletons.Hydrobiologia.471,111115. Smith,P.C.,Houghton,R.W.,Fairbanks,R.G.,Mountain,D.G.2001.Interannual variabilityofboundaryfuxesandwatermasspropertiesintheGulfofMaineandon GeorgesBank:199397.DeepSeaResearch.II.48,3770. Sorauf,J.E.,Jell,J.S.,1977.Structureandincrementalgrowthintheahermatypiccoral Desmophyllum cristagalli fromtheNorthAtlantic.Palaeontology.20,119. Stuiver,M.,Polach,H.A.1977.Discussion:Reportingof 14 Cdata.Radiocarbon. 19,355363. Stuiver,M.,Braziunas,T.F.1993.Modelingatmospheric 14 Cinfluencesand 14 Cagesof marinesamplesto10,000BC.Radiocarbon,35,137189. Stuiver,M.Reimer,P.J.1993.Extended 14 CdatabaseandrevisedCALIBradiocarbon calibrationprogram.Radiocarbon.35,215230.(version5availableonlineat http://radiocaron.pa.qub.ac.uk/calib/ ). Stuiver,M.,Quay,P.D.,Ostlund,H.G.1983.AbyssalC14distributionandtheageof theworldoceans.Science.219.849851. Surge,D.M.,Lohmann,K.C.,Goodfriend,G.A.2003.Reconstructingestuarine conditions:oystershellsasrecordersofenvironmentalchange,SouthwestFlorida. EstuarineCoastalandShelfScience.57:737756.

211 Swart,P.K.,Hubbard,J.A.E.B.1982.Uraniuminscleractiniancoralskeletons.Coral Reefs.1:1319. Swart,P.K.,Thorrold,S.,Eisenhauer,A.,Rosenheim,B.,Harrison,C.G.A.,Grammer, M.,Latkoczy,C.2002.Intraannualvariationinthestableoxygenandcarbonandtrace elementcompositionofsclerosponges.Paleoceanography.17(3),1029/2000PA000622. SzmantFroelich,A.1974.Structure,iodination,andgrowthoftheaxialskeletonsof Muricea californica and M. fruticosa (Coelenterata:Gorgonacea).MarineBiology.27, 299306. Tanaka,N.,Monaghan,M.C.,Turekian,K.K.1990. 14 CbalancefortheGulfofMaine, LongIslandSoundandtheMiddleAtlanticBight:EvidencefortheextentofAntarctic IntermediateWatercontribution.JournalofMarineResearch.48,7587. Teichert,C.,1958.Coldanddeepwatercoralbanks.AAPGBulletin.42,10641082. Thomas,A.C.,Townsend,D.W.,Weatherbee,R.2003.Satellitemeasuredphytoplankton variabilityintheGulfofMaine.ContinentalShelfResearch.23,971989. Thresher,R.,Rintoul,S.R.,Koslow,J.A.,Weidman,C.,Adkins,J.,Proctor,C.,2004. OceanicevidenceofclimatechangeinsouthernAustraliaoverthelastthreecenturies. GeophysicalReseachLetters.31,L07212.doi:10.1029/2003GL018869. Thunell,R.C.,Sigman,D.M.,MullerKarger,F.,Astor,Y.,Varela,R.2004.Nitrogen isotopedynamicsoftheCariacoBasin,Venezuela.GlobalBiogeochemicalCycles.18, GB3001.doi:10.1029/2003GB002185. Tieszen,L.L.,Boutton,T.W.,Tesdahl,K.G.,Slade,N.A.1983.Fractionationand turnoverofstablecarbonisotopesinanimaltissues:implicationsfor 13 Canalysisofdiet. Oecologia.57,32–37.

212 Titschak,J.,Freiwald,A.2005.Growth,depositionandfaciesofPleistocenebathyal coralcommunitiesfromRhodes,Greece.In:Freiwald,A.,Roberts,J.M.(Eds.),Cold WaterCoralsandEcosystems.Springer,Berlin,pp.4159. Townsend,D.W.,Pettigrew,N.R.1997.Nitrogenlimitationofsecondaryproductionon GeorgesBank.J.PlanktonRes.19,221235. Townsend,D.W.,Thomas,A.C.,Mayer,L.M.,Thomas,M.,Quinlan,J.2006. OceanographyoftheNorthwestAtlanticContinentalShelf.In:Robinson,A.R.andK.H. Brink(eds).TheSea,Volume14,HarvardUniversityPress.pp.119168. Tudhope,A.W.,Chilcott,C.P.,McCulloch,M.T.,Cook,E.R.,Chappell,J.,Ellam,R.M., Lea,D.W.,Lough,J.M.,Shimmield,G.B.,2001.VariabilityintheElNiñoSouthern oscillationthroughaglacialinterglacialcycle.Science.291,15111517. Tunnicliffe,V.2000.Afinescalerecordof130yearsoforganiccarbondepositioninan anoxicfjord,SaanichInlet,BritishColumbia.LimnologyandOceanography.45,1380 1387. VanderZanden,M.J.,Cabana,G.,Rasmussen,J.B.1997.Comparingtrophicpositionof freshwaterfishcalculatedusingstablenitrogenisotoperatios( δ15 N)andliteraturedietary data.CanadianJournalofFisheriesandAquaticSciences.54,1142–1158. VanderZanden,M.J.,Rasmussen,J.B.2001.Variationin δ15 Nand δ13 Ctrophic fractionation:Implicationsforaquaticfoodwebstudies.LimnologyandOceanography. 46,20612066. Voss.M.,Altabet,M.A.,Bodungen.B.V.1996. δ15 Ninsedimentingparticlesas indicatorofeuphoticzoneprocesses.DeepSeaResearch.I.43,3347.

213 Wainwright,S.A.,Dillon,J.1969.Ontheorientationofseafans(genusGorgonia). BiologicalBulletin.136,130139. Wainright,S.C.,Fogarty,M.J.,Greenfield,R.C.,Fry,B.1993.Longtermchangesinthe GeorgesBankfoodweb:trendsinstableisotopiccompositionsoffishscales.Marine Biology.115,481493. WardPaige,C.A.,Risk,M.J.,Sherwood,O.A.2005.Reconstructionofnitrogensources oncoralreefs:δ 15 Nandδ 13 CingorgoniansfromtheFloridaReefTract.MarineEcology ProgressSeries.296,155–163. Watling,L.,Norse,E.A.1998.Disturbanceoftheseabedbymobilefishinggear:a comparisontoforestclearcutting.ConservationBiology.12(6),11801197. WeberJ.N.1973.Deepseascleractiniancoral:isotopiccompositionofskeleton.Deep SeaResearch.II,901909. Weidman,C.R.,Jones,G.A.1993.Ashellderivedtimehistoryofbomb 14 ConGeorges BankanditsLabradorSeaimplications.JournalofGeophysicalResearch.98(C8), 1457714588. Weinbauer,M.G.,Brandstätter,F.,Velimirov,B.2000.Onthepotentialuseof magnesiumandstrontiumconcentrationsasecologicalindicatorsinthecalciteskeleton oftheredcoral( Corallium rubrum ).MarineBiology.137:801809. Williams,B.,RiskM.J.,SulakK.,RossS.andR.Stone.2005.Deepwater AntipathariansandGorgonians:proxiesofbiogeochemicalprocesses.Proceedingsofthe 3rdInternationalSymposiumonDeepSeaCorals.Miami,USA,pp.70. Wisshak,M.,Freiwald,A.,Lundälv,T.,Gektidis,M.,2005.Thephysicalnicheofthe bathyal Lophelia pertusa inanonbathyalsetting:environmentalcontrolsand

214 paleoecologicalimplicationsIn:Freiwald,A.,Roberts,J.M.(Eds.),ColdWaterCorals andEcosystems.Springer,Berlin,pp.979100. Woodworth,M.,Goni,M.,Tappa,E.,Tedesco,K.,Thunell,R.,Astor,Y.,Varela,R., DiazRamos,J.R.,MullerKarger,F.2004.Oceanographiccontrolsonthecarbon isotopiccompositionsofsinkingparticlesfromtheCariacobasin.DeepSeaResearch.I. 51,19551974. Worm,B.,Myers,R.A.2003.Metaanalysisofcodshrimpinteractionsrevealstopdown controlinoceanicfoodwebs.Ecology.84,162173. Wu,J.,Boyle,E.A.1997.LeadinthewesternNorthAtlanticOcean:completed responsetoleadedgasolinephaseout.GeochimicaetCosmochimicaActa.61, 32793283. Wu,J.,Calvert,S.E.,Wong,C.S.1997.Nitrogenisotopevariationsinthesubarctic northeastPacific:relationshipstonitrateutilizationandtrophicstructure.DeepSea Research.I.44,287314. Wu,J.,Calvert,S.E.,Wong,C.S.1999a.Carbonandnitrogenisotoperatiosin sedimentingparticulateorganicmatteratanupwellingsiteoffVancouverIsland. EstuarineCoastalandShelfScience.48,193–203. Wu,J.,Calvert,S.E.,Wong,C.S.,Whitney,F.A.1999b.Carbonandnitrogenisotopic compositionofsedimentingparticulatematerialatStationPapainthesubarcticnortheast Pacific.DeepSeaResearch.II.46,27932832.

215 AppendixA PhotographsofCoralSections COHPS20012 1 5 10 15 20 25 30 35 40 5mm

216 DFO2002con5A4

S1

S2

S3

S4

S5

S6 S7

S8 S9

217 Fossil95

42 3137 43 41

128 29 30 40 38 39

218 HUD2000020VG2E

5 10

219 HUD2001VG15A1

30 25 20 15 10 5

220 NED2002371A 60 55 50 45 40 35 30 25 20 15 10 5

221 ROPOS639009C4

5

10

15

20

25 30 35

40

222 ROPOS6400013E1 10 15 20 25 30 5

2 mm

223 R6400016A 5 10 15 20 25 30 35 40 45 50 55 60 5mm

224 AppendixB C14Data CENTERFORACCELERATORMASSSPECTROMETRY LawrenceLivermoreNationalLaboratory 1) δ13 CvaluesaretheassumedvaluesaccordingtoStuiverandPolach(Radiocarbon,v.19, p.355,1977)whengivenwithoutdecimalplaces.Valuesmeasuredforthematerial itselfaregivenwithasingledecimalplace. 2)ThequotedageisinradiocarbonyearsusingtheLibbyhalflifeof5568yearsand followingtheconventionsofStuiverandPolach(ibid.). 3)RadiocarbonconcentrationisgivenasfractionModern,∆14 C,andconventionalradiocarbonage. 4)Samplepreparationbackgroundshavebeensubtracted,basedonmeasurements ofsamplesof14Cfreecoal. CAMS # Sample d13C Fraction ± 14C ± 14Cage ± Name Modern DATE: June82003 97097 con5A1005b 17 1.043 0.004 36.360 4.487 >Modern 97098 con5A1010b 17 1.059 0.004 51.802 4.029 >Modern 97099 con5A1016b 17 1.078 0.004 71.279 3.957 >Modern 97100 con5A1021b 17 1.066 0.004 58.969 3.825 >Modern 97101 con5A1025b 17 0.959 0.003 46.747 3.450 335 30 97102 con5A1031b 17 0.929 0.003 77.316 3.312 595 30 97103 con5A1037b 17 0.926 0.003 80.310 3.316 620 30 97104 con5A1043b 17 0.934 0.003 71.589 3.349 545 30 97105 con5A1050b 17 0.929 0.003 77.042 3.391 595 30 97106 con5A1058b 17 0.934 0.003 72.262 3.411 550 30 581 DATE: June232003 97759 E02#1&2 0 0.924 0.004 82.296 4.219 640 40 97760 E02#3&4 0 0.917 0.004 89.050 4.323 700 40 97761 E02#5&6 0 0.900 0.006 106.231 5.921 850 60 97762 E02#7&8 0 0.919 0.004 86.856 3.946 680 35 97763 E02#9&10 0 0.908 0.007 97.715 6.769 770 60 97764 E02#11&12 0 0.916 0.004 89.855 4.390 705 40 97765 E02#13&14 0 0.925 0.004 80.597 4.130 625 40 97766 E02#15&16 0 0.907 0.005 98.934 5.380 785 50 97767 E02#17&18 0 0.917 0.004 88.500 4.064 695 40 97768 E02#19&20 0 0.901 0.004 104.705 4.487 835 40 97769 E02#21&22 0 0.925 0.004 80.766 4.100 625 40 97771 E02#2528 0 0.934 0.004 71.879 3.686 550 35 97772 E02#29 0 0.914 0.006 91.360 6.173 720 60

225 97773 E02#39&40 0 0.984 0.004 22.663 4.371 135 40 DATE: Nov32004 111130 COHPS20011A12 17 0.932 0.004 74.178 3.529 565 35 111131 COHPS20011A15 17 0.926 0.004 80.324 3.504 620 35 111132 COHPS20011A116 17 0.919 0.003 87.207 3.478 680 35 111133 COHPS20011E21 17 1.043 0.004 36.471 3.948 >Modern 111134 COHPS20012D243 17 0.923 0.003 82.861 3.495 640 35 111135 COHPS20031A235 17 0.936 0.004 70.072 3.544 530 35 111136 COHPS20032A239 17 0.929 0.003 77.388 3.239 595 30 111137 Fossil95D24 17 0.756 0.003 248.527 3.408 2245 40 111138 Fossil95D238 17 0.809 0.003 196.245 3.057 1700 35 111139 HUDVG1322 17 1.066 0.004 58.816 4.081 >Modern 111140 HUDVG15A310 17 1.074 0.004 67.085 4.053 >Modern 111141 R6400013E115 17 1.061 0.004 54.348 3.698 >Modern 111142 HUDVG15A319 17 1.097 0.004 89.910 4.140 >Modern 111143 HUDVG15A32628 17 0.988 0.005 18.247 4.505 95 40 DATE: Nov212004 111328 NED2002371A1 17 1.039 0.004 32.608 4.497 >Modern 111329 NED2002371A16 17 1.075 0.005 67.674 4.808 >Modern 111330 NED2002371A58 17 0.924 0.004 81.710 3.513 630 35 111331 NED2002375125 17 1.070 0.004 63.180 4.064 >Modern DATE: Dec62004 111623 R639009C419 17 1.089 0.004 81.977 4.060 >Modern 111624 R639009C42728 17 0.960 0.004 46.458 3.970 330 35 111625 R639009C440 17 0.936 0.003 70.472 3.492 535 30 111626 R6400013E110 17 1.059 0.004 52.132 4.172 >Modern 111627 R6400013E120 17 1.074 0.005 66.674 5.367 >Modern 111628 R6400013E125 17 1.068 0.004 60.913 3.984 >Modern 111629 R6400013E131 17 1.089 0.004 81.999 4.421 >Modern 111630 R64000161A355 17 0.925 0.004 80.880 3.973 625 35 DATE: Nov222005 120203 COHPS200114B26 17 1.059 0.004 52.255 4.478 >Modern 120204 COHPS200114B27 17 0.980 0.004 26.979 3.771 165 35

226 AppendixC StableIsotopeandC:NData GEOTOPSTABLEISOTOPEANDC:NRESULTS GORGONINSAMPLESFORTIMESERIESRECORDS: COHPS20011A1 BandID d13C d15N C:N 1 19.03 10.50 3.43 2 18.04 10.43 nd 2 18.16 10.53 nd 5 16.75 10.47 nd 67 18.22 10.50 nd 89 17.91 11.41 nd 1012 17.51 11.32 nd 1315 17.72 11.57 nd S1,S11,2,3 18.01 11.73 nd S2+2,+3 17.81 10.91 nd S2,S2+1 18.05 11.20 3.31 S21,2,3 17.68 10.72 nd S3+2,+3 16.74 10.42 nd S3+2,+3 16.90 10.44 nd S3,S3+1 17.56 10.10 nd S31 17.79 10.51 nd S4+1,+2,+3 18.20 11.22 nd S4 18.20 11.16 nd S41 18.08 10.44 nd S42 17.55 11.06 3.50 S42rep 17.78 11.37 nd COHPS20012D2 Bandno. d13C d15N C:N 1 18.47 11.09 nd 2 18.64 10.72 nd 3 18.80 11.14 nd 4 19.02 10.60 nd 5 18.95 10.72 nd 6,7 17.49 10.37 nd 8 18.22 10.53 nd 9 18.37 11.08 nd 10 18.54 11.13 nd 11 17.82 11.72 nd 12,13 18.01 10.65 nd 14 18.16 10.58 nd 15,16 18.50 11.36 nd 17 17.85 10.51 nd 18 18.13 10.53 nd 19,20 18.12 11.13 nd 21,22 17.32 11.11 nd 23 17.94 11.55 nd 24 18.01 11.30 nd

227 25 18.40 11.47 nd 26 18.32 11.43 nd 27,28 18.09 11.55 nd 28,30 18.93 10.81 nd 31 18.87 10.78 nd 32 18.67 10.48 nd 33 18.00 10.26 nd 34 18.62 10.10 nd 35 17.81 9.90 nd 36 18.54 10.02 nd 37 19.03 10.42 nd 38 18.48 10.47 nd 39 18.45 10.41 nd 40 18.28 10.45 nd 41 18.84 10.52 nd 42 17.93 10.48 nd 43 18.13 10.31 nd 44 18.80 10.23 nd DFO2002con5A1 Bandno. d13C d15N C:N Equiv.IndexBand 1 20.21 9.79 nd 2 19.68 9.70 nd 3 19.70 9.86 nd 4 19.73 9.76 nd 5 19.55 10.25 nd S2 6 19.78 10.20 nd 7 19.72 10.31 nd 8 19.46 10.06 nd 9 19.84 9.42 nd 10 19.97 10.13 nd S3 11 19.52 10.04 nd 12 18.52 10.02 nd 13 19.07 10.00 nd 14 18.91 10.02 nd 15 18.73 10.12 nd S4 16 19.06 9.86 nd 17 19.02 10.61 nd 18 19.50 10.47 nd 19 19.41 10.20 nd 20 19.52 9.78 nd 21 19.20 10.35 nd 22 18.91 10.59 nd 23 17.84 10.14 nd 24 17.87 9.71 nd 25 18.75 10.51 nd 26 19.40 10.51 nd 27 18.20 10.07 nd 28 18.09 10.15 nd 29 18.80 9.78 nd 30 19.00 9.98 nd 31 19.28 10.03 nd S5 32 19.11 10.02 nd

228 33 18.17 10.35 nd 34 17.83 10.38 nd 35 18.93 10.92 nd 36 18.50 10.68 nd 37 19.40 10.46 nd 38 18.78 10.13 nd 39 19.36 11.06 nd 40 19.43 10.67 nd S6 41 19.17 11.18 nd 42 18.75 10.41 nd 43 18.95 10.42 nd 44 18.80 10.33 nd 45 19.34 10.34 nd S7 46 19.29 10.52 nd 47 18.20 10.65 nd 48 18.26 10.74 nd 49 19.13 10.59 nd 50 18.91 11.40 nd 51 18.84 10.34 nd S8 52 19.18 10.33 nd 53 19.06 10.49 nd 54 19.58 10.81 nd 55 19.76 11.27 nd 56 19.80 10.67 nd 57 19.38 9.98 nd 58 19.19 10.09 nd DFO2002con5A5 Bandno. d13C d15N C:N Equiv.IndexBand 3 19.51 9.58 nd 4 19.46 9.82 nd 5 19.59 9.89 nd 6 19.43 10.03 nd S2 7 19.40 9.75 nd 8 19.50 9.92 nd 9 19.23 9.92 nd 11 19.58 9.87 nd S3 12 19.74 10.01 nd 13 19.37 9.76 nd 13rep 19.37 9.86 nd 14 18.24 10.02 nd 15 18.72 10.00 nd 16 19.22 9.67 nd S4 17 19.10 10.34 nd 18 18.98 10.60 nd 20 18.89 10.53 nd 20rep 19.25 10.31 nd 21 18.82 10.78 nd 22 17.75 10.25 nd 23 17.95 10.19 nd 24 19.42 9.95 nd 25 17.94 10.33 nd

229 26 18.70 9.97 nd 27 18.63 9.98 nd 28 18.93 9.95 nd S5 29 17.85 10.58 nd 31 19.25 10.45 nd 32 19.06 10.86 nd 33 18.68 10.58 nd 34 19.13 10.25 nd S6 35 19.03 10.68 nd 35rep 19.07 10.66 nd 36 18.49 10.42 nd 37 18.60 10.73 nd 39 19.44 10.78 nd S7 40 18.64 10.73 nd 41 18.25 10.07 nd 42 19.00 11.35 nd S8 43 19.44 10.52 nd 45 18.34 10.47 nd FOSSIL95 Bandno. d13C d15N C:N 1,2 18.64 10.64 nd 3 18.33 10.88 nd 5 17.29 10.80 nd 6 18.82 10.67 nd 7 18.38 10.90 nd 8 18.38 10.95 nd 9 18.26 11.12 nd 10 17.61 10.40 nd 11 17.77 10.64 nd 12 17.88 10.63 nd 13 18.20 10.69 nd 14 18.30 10.93 nd 15,16 18.69 10.86 nd 17 18.51 10.75 nd 18 18.33 10.89 nd 19 18.20 10.60 nd 20 17.57 10.79 nd 21 18.33 10.36 nd 22 18.38 10.82 nd 23 17.69 10.62 nd 24 17.47 10.93 nd 25 17.65 10.97 nd 27 17.51 11.40 nd 28 18.21 11.67 nd 29 18.21 11.54 nd 30 17.95 11.48 nd 43 17.95 11.18 nd 42 17.93 11.04 nd 41 17.36 10.41 nd 40 18.12 11.11 nd 39 17.15 11.42 nd 38 17.44 10.92 nd

230 31 17.53 11.13 nd 32 17.71 11.35 nd 33 18.06 11.69 nd 34 18.14 11.06 nd 35 18.69 11.09 nd 36 17.67 10.34 nd 37 17.85 10.53 nd HUD200020VG2E1 Bandno. d13C d15N C:N 1 19.77 9.94 3.09 2 19.38 10.09 3.11 3 19.36 9.02 3.17 3rep 19.38 9.24 nd 4 19.02 9.54 3.14 5 18.90 10.14 3.22 6 19.65 9.33 3.12 7 19.69 9.76 3.20 8 19.17 9.67 3.20 9 19.48 9.33 3.23 10 19.60 9.50 3.19 11 19.47 9.73 3.17 12 19.06 8.21 nd HUD2001055VG15C1 Equiv.Bandno.on Bandno. d13C d15N C:N A1 1 19.61 10.64 3.20 2 1rep 19.67 10.54 nd 2 2 19.11 10.52 3.17 1 2rep 19.11 10.19 nd 1 3 19.80 10.34 3.21 0 4 19.26 10.17 3.17 1 5 19.16 10.15 3.19 1 6 19.37 10.54 3.13 2 7 19.32 10.13 3.12 3 8 19.73 10.42 3.16 4 9 19.24 10.36 3.14 5 10 19.04 10.61 3.14 6 11 18.87 10.21 3.12 7 12 19.37 10.56 3.11 8 12rep 19.31 10.88 nd 8 13 19.40 10.61 3.15 9 14 19.23 10.33 3.15 10 15 19.43 10.70 3.14 11 16 19.35 10.35 3.17 12 17 18.01 10.64 3.13 13 18 18.22 10.42 3.13 14 19 18.49 10.90 3.10 15 20 18.75 10.27 3.11 15 21 19.05 10.13 3.1 16 22 19.35 10.88 3.12 17 23 18.66 11.01 3.17 18 24 18.34 10.44 3.1 19

231 25 18.87 11.06 3.12 20 26 18.84 10.84 3.13 21 27 23.98 10.71 3.14 23 28 18.56 11.61 3.08 24 29 18.33 11.51 3.16 25 30 17.49 11.23 3.16 26 31 17.17 11.08 3.13 27 32 18.11 11.30 3.1 28 33 18.40 10.03 3.11 29 34 18.67 10.44 3.14 30 HUD2001055VG15D1 Equiv.Bandno.on Bandno. d13C d15N C:N A1 1 19.27 10.15 3.21 0 2 19.05 10.22 3.20 1 3 19.19 9.97 3.18 2 4 19.07 10.07 3.13 3 5 19.83 10.41 3.12 4 5rep 19.70 10.63 nd 4 6 19.25 9.97 3.13 5 7 18.95 10.44 3.16 7 8 19.46 10.17 3.16 8 9 19.51 10.41 3.15 9 10 19.17 10.13 3.16 10 11 19.56 9.81 3.13 11 12 19.35 9.75 3.15 12 13 18.40 9.31 3.15 13 13rep 18.39 9.68 nd 13 14 18.49 9.48 3.14 14 15 18.78 9.54 3.13 15 16 18.93 9.65 3.13 16 17 19.31 10.41 3.12 17 18 18.92 10.47 3.13 18 19 18.42 9.66 3.10 19 20 18.99 9.84 3.12 20 21 18.98 10.49 3.10 21 22 18.87 10.43 3.10 22 23 18.84 10.87 3.16 23 24 18.41 10.76 3.13 24 25 18.56 10.62 3.17 25 26 17.98 10.67 3.15 26 27 17.67 10.51 3.15 27 28 17.27 10.33 3.15 28 29 18.28 10.28 3.12 29 30 18.47 9.79 3.16 30 HUD2001055VG15E1 Equiv.Bandno.on Bandno. d13C d15N C:N A1 1 19.96 10.03 3.21 3 2 19.18 9.70 3.13 2 3 19.28 9.69 3.14 1 4 19.70 9.85 3.15 0

232 4rep 19.75 10.09 nd 0 5 19.24 9.43 3.13 1 6 18.94 9.40 3.16 2 7 19.41 9.27 3.16 2 8 19.20 9.23 3.17 3 9 19.74 9.74 3.12 4 10 19.36 9.64 3.13 5 11 18.81 9.60 3.18 6 12 18.79 9.15 3.15 7 13 19.35 9.63 3.15 8 14 19.71 9.56 3.17 9 15 19.21 9.11 3.20 10 16 19.53 9.18 3.17 11 17 19.29 8.98 3.19 12 18 18.16 9.10 3.18 13 19 18.74 9.41 3.16 14 20 17.90 9.17 3.16 15 21 18.73 9.57 3.16 15 22 18.81 9.52 3.16 16 23 18.76 9.59 3.16 16 24 19.28 9.55 3.13 17 25 19.24 10.26 3.14 17 26 19.62 9.90 3.15 18 27 19.01 10.03 3.12 18 28 18.66 10.09 3.20 19 29 18.82 9.59 3.20 20 NED2002371A Bandno. d13C d15N C:N 1 20.03 10.22 nd 2 19.67 10.24 nd 3 19.50 9.54 nd 4 20.27 9.78 nd 5 20.14 9.92 nd 6 19.69 9.87 nd 7 20.28 9.64 nd 8 20.10 9.46 nd 9 20.02 9.83 nd 10 19.71 9.88 nd 11 20.34 9.62 nd 12 19.91 10.36 nd 13 19.38 10.02 nd 14 19.71 9.80 nd 15 19.64 9.96 nd 16 19.71 9.22 nd 18 18.55 9.75 nd 20 18.96 10.00 nd 21 18.89 9.95 nd 22 19.45 9.93 nd 23 19.33 10.20 nd 24 19.03 10.48 nd 25 18.73 10.43 nd 26 19.09 10.01 nd

233 27 19.04 10.45 nd 28 19.14 10.52 nd 29 19.11 10.83 nd 30,31 17.64 10.67 nd 32,33 18.24 10.62 nd 34 19.26 10.47 nd 35 18.49 9.96 nd 36 18.94 10.28 nd 38 18.32 10.26 nd 40 19.04 10.57 nd 41 18.89 10.63 nd 42 18.50 10.55 nd 43 19.05 10.39 nd 44 19.54 10.87 nd 45 18.79 10.90 nd 47 17.97 10.53 nd 49 18.40 10.87 nd 50 18.67 10.47 nd 51 19.33 10.64 nd 52 19.48 10.54 nd 53 19.46 10.80 nd 54 19.23 11.03 nd 55 17.66 10.54 nd 56 18.70 10.39 nd 57 19.54 10.79 nd 58 19.46 10.91 nd 59 19.75 11.30 nd 60,61 19.07 10.88 nd 62 19.01 10.07 nd 63 19.35 9.90 nd 64 19.50 10.21 nd 65 18.75 10.25 nd ROPOS639009C4 Equiv.Bandno.on Bandno. d13C d15N C:N C4 1 19.22 10.17 3.17 6 2 19.74 9.62 3.13 7 3 19.36 10.05 3.17 8 4 19.15 9.60 3.14 9 5 19.08 9.79 3.12 10 6 19.73 9.61 3.06 11 6rep 19.52 9.87 nd 11rep 7 19.61 9.60 3.15 12 8 19.50 9.67 3.21 13 9 19.88 9.14 3.16 14 10 19.29 9.56 3.18 15 11 18.68 9.91 3.16 16 12 19.02 10.31 3.15 17 12rep 18.98 10.30 nd 18 13 18.60 10.17 3.16 19 14 19.33 10.74 3.15 21 15 19.07 9.65 3.27 23 16 19.09 10.57 3.23 24

234 17 18.53 9.55 3.15 25 18 19.21 10.43 3.15 27 19 19.71 10.33 3.23 28 20 18.06 10.48 3.17 29 21 18.18 10.34 3.19 30 22 nd nd 3.18 31 23 18.43 10.52 3.21 32 24 18.85 10.03 3.19 33 25 19.55 8.82 3.20 34 ROPOS6400013E1 Bandno. d13C d15N C:N 1 20.87 10.39 nd 2 19.63 10.52 nd 3 19.30 10.82 nd 4 18.76 10.68 nd 5 19.67 10.79 nd 6 20.10 9.97 nd 7 19.48 10.55 nd 8 19.65 10.51 nd 9 19.42 10.18 nd 10 19.58 10.40 nd 11 19.96 10.38 nd 12 20.05 nd nd 13 19.28 10.24 nd 14 19.77 9.94 nd 15 19.56 10.07 nd 16 19.67 10.29 nd 17 19.72 10.17 nd 18 19.78 9.82 nd 19 19.45 10.25 nd 20 19.15 10.32 nd 21 19.06 10.30 nd 22 20.05 10.41 nd 23 20.00 9.92 nd 24 19.60 9.57 nd 25 19.68 9.67 nd 26 19.66 9.53 nd 27 18.62 10.23 nd 28,29 18.72 10.16 nd 30 19.59 10.58 nd ROPOS6400016 Bandno. d13C d15N C:N 1 18.65 10.17 nd 2 18.32 10.39 nd 3 17.63 10.30 nd 4 18.49 10.59 nd 5,6 17.51 10.82 nd 7 17.27 11.51 nd 8 17.67 11.25 nd 9 17.35 11.01 nd 10 17.55 11.01 nd

235 11 17.26 11.34 nd 12 18.32 10.60 nd 13,14 18.25 11.16 nd 15,16 17.86 10.47 nd 17,18 17.08 11.40 nd 19,20 17.89 10.98 nd 21,22 18.08 11.11 nd 23 17.79 11.27 nd 24 18.83 10.73 nd 25 18.79 10.72 nd 26 18.70 10.37 nd 27 18.17 10.81 nd 28 18.12 11.04 nd 29,30 17.98 11.33 nd 31 17.72 11.38 nd 32 17.90 11.43 nd 33 17.63 10.96 nd 34 17.88 10.96 nd 35 17.98 11.50 nd 36 17.36 10.89 nd 37 17.79 10.81 nd 38 17.57 10.79 nd 39 18.09 10.66 nd 40 18.20 11.09 nd 41 17.93 10.79 nd 42 17.83 11.26 nd 43 17.75 11.37 nd 44,45 18.05 11.59 nd 46,47 18.41 11.24 nd 48,49 17.99 10.49 nd 50,51 18.04 10.85 nd 52 16.83 10.89 nd 53 17.51 10.63 nd 54 17.96 10.63 nd 55 17.40 10.41 nd 56 17.14 10.11 nd 57 17.81 9.56 nd 58 17.04 10.41 nd 59 18.13 10.20 nd 60 18.12 10.48 nd 61 18.50 10.06 nd GEOTOPSTABLEISOTOPEANDC:NRESULTS TISSUEANDOTHERSAMPLES: Specimen Fraction Sampleno. d13C d15N C:N NE Channel samples: ROPOS637052 tissue 1 23.559 10.348 nd ROPOS637052 tissue 1rep 23.477 10.528 nd ROPOS637052 tissue 2 23.61 10.33 7.96 ROPOS637052 tissue 3 23.69 10.22 7.16 ROPOS637052 tissue 4 23.72 10.10 7.98

236 FOSSIL95 gorgonin layerB 18.08 10.35 3.53 FOSSIL95 gorgonin layerD1 17.76 10.66 3.54 FOSSIL95 gorgonin layerD2 18.71 10.87 3.46 FOSSIL95 gorgonin layerD3 18.84 11.58 3.36 FOSSIL95 gorgonin layerD4 18.57 11.09 3.47 FOSSIL95 gorgonin layerD5 17.75 11.37 3.41 R639009 tissue tiss1 23.74 10.08 7.49 R639009 tissue tiss2 24.13 10.18 7.74 R639009 tissue tiss3 23.88 10.11 7.13 DFO2002con5 tissue 2cm 23.99 10.14 6.46 DFO2002con5 tissue 10cm 24.07 10.52 8.53 DFO2002con5 tissue 20cm 23.35 10.76 6.72 DFO2002con5 tissue 30cm 24.07 10.51 7.31 DFO2002con5 tissue 50cm 23.86 10.96 7.22 Smithsonian samples: 4142 tissue 1 19.51 12.79 4.75 4544 tissue 1 18.62 10.45 3.33 52199 tissue 1 14.93 12.53 4.06 52199 tissue 1rep 18.24 nd nd 56993 tissue 1 21.00 10.77 4.49 56993 tissue 1rep 21.40 10.60 nd 56993 tissue 2 21.69 10.59 4.57 56993 tissue 3 20.87 10.72 4.50 58171 tissue 1 22.33 7.66 4.13 58171 tissue 2 21.73 7.89 4.12 58171 tissue 3 22.09 7.73 4.12 15875 gorgonin 1 19.10 10.70 3.33 15875 gorgonin 2 19.52 11.35 3.47 1010257 tissue 1 23.76 9.30 7.37 1010257 tissue 2 23.78 9.26 6.56 1010257 tissue 3 23.72 8.89 6.74 1010257 tissue 3rep 23.81 8.90 nd 1010785 tissue 1 19.38 12.70 6.40 1010785 tissue 2 19.42 12.95 6.30 1010785 tissue 3 19.66 12.61 5.97 Other Pacific/Japan Samples: QC98 tissue 1 20.97 13.40 7.07 QC98 tissue 2 21.37 13.13 7.75 QC98 tissue 3 21.17 13.25 8.20 QC98 gorgonin 1 17.87 12.66 3.21 QC98 gorgonin 2 18.11 12.75 3.27 QC98 gorgonin 3 17.81 13.04 3.19 OHOTSK tissue 1 22.32 13.03 4.90 OHOTSK tissue 1rep 22.49 12.96 nd OHOTSK tissue 2 22.54 12.73 4.85 OHOTSK gorgonin 1 19.38 10.71 3.20 OHOTSK gorgonin 2 19.54 10.19 3.24 KIS2002 tissue 1 19.42 13.80 5.72 KIS2002 gorgonin outer1 16.67 12.71 3.39

237 KIS2002 gorgonin outer2 16.26 12.16 3.21 KIS2002 gorgonin outer3 15.46 11.94 3.23 KIS2002 gorgonin middle1 16.23 12.40 3.25 KIS2002 gorgonin middle2 15.97 12.38 3.21 KIS2002 gorgonin inner1 15.91 12.49 3.23 KIS2002 gorgonin inner1rep 16.04 12.34 nd KIS2002 gorgonin inner2 16.12 11.68 3.29

238 AppendixD Hydrographicand δδδ15 NdatafromHudsonandTeleostcruises

lle SigmaT NO3/NO2 Silicate Phosphate d15NNO3 55 25.784 1.389 6.599 0.451 NaN 56 25.713 1.605 5.695 0.456 NaN .409 26.931.481 26.873 10.088.598 26.773 9.280 10.505 8.134 10.228 0.905 9.732 0.877 NaN 0.845 5.817 .476 NaN 26.964.584 26.928 10.814.959 26.690 10.643.861 10.487 26.550 9.020.098 10.481 26.448 8.127.225 0.961 26.295 8.131.998 10.212 0.953 26.194 7.925 9.279 5.897 0.920 6.975 9.194 NaN 8.942 0.892 7.621 NaN 0.906 0.893 6.332 0.843 NaN NaN .172 NaN 26.543.310 26.407 9.232 8.771 10.378 10.092 0.951 0.941 NaN NaN 431006 27.158 27.086 11.946 11.384 10.334 10.602363 0.944881 26.154 0.943 25.777 4.361 5.567 1.551 NaN 7.230 6.646 0.672 0.464 NaN 10.190 872910 25.947 25.940 NaN 0.902 NaN 3.115 NaN 0.412 NaN NaN .600.507 27.671.440 27.635 15.812.347 27.620 15.825 9.343.928 27.603 15.740 9.753.747 27.539 15.633 9.812 1.025 27.383 15.125 9.895 1.023 14.003 10.183 1.029 5.035 10.218 1.022 NaN 1.014 NaN 0.990 NaN NaN NaN .516.510 27.487.835 27.342 14.437 27.233 13.411 10.759 12.438 10.720 1.029 10.409 1.002 0.975 5.055 NaN NaN .741 27.216 12.606 10.885 0.994 5.558 0.026 27.080 11.158 10.371 0.954 NaN 0.416 26.9800.662 26.883 10.9931.028 26.652 10.458 10.467 9.648 10.255 0.952 10.335 0.958 NaN 0.963 NaN 6.517

d/m/y dd dd psu deg.C microMolemicroMolemicroMole permi

Cruise DateHUD2005016 6/2/2005HUD2005016 6/2/2005 143HUD2005016 Line/Set 6/2/2005 Stn 143HUD2005016 Long. 7 6/2/2005 143HUD2005016 7 6/2/2005 Lat. 143 54.287HUD2005016 7 54.955 6/2/2005 143 54.287HUD2005016 286039 BottleID 7 54.955 6/2/2005 143 Depth 54.287HUD2005016 364 286040 Sal 7 54.955 6/2/2005 143 54.287HUD2005016 331 286041 34.800 7 54.955 6/2/2005 143 54.287 3 HUD2005016 291 286042 Temp 34.745 7 54.955 6/2/2005 143 54.287 3 HUD2005016 250 286043 34.717 7 54.955 6/2/2005 143 54.287 3 HUD2005016 200 286044 34.686 7 54.955 6/2/2005 143 54.287 3 HUD2005016 151 286045 34.556 7 54.955 6/2/2005 143 54.287 2 HUD2005016 99 286046 34.240 7 54.955 6/2/2005 143 54.287 1 HUD2005016 81 286047 7 54.955 6/2/2005 143 33.854 54.287HUD2005016 60 286048 0. 7 54.955 6/2/2005 147 33.736 54.287HUD2005016 51 286050 0. 7 54.955 6/2/2005 147 33.521 54.287HUD2005016 40 286051 0 6 54.955 6/2/2005 147 33.445 54.287HUD2005016 21 286052 0 6 54.955 6/2/2005 147 33.316 54.475HUD2005016 10 286053 0 6 54.756 6/2/2005 147 32.604 54.475HUD2005016 2 286054 0. 6 54.756 6/2/2005 147 32.249 54.475HUD2005016 237 286055 1. 6 54.756 6/2/2005 147 54.475HUD2005016 201 32.256 286056 34.446 6 54.756 6/2/2005 147 1.8 54.475 2 HUD2005016 150 286057 34.167 6 54.756 6/2/2005 147 54.475 1 HUD2005016 124 286058 33.977 6 54.756 6/2/2005 147 54.475 0 HUD2005016 99 286059 33.727 6 54.756 6/2/2005 147 54.475 HUD2005016 80 286060 6 54.756 6/2/2005 147 33.558 54.475HUD2005016 61 286061 0 6 54.756 6/2/2005 147 33.508 54.475HUD2005016 51 286062 0 6 54.756 6/2/2005 147 33.196 54.475HUD2005016 41 286063 0 6 54.756 6/2/2005 154 33.027 54.475HUD2005016 30 286064 0 6 54.756 6/2/2005 154 32.892 54.475HUD2005016 20 286065 1 5 54.756 6/2/2005 154 32.699 54.475HUD2005016 10 286067 1 5 54.756 6/2/2005 154 32.582 54.757HUD2005016 11 286068 0 5 54.492 6/2/2005 154 32.381 54.757 2 286073 0. 5 54.492 154 32.375 54.757 190 286074 0. 5 54.492 54.757 151 32.158 286075 33.947 5 54.492 1.7 54.757 0 126 286076 33.580 54.492 54.757 100 286077 33.448 54.492 80 286078 33.146 60 33.006 1 32.833 1

239

lle SigmaT NO3/NO2 Silicate Phosphate d15NNO3 59 25.766 0.795 5.217 0.439 NaN .371 26.351.383 26.272 8.509.344 26.177 8.021.289 26.124 7.182 9.871 6.854 9.192 8.686 0.944 8.589 0.924 0.883 6.221 0.869 NaN NaN NaN 614 25.795 1.152 5.281 0.466 9.420 5.258 22.8785.276 21.168 0.185 0.187 0.329 0.300 0.369 0.357 NaN NaN

1.9573.984 25.856 25.577 4.926 0.235 4.268 0.512 0.885 0.500 4.588 NaN 16.620 23.12016.503 21.093 0.214 0.216 0.423 0.355 0.279 0.255 NaN NaN

7 5.7063 8.388 27.4140 0.085 27.061 19.223 26.230 17.756 18.524 5.538 11.753 1.459 4.866 1.321 5.490 1.078 5.430 5 5.420 12.2807 26.089 17.112 25.962 0.778 0.231 1.811 1.644 0.408 0.174 NaN 1 18.594 NaN 0 23.337 18.574 21.509 0.031 0.006 0.629 0.569 0.199 0.195 NaN NaN 99 4.51915 5.096 27.65182 11.175 27.597 17.06120 27.042 12.307 19.018 26.624 20.788 10.855 8.262 12.573 10.713 1.187 1.325 3.736 1.340 5.218 5.312 0.732 5.226 42 8.672 4.499 00 9.672 26.577 28.964 7.651 NaN 4.602 NaN 0.773 NaN 5.282 NaN 915 6.497011 8.583 27.421293 11.518 27.193 19.643 26.909 19.834 11.266 13.974 13.266 5.890 1.350 1.349 0.841 5.275 5.333 5.145

d/m/y dd dd psu deg.C microMole microMole microMole permi HUD2005016 6/2/2005HUD2005016 6/2/2005 154HUD2005016 6/2/2005 154HUD2005016 5 6/2/2005 154HUD2005016 5 6/2/2005 154 54.757HUD2005016 5 54.492 6/2/2005 154 54.757Teleost633 286079 5 54.492 154 54.757 50Teleost633 286080 7/18/2005 5 54.492 54.757 48 41Teleost633 286081 7/18/2005 5 54.492 32.762 54.757 48Teleost633 30 286082 7/18/2005 1 54.492 32.664 54.757 48Teleost633 36 20 286083 7/18/2005 1 54.492 32.548 48 57.262Teleost633 36 10 286085 7/18/2005 1 44.713 32.485 48 57.262 36 2Teleost633 7/18/2005 274608 1 44.713 32.249 48 57.262 36Teleost633 300 7/26/2005 274609 1. 44.713 48 57.262 36Teleost633 32.225 200 7/19/2005 274610 34.77 44.713 1.7 50 57.262 36Teleost633 100 7/19/2005 274611 34.80 44.713 50 57.262Teleost633 36 50 7/19/2005 274612 32.68 44.713 50 57.262Teleost633 202 25 7/19/2005 274613 57.765 44.713 50 32.355 Teleost633 202 5 7/19/2005 44.274 274614 57.765 50 32.220 274619Teleost633 202 1 7/19/2005 44.274 57.765 488 50 274620Teleost633 202 7/19/2005 44.274 31.054 57.765 400 50 274621 1 Teleost633 202 34.8 7/19/2005 44.274 28.833 57.765 200 50 274622 1 202Teleost633 34.9 7/25/2005 44.274 57.765 100 106 274623 202Teleost633 35.3 7/25/2005 44.274 57.765 50 106 274624 202Teleost633 35.1 7/25/2005 44.274 57.765 923 25 106 274625Teleost633 61.112 7/25/2005 44.274 34.42 923 5 43.262 106 274626Teleost633 61.112 7/25/2005 35.61 274835 923 1 43.262 106Teleost633 61.112 7/25/2005 297 274836 923 43.262 106 31.763 61.112 7/25/2005 200 274837 923 34. 43.262 106 29.083 61.112 100 274838 923 35. 43.262 61.112 50 274839 923 35. 43.262 61.112 25 274840 43.262 34.2 5 274841 37.5 1 32.66 30.26 Cruise Date Line/Set Stn Long. Lat. BottleID Depth Sal Temp

240 AppendixE CopyrightPermissionsLetters

17May2006 Ourref:CT/mm/may06.J014 MrOwenSherwood DalhousieUniversity [email protected] DearMrSherwood GEOCHIMICA ET COSMOCHIMICA ACTA, Accepted for publication, Sherwood, “Late Holocene radiocarbon…” Asperyourletterdated15May2006,weherebygrantyoupermissiontoreprinttheaforementionedmaterialatno charge inyourthesis subjecttothefollowingconditions: 1. Ifanypartofthematerialtobeused(forexample,figures)hasappearedinourpublicationwithcreditor acknowledgementtoanothersource,permissionmustalsobesoughtfromthatsource.Ifsuchpermission isnotobtainedthenthatmaterialmaynotbeincludedinyourpublication/copies. 2. Suitableacknowledgmenttothesourcemustbemade,eitherasafootnoteorinareferencelistattheendof yourpublication,asfollows: “Reprinted from Publication title, Vol number, Author(s), Title of article, Pages No., Copyright (Year), withpermissionfromElsevier”. 3. Reproductionofthismaterialisconfinedtothepurposeforwhichpermissionisherebygiven. 4. This permission is granted for nonexclusive world English rights only. For other languages please reapplyseparatelyforeachonerequired.Permissionexcludesuseinanelectronicform.Shouldyouhave aspecificelectronicprojectinmindpleasereapplyforpermission. 5. ThisincludespermissionfortheLibraryandArchivesofCanadatosupplysinglecopies,ondemand,ofthe completethesis.Shouldyourthesisbepublishedcommercially,pleasereapplyforpermission. Yourssincerely

ClareTruter DeputyRightsManager,S&T

241 Date: Wed, 17 May 2006 08:42:55 +0200 [03:42:55 AM ADT] From: John Austin Add to Address book ([email protected]) To: [email protected] Subject: Fwd: Copyright agreement - form attached Part(s): Download All Attachments (in .zip file) Headers: Show All Headers

Publisher permission is herewith granted for the purpose described below provided adequate acknowledgement is made to the original source of publication. Helga Witt Administrative Director Inter-Research, Science Center

> X-ATTACHEXT: DOC > X-SpamCatcher-Score: 2 [X] > Date: Mon, 15 May 2006 13:41:49 -0300 > From: Owen Sherwood > To: [email protected] > Subject: Copyright agreement - form attached > > May15,2006 > >MarineEcologyProgressSeries >EcologyInstitute >Oldendorf/Luhe >Germany > >DearMEPS, >IampreparingmyPhDthesisforsubmissiontotheFacultyofGraduateStudiesatDalhousie >University,Halifax,NovaScotia,Canada.Iamseekingyourpermissiontoincludeamanuscriptversionof >the followingpapersasachapterinthethesis: > >RadiocarbonevidenceforannualgrowthringsinthedeepseaoctocoralPrimnoaresedaeformis.By:OA >Sherwood, DBScott,MJRisk,TPGuilderson.MarEcolProgSer301:129134(2005). > >Stableisotopiccompositionofdeepseagorgoniancorals Primnoa spp.:anewarchiveofsurface >processes.OA Sherwood,JMHeikoop,DBScot,MJRisk,TPGuilderson,RAMcKinney.MarEcolProg >Ser301:135148(2005). > >CanadiangraduatethesesarereproducedbytheLibraryandArchivesofCanada(formerlyNational >Libraryof Canada)throughanonexclusive,worldwidelicensetoreproduce,loan,distribute,orsell >theses.Iamalsoseeking yourpermissionforthematerialdescribedabovetobereproducedanddistributed >bytheLAC(NLC).Furtherdetails abouttheLAC(NLC)thesisprogramareavailableontheLAC(NLC) >website( www.nlcbnc.ca ).Fullpublication detailsandacopyofthispermissionletterwillbeincludedin >thethesis. > >Yourssincerely, >OwenSherwood -- -- Inter-Research Science Centre Nordbuente 23, 21385 Oldendorf/Luhe, Germany

Tel: (+49) (4132) 7127 Email: [email protected] Fax: (+49) (4132) 8883 www.int-res.com

242