Zapata-Carratala2019.Pdf (9.144Mb)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dirac Brackets in Geometric Dynamics Annales De L’I
ANNALES DE L’I. H. P., SECTION A JEDRZEJ S´ NIATYCKI Dirac brackets in geometric dynamics Annales de l’I. H. P., section A, tome 20, no 4 (1974), p. 365-372 <http://www.numdam.org/item?id=AIHPA_1974__20_4_365_0> © Gauthier-Villars, 1974, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Section A : Vol. XX, n° 4, 1974, 365 Physique théorique. Dirac brackets in geometric dynamics Jedrzej 015ANIATYCKI The University of Calgary, Alberta, Canada. Department of Mathematics Statistics and Computing Science ABSTRACT. - Theory of constraints in dynamics is formulated in the framework of symplectic geometry. Geometric significance of secondary constraints and of Dirac brackets is given. Global existence of Dirac brackets is proved. 1. INTRODUCTION The successes of the canonical quantization of dynamical systems with a finite number of degrees of freedom, the experimental necessity of quan- tization of electrodynamics, and the hopes that quantization of the gravi- tational field could resolve difficulties encountered in quantum field theory have given rise to thorough investigation of the canonical structure of field theories. It has been found that the standard Hamiltonian formu- lation of dynamics is inadequate in the physically most interesting cases of electrodynamics and gravitation due to existence of constraints. -
Non-Abelian Conversion and Quantization of Non-Scalar Second
FIAN-TD/05-01 hep-th/0501097 Non-Abelian Conversion and Quantization of Non-scalar Second-Class Constraints I. Batalin,a M. Grigoriev,a and S. Lyakhovichb aTamm Theory Department, Lebedev Physics Institute, Leninsky prospect 53, 119991 Moscow, Russia bTomsk State University, prospect Lenina 36, 634050 Tomsk, Russia ABSTRACT. We propose a general method for deformation quantization of any second-class constrained system on a symplectic manifold. The constraints deter- mining an arbitrary constraint surface are in general defined only locally and can be components of a section of a non-trivial vector bundle over the phase-space manifold. The covariance of the construction with respect to the change of the constraint basis is provided by introducing a connection in the “constraint bundle”, which becomes a key ingredient of the conversion procedure for the non-scalar constraints. Unlike arXiv:hep-th/0501097v1 13 Jan 2005 in the case of scalar second-class constraints, no Abelian conversion is possible in general. Within the BRST framework, a systematic procedure is worked out for con- verting non-scalar second-class constraints into non-Abelian first-class ones. The BRST-extended system is quantized, yielding an explicitly covariant quantization of the original system. An important feature of second-class systems with non-scalar constraints is that the appropriately generalized Dirac bracket satisfies the Jacobi identity only on the constraint surface. At the quantum level, this results in a weakly associative star-product on the phase space. 2 BATALIN, GRIGORIEV, AND LYAKHOVICH CONTENTS 1. Introduction 2 2. Geometry of constrained systems with locally defined constraints 5 3. -
Turbulence, Entropy and Dynamics
TURBULENCE, ENTROPY AND DYNAMICS Lecture Notes, UPC 2014 Jose M. Redondo Contents 1 Turbulence 1 1.1 Features ................................................ 2 1.2 Examples of turbulence ........................................ 3 1.3 Heat and momentum transfer ..................................... 4 1.4 Kolmogorov’s theory of 1941 ..................................... 4 1.5 See also ................................................ 6 1.6 References and notes ......................................... 6 1.7 Further reading ............................................ 7 1.7.1 General ............................................ 7 1.7.2 Original scientific research papers and classic monographs .................. 7 1.8 External links ............................................. 7 2 Turbulence modeling 8 2.1 Closure problem ............................................ 8 2.2 Eddy viscosity ............................................. 8 2.3 Prandtl’s mixing-length concept .................................... 8 2.4 Smagorinsky model for the sub-grid scale eddy viscosity ....................... 8 2.5 Spalart–Allmaras, k–ε and k–ω models ................................ 9 2.6 Common models ........................................... 9 2.7 References ............................................... 9 2.7.1 Notes ............................................. 9 2.7.2 Other ............................................. 9 3 Reynolds stress equation model 10 3.1 Production term ............................................ 10 3.2 Pressure-strain interactions -
Mechanics, Control and Lie Algebroids, Geometry Meeting 2009
Mechanics, Control and Lie algebroids Geometry Meeting 2009 Eduardo Martínez University of Zaragoza [email protected] Escola Universitaria Politécnica, Ferrol, October 29–30, 2009 Abstract The most relevant ideas and results about mechanical systems defined on Lie algebroids are presented. This was a program originally proposed by Alan Weinstein (1996) and developed by many authors. 1 Several reasons for formulating Mechanics on Lie algebroids The inclusive nature of the Lie algebroid framework: under the same formalism one can consider standard mechanical systems, systems on Lie algebras, systems on semidirect products, systems with symme- tries. The reduction of a mechanical system on a Lie algebroid is a mechan- ical system on a Lie algebroid, and this reduction procedure is done via morphisms of Lie algebroids. Well adapted: the geometry of the underlying Lie algebroid deter- mines some dynamical properties as well as the geometric structures associated to it (e.g. Symplectic structure). Provides a natural way to use quasi-velocities in Mechanics. 2 Introduction Lagrangian systems Given a Lagrangian L 2 C1(TQ), the Euler-Lagrange equations define a dynamical system q_i = vi d @L @L = : dt @vi @qi Variational Calculus. Symplectic formalism 4 Geodesics of left invariant metrics For instance, if k is a Riemannian metric on a manifold Q , the Euler- 1 Lagrange equations for L(v) = 2 k(v; v) are the equation for the geodesics rvv = 0 If Q = G is a Lie group and k is left invariant, then L defines a function 1 l on the Lie algebra g, by restriction l(ξ) = 2 k(ξ; ξ). -
Canonical Quantization of the Self-Dual Model Coupled to Fermions∗
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Canonical Quantization of the Self-Dual Model coupled to Fermions∗ H. O. Girotti Instituto de F´ısica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 - Porto Alegre, RS, Brazil. (March 1998) Abstract This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally cou- pled to fermions is also quantized through the Dirac-bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the in- teraction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interac- tions terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elas- tic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non- renormalizable. -
Regular Jacobi Structures and Generalized Contact Bundles
Regular Jacobi Structures and Generalized Contact Bundles Jonas Schnitzer∗ Dipartimento di Matematica Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy June 14, 2021 Abstract A Jacobi structure J on a line bundle L → M is weakly regular if the sharp map J ♯ : J 1L → DL has constant rank. A generalized contact bundle with regular Jacobi structure possess a transverse complex structure. Paralleling the work of Bailey in generalized complex geometry, we find condition on a pair consisting of a regular Jacobi structure and an transverse complex structure to come from a generalized contact structure. In this way we are able to construct interesting examples of generalized contact bundles. As applications: 1) we prove that every 5- dimensional nilmanifold is equipped with an invariant generalized contact structure, 2) we show that, unlike the generalized complex case, all contact bundles over a complex manifold possess a compatible generalized contact structure. Finally we provide a counterexample presenting a locally conformal symplectic bundle over a generalized contact manifold of complex type that do not possess a compatible generalized contact structure. Contents 1 Introduction 2 2 Preliminaries and Notation 2 3 Tranversally Complex Jacobi Structures and Generalized Contact Bundles 8 arXiv:1806.10489v1 [math.DG] 27 Jun 2018 4 The Splitting of the Spectral Sequence of a Transversally Complex Subbundle 10 5 Examples I: Five dimensional nilmanifolds 15 6 Examples II: Contact Fiber Bundles 19 7 A Counterexample 21 References 23 ∗[email protected] 1 1 Introduction Generalized geometry was set up in the early 2000’s by Hitchin [9] and further developed by Gualtieri [8], and the literature about them is now rather wide. -
Holomorphic Equivariant Cohomology of Atiyah Algebroids and Localization
arXiv:0910.2019 [math.CV] SISSA Preprint 65/2009/fm Holomorphic equivariant cohomology of Atiyah algebroids and localization U. Bruzzo Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34151Trieste, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Trieste E-Mail: [email protected] V. Rubtsov Universit´ed'Angers, D´epartement de Math´ematiques,UFR Sciences, LAREMA, UMR 6093 du CNRS, 2 bd. Lavoisier, 49045 Angers Cedex 01, France; ITEP Theoretical Division, 25 Bol. Tcheremushkinskaya, 117259, Moscow, Russia E-mail: [email protected] Abstract. In a previous paper we developed an equivariant cohomology the- ory associated to a set of data formed by a differentiable manifold M carrying the action of a Lie group G, and a Lie algebroid A on M equipped with a compatible infinitesimal action of G. We also obtained a localization formula for a twisted version of this cohomology, and from it, a Bott-type formula. In this paper we slightly modify that theory to obtain a localization formula for an equivariant cohomology associated to an equivariant holomorphic vector bun- dle. This formula encompasses many residues formulas in complex geometry, in particular we shall show that it admits as a special case Carrell-Lieberman's residue formula [7, 6]. Date: 10 October 2009 2000 Mathematics Subject Classification: 32L10, 53C12, 53C15, 53D17, 55N25, 55N91 The authors gratefully acknowledge financial support and hospitality during the respective vis- its to Universit´ed'Angers and SISSA. Support for this work was provided by misgam, by P.R.I.N \Geometria sulle variet`aalgebriche," the I.N.F.N. -
ON a NON-ABELIAN POINCARÉ LEMMA 1. Introduction It Is Well
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 8, August 2012, Pages 2855–2872 S 0002-9939(2011)11116-X Article electronically published on December 15, 2011 ON A NON-ABELIAN POINCARE´ LEMMA THEODORE TH. VORONOV (Communicated by Varghese Mathai) Abstract. We show that a well-known result on solutions of the Maurer– Cartan equation extends to arbitrary (inhomogeneous) odd forms: any such form with values in a Lie superalgebra satisfying dω + ω2 = 0 is gauge- equivalent to a constant, ω = gCg−1 − dg g−1. This follows from a non-Abelian version of a chain homotopy formula making use of multiplicative integrals. An application to Lie algebroids and their non- linear analogs is given. Constructions presented here generalize to an abstract setting of differen- tial Lie superalgebras where we arrive at the statement that odd elements (not necessarily satisfying the Maurer–Cartan equation) are homotopic — in a certain particular sense — if and only if they are gauge-equivalent. 1. Introduction It is well known that a 1-form with values in a Lie algebra g satisfying the Maurer–Cartan equation 1 (1.1) dω + [ω, ω]=0 2 possesses a ‘logarithmic primitive’ locally or for a simply-connected domain (1.2) ω = −dg g−1 for some G-valued function, where G is a Lie group with the Lie algebra g.Here and in the sequel we write all formulas as if our algebras and groups were matrix; it makes the equations more transparent, and certainly nothing prevents us from rephrasing them in an abstract form. Therefore the main equation (1.1) will also be written as (1.3) dω + ω2 =0. -
LIE GROUPOIDS and LIE ALGEBROIDS LECTURE NOTES, FALL 2017 Contents 1. Lie Groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Ex
LIE GROUPOIDS AND LIE ALGEBROIDS LECTURE NOTES, FALL 2017 ECKHARD MEINRENKEN Abstract. These notes are under construction. They contain errors and omissions, and the references are very incomplete. Apologies! Contents 1. Lie groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Exercises 9 2. Foliation groupoids 10 2.1. Definition, examples 10 2.2. Monodromy and holonomy 12 2.3. The monodromy and holonomy groupoids 12 2.4. Appendix: Haefliger’s approach 14 3. Properties of Lie groupoids 14 3.1. Orbits and isotropy groups 14 3.2. Bisections 15 3.3. Local bisections 17 3.4. Transitive Lie groupoids 18 4. More constructions with groupoids 19 4.1. Vector bundles in terms of scalar multiplication 20 4.2. Relations 20 4.3. Groupoid structures as relations 22 4.4. Tangent groupoid, cotangent groupoid 22 4.5. Prolongations of groupoids 24 4.6. Pull-backs and restrictions of groupoids 24 4.7. A result on subgroupoids 25 4.8. Clean intersection of submanifolds and maps 26 4.9. Intersections of Lie subgroupoids, fiber products 28 4.10. The universal covering groupoid 29 5. Groupoid actions, groupoid representations 30 5.1. Actions of Lie groupoids 30 5.2. Principal actions 31 5.3. Representations of Lie groupoids 33 6. Lie algebroids 33 1 2 ECKHARD MEINRENKEN 6.1. Definitions 33 6.2. Examples 34 6.3. Lie subalgebroids 36 6.4. Intersections of Lie subalgebroids 37 6.5. Direct products of Lie algebroids 38 7. Morphisms of Lie algebroids 38 7.1. Definition of morphisms 38 7.2. -
Lie Algebroids, Gauge Theories, and Compatible Geometrical Structures
LIE ALGEBROIDS, GAUGE THEORIES, AND COMPATIBLE GEOMETRICAL STRUCTURES ALEXEI KOTOV AND THOMAS STROBL Abstract. The construction of gauge theories beyond the realm of Lie groups and algebras leads one to consider Lie groupoids and algebroids equipped with additional geometrical structures which, for gauge invariance of the construction, need to satisfy particular compatibility conditions. This paper is supposed to analyze these compatibil- ities from a mathematical perspective. In particular, we show that the compatibility of a connection with a Lie algebroid that one finds is the Cartan condition, introduced previously by A. Blaom. For the metric on the base M of a Lie algebroid equipped with any connection, we show that the compatibility suggested from gauge theories implies that the foliation induced by the Lie algebroid becomes a Riemannian foliation. Building upon a result of del Hoyo and Fernandes, we prove furthermore that every Lie algebroid integrating to a proper Lie groupoid admits a compatible Riemannian base. We also consider the case where the base is equipped with a compatible symplectic or generalized Riemannian structure. Key words and phrases: Lie algebroids, Riemannian foliations, symplectic realization, generalized geometry, symmetries and reduction, gauge theories. Contents 1. Introduction 1 2. Motivation via Mathematical Physics 3 arXiv:1603.04490v2 [math.DG] 12 Apr 2019 3. Connections on Lie algebroids 8 4. Lie algebroids over Riemannian manifolds 14 5. Lie algebroids over manifolds with other geometric structures 21 Appendix A: Flat Killing Lie algebroids, simple examples and facts 24 References 25 Date: March 7, 2018. 0 LIE ALGEBROIDS WITH COMPATIBLE GEOMETRICAL STRUCTURES 1 1. Introduction Lie algebroids were introduced in the 1960s by Pradines [23] as a formalization of ideas going back to works of Lie and Cartan. -
THE ATIYAH ALGEBROID of the PATH FIBRATION OVER a LIE GROUP Contents 1. Introduction 2 2. Review of Transitive Lie Algebroids 3
THE ATIYAH ALGEBROID OF THE PATH FIBRATION OVER A LIE GROUP A. ALEKSEEV AND E. MEINRENKEN Abstract. Let G be a connected Lie group, LG its loop group, and π : P G → G the principal LG-bundle defined by quasi-periodic paths in G. This paper is devoted to differential geometry of the Atiyah algebroid A = T (P G)/LG of this bundle. Given a symmetric bilinear form on g and the corresponding central extension of Lg, we consider the lifting problem for A, and show how the cohomology class of the Cartan 3-form η ∈ Ω3(G) arises as an obstruction. This involves the construction of a ∗ ∗ 2-form ̟ ∈ Ω2(P G)LG = Γ(∧2A ) with d̟ = π η. In the second part of this paper we obtain similar LG-invariant primitives for the higher degree analogues of the form η, and for their G-equivariant extensions. Contents 1. Introduction 2 2. Review of transitive Lie algebroids 3 2.1. Lie algebroids 3 2.2. Transitive Lie algebroids 4 2.3. Pull-backs 5 2.4. Equivariant transitive Lie algebroids 6 3. A lifting problem for transitive Lie algebroids 6 3.1. The lifting problem 6 3.2. Splittings 7 3.3. The form ̟ 8 3.4. The cohomology class [η] as an obstruction class 9 3.5. The equivariant lifting problem 10 3.6. Relation with Courant algebroids 12 4. The Atiyah algebroid A → G 13 4.1. The bundle of twisted loop algebras 13 4.2. The Lie algebroid A → G 13 4.3. The bundle P G → G 15 4.4. -
An Extension of the Dirac and Gotay-Nester Theories of Constraints for Dirac Dynamical Systems
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Difusión de la Creación Intelectual An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems Hern´anCendraa;1, Mar´ıaEtchechouryb and Sebasti´anJ. Ferraroc a Departamento de Matem´atica Universidad Nacional del Sur, Av. Alem 1253 8000 Bah´ıaBlanca and CONICET, Argentina. [email protected] b Laboratorio de Electr´onicaIndustrial, Control e Instrumentaci´on, Facultad de Ingenier´ıa,Universidad Nacional de La Plata and Departamento de Matem´atica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CC 172, 1900 La Plata, Argentina. [email protected] c Departamento de Matem´aticaand Instituto de Matem´aticaBah´ıaBlanca Universidad Nacional del Sur, Av. Alem 1253 8000 Bah´ıaBlanca, and CONICET, Argentina [email protected] Abstract This paper extends the Gotay-Nester and the Dirac theories of constrained systems in order to deal with Dirac dynamical systems in the integrable case. In- tegrable Dirac dynamical systems are viewed as constrained systems where the constraint submanifolds are foliated, the case considered in Gotay-Nester theory being the particular case where the foliation has only one leaf. A Constraint Al- gorithm for Dirac dynamical systems (CAD), which extends the Gotay-Nester algorithm, is developed. Evolution equations are written using a Dirac bracket adapted to the foliations and an abridged total energy which coincides with the total Hamiltonian in the particular case considered by Dirac. The interesting example of LC circuits is developed in detail. The paper emphasizes the point of view that Dirac and Gotay-Nester theories are dual and that using a com- bination of results from both theories may have advantages in dealing with a given example, rather than using systematically one or the other.