An Introduction to the Purex Process

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to the Purex Process An Introduction to the Purex Process . IntroduCtion allowing for the decay of short-lived fission products is termed as spent fuel reprocessing. During the operation of nuclear reactors, 235u component of the natural uranium fuel is fissioned, Process Requirements generating neutrons and a host of highly radioactive fission products. Simultaneously, the fertile 238u Fuel reprocessing differs from conventional captures some of the neutrons and yields 239Pu, anew chemical processing due to the radioactive nature of. and useful fissile nuclide. the materials being processed. The equipment have to be installed behind massive concrete shielding 2 ~W + /,n ~ Fission products + 2.5 ~n + 194 MeV (sometimes as much as 1.5 M .thick) to provide built-in arrangement for separation and protection of the operating personnel from equipment with high 238U I 239lJ ~- 239 R- 239n radiation field. Stringent air ventilation and exhaust 92 + on ~ n : > 93Np ~d 94t"U 23 .5 mtn. 2 .3 ay requirements are to be met in the entire plant to The accumulated fission products in the fuel protect the operating personnel and the environment hinder the operation of the reactor system from from getting contaminated due to air borne radiation and neutron economy points of view. radioactivity. The processes and equipment used are modified to suit remote operation and maintenance. Becau~e of this, as the burn up (expressed as MWD/tonne) of the fuel goes high, the spent fuel has Another important difference between to be replaced with fresh fuel in the reactor to traditional and nuclear chemical engineering is the . continue its operation. ' need to provide a design that precludes the possibility The spent fuel discharged from reactors of accidentally producing a self-sustaining nuclear contains significant quantities of fissile nuclides, chain reaction- the condition known as criticality­ 235 when lar~ concentrations or quantities of fissile mainly the unutilized U and the newly formed 39 235 233 239Pu which can be re-used. The process of isotopes ( Pu, U or U) are handled. Safe separating the fissile and fe1tile materials (Pu and U) operation of a reprocessing plant is generally from the . fission products in the spent fuel after achieved by criticality control techniques like mass, volume, and concentration control of fissile materials or geometry control of the equipment used. July 1998 lJ IANCAS Bulletin . msr crm I~ o, ,'.....' co-mncn. "'"o1 uol LUI 0 SOLV. POl SCRUB I P UCTCLI SOL.I . G c 0 L > L 10. rm O,Pa,PP . L l Q.O PIODUCr ) soLb uu lOt rBP/DD SOLY. FOI UCYCLI rr v1sn roa com .< c i STOilGI 0 ·-, - -------------L'<LllCI CYCLIO VAST£ _jVE:TI . AQ.Pa PRODUCt PP, 0 ' PI lRd fa tYCU Fig. 1 Flow scheme of Purex process Purex~ • Final U purification cycle • Final Pu purification cycle World over, Purex process is followed for the • Pu and U reconversion to their oxides I I separation and purification of uranium (U) and plutonium (Pu) from irradiated spent fuels after The first three steps together are called dissolving the fuels in nitric acid. Purex process is head-end treatment steps meant to bring the fuel into essentially a solvent extraction process which uses dissolved aqueous form suitable for Purex process. Tri-n-butylphosphate (TBP) diluted with dodecane The aim of the co-decontamination and partitioning as solvent to extract and further separate U and Pu step is to extract and separate U and Pu together from from highly radioactive fission products. The U and the rest of the fission product impurities and then Pu products are further purified and converted to further separate and purify U and Pu from each other. oxides, while fission product · waste solution is In the subsequent steps, U and Pu are purified further neutralized and stored for subsequent treatment and individually before conversion to their oxide forms. disposal. The general flow scheme used is given in Fig. I . The extent of purification or decontamination of U or Pu achieved in each step is generally The Purex process has the following major expressed by a term called decontamination factor steps: (DF) and is defined by the following expression: • Decladding or dejacketing p, y acti vity/g ofU or Pu in feed • Dissolution DF = rl . I f U P . d • Feed preparation p , y acttvtty go or u 111 pro uct • Co-decontamination and Partition cycle 1ANCAS Bulletin 12 July 1998 The larger the DF one obtains in an extraction fission products by sparging oxygen as reactant and step, the greater is the purification and efficiency of this type of dissolution is called fumeless dissolution. the process. In general, the DF with respect to beta and gamma activities aimed in Purex process after 2 Feed Preparation 6 7 cycles of extraction is of the order of 10 to 10 for The solution resulting from the dissolution of both uranium and plutonium. spent fuels must be adjusted in most cases before it is ready for solvent extraction involving one or more Head End Process Steps in Purex Process of the following operations: Dec/adding • Solids removal or feed clarification to avoid Fuels have different cladding materials such as choking, pluggin~ and emulsification during aluminium, zircaloy and stainless steel depending on extraction the reactor types: The removal of jacket material • Adjustment of feed acidity to obtain the prior ·co processing is desirable, as otherwise it extraction of the required component contributes greatly to the volume of highly • Adjustment of salting strength by dilution or radioactive process solution to be processed and the evaporation of the feed to the desired uranium waste that must be stored. Based on the cladding content level, to have maximum processing rate, material, the decladding method is selected, ie. wherever necessary. chemical decladding or mechanical decladding. In the former method, the decladding material is In Purex process, at the end of the dissolution, preferentially dissolved in aqueous solution whereas uranium is present in sixth valence state and the fuel core· remains undissolved. In the latter plutonium mostly in tetravalent state. For good method, the fuel assemblies are chopped and extraction by TBP, tetravalent state of total dissolved in nitric acid and the clad· material plutonium is ensured by further addition of NaN02 remaining undissolved is disposed as solid waste. followed by digestion at 50°C. This technique is mostly adopted for spent fuel 4 arisings from power reactors (PHWRs), as they are Puoi+ + N02 + 2H; ~ Pu + + N03 + H20 ge.nerally clad with zircaloy. Pu3+ + N02 + 2H+ ~ Pu4+ +NO+ H20 Dissolution 6Pu3+ + 2N02 + 8 H+ ~ 6Pu4+ + N2 + 4 H20 Concentrated nitric acid is used to dissolve uranium and uranium oxide fuels. Dissolution is The dual function nitrite (i.e. it reduces Pu(VI) carried out batch-wise. The dissolution is exothermic to Pu(IV) and oxidizes Pu(Ill) to Pu(IV)) makes it an and the reaction is controlled by optimizing the ideal feed conditioning agent in Purex process. N02 concentration of acid as well as the temperature of gas can also be used for this adjustment, as it reaction. Oxides of nitrogen liberated during the precludes the introduction of sodium ion as impurity dissolution are reoxidised and put back in the and has other advantages as well. dissolver using down draft condensers to reduce the. Solvent Extraction with TBP consul)lption of nitric acid. Fm1her, the gases are treated to remove the traces of nitlic acid and volatile As the major separation process steps are fission products, cooled and filtered before being essentially solvent extraction cycles with TBP, the exhausted through a tall stack. ~p extraction technique will be discussed briefly before -~ discus~ion on these process steps is taken Uranium dioxide dissolves in nitric acid by the · up. net reaction: TBP as an Exiractant Several factors influence the choice of a solvent It is possible to dissolve uranium without any for the 'e~tt~ction process in the processing of net evolution of gaseous products except the gaseous irradiated fuel elements. A final choice involves a July 1998 13 IANCAS Bulletin compromise . between various factors. TBP is in the aqueous phase form nitrate complexes that are · 4 generally favoured as it meets most of these extracted byTBP. ForUO~+, Puo~+, Pu + and for few conditions and is employed in most of the fuel other ions in te.travalent state, complexing is reprocessing plants in the world. TBP is highly considerable. But for a few exceptions like Ru(NO), 4 selective for U and Pu. As a commercial product, it Zr +, etc., the ability to form nitrate complexes is is cheaply available and can be purified easily. It has very poor for most of the elements that constitute the a high boiling point (266°C) and is non-volatile. Its fission products. solubility in water is_ Qnly 0.4 g/.!:jt has lflgJ1" chenucai;-Ihermal and radiation sta5ility. It has very Because of the similarity of U(VI) and Pu(IV) low extractability for fission products resulting in in the formation and extractability of nitrate excellent purification of U and Pu. The only two complexes and the. inextractability of fission unfavourable properties are its high density (0.973) products, an efficient separation of fanner from the and high viscosity which are compensated by latter is obtained by solvent extraction with TBP. diluting it with an inert diluent like kerosene. In the Then taking advantage of the fact that Pu(III) is process, it can be purified by washing with weakly extracted, a further separation ofU and Puis NaOH/Na2C03 and HN03 to remove the achieved by reducing Pu(IV) to Pu(III), in which decomposition products. The difficulties in the state it gets stripped from the organic phase.
Recommended publications
  • Spent Fuel Reprocessing
    Spent Fuel Reprocessing Robert Jubin Oak Ridge National Laboratory Reprocessing of used nuclear fuel is undertaken for several reasons. These include (1) recovery of the valuable fissile constituents (primarily 235U and plutonium) for subsequent reuse in recycle fuel; (2) reduction in the volume of high-level waste (HLW) that must be placed in a geologic repository; and (3) recovery of special isotopes. There are two broad approaches to reprocessing: aqueous and electrochemical. This portion of the course will only address the aqueous methods. Aqueous reprocessing involves the application of mechanical and chemical processing steps to separate, recover, purify, and convert the constituents in the used fuel for subsequent use or disposal. Other major support systems include chemical recycle and waste handling (solid, HLW, low-level liquid waste (LLLW), and gaseous waste). The primary steps are shown in Figure 1. Figure 1. Aqueous Reprocessing Block Diagram. Head-End Processes Mechanical Preparations The head end of a reprocessing plant is mechanically intensive. Fuel assemblies weighing ~0.5 MT must be moved from a storage facility, may undergo some degree of disassembly, and then be sheared or chopped and/or de-clad. The typical head-end process is shown in Figure 2. In the case of light water reactor (LWR) fuel assemblies, the end sections are removed and disposed of as waste. The fuel bundle containing the individual fuel pins can be further disassembled or sheared whole into segments that are suitable for subsequent processing. During shearing, some fraction of the radioactive gases and non- radioactive decay product gases will be released into the off-gas systems, which are designed to recover these and other emissions to meet regulatory release limits.
    [Show full text]
  • Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel EMMA H. K. ANEHEIM Department of Chemical and Biological Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2012 Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel EMMA H. K. ANEHEIM ISBN 978-91-7385-751-2 © EMMA H. K. ANEHEIM, 2012. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie Nr 3432 ISSN 0346-718X Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: Radiotoxicity as a function of time for the once through fuel cycle (left) compared to one P&T cycle using the GANEX process (right) (efficiencies: partitioning from Table 5.5.4, transmutation: 99.9%). Calculations performed using RadTox [HOL12]. Chalmers Reproservice Gothenburg, Sweden 2012 Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel EMMA H. K. ANEHEIM Department of Chemical and Biological Engineering Chalmers University of Technology Abstract When uranium is used as fuel in nuclear reactors it both undergoes neutron induced fission as well as neutron capture. Through successive neutron capture and beta decay transuranic elements such as neptunium, plutonium, americium and curium are produced in substantial amounts. These radioactive elements are mostly long-lived and contribute to a large portion of the long term radiotoxicity of the used nuclear fuel. This radiotoxicity is what makes it necessary to isolate the used fuel for more than 100,000 years in a final repository in order to avoid harm to the biosphere.
    [Show full text]
  • A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies
    energies Review A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies Laura Rodríguez-Penalonga * ID and B. Yolanda Moratilla Soria ID Cátedra Rafael Mariño de Nuevas Tecnologías Energéticas, Universidad Pontificia Comillas, 28015 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-542-2800 (ext. 2481) Received: 19 June 2017; Accepted: 6 August 2017; Published: 21 August 2017 Abstract: Nuclear power has been questioned almost since its beginnings and one of the major issues concerning its social acceptability around the world is nuclear waste management. In recent years, these issues have led to a rise in public opposition in some countries and, thus, nuclear energy has been facing even more challenges. However, continuous efforts in R&D (research and development) are resulting in new spent nuclear fuel (SNF) management technologies that might be the pathway towards helping the environment and the sustainability of nuclear energy. Thus, reprocessing and recycling of SNF could be one of the key points to improve the social acceptability of nuclear energy. Therefore, the purpose of this paper is to review the state of the nuclear waste management technologies, its evolution through time and the future advanced techniques that are currently under research, in order to obtain a global vision of the nuclear fuel cycle strategies available, their advantages and disadvantages, and their expected evolution in the future. Keywords: nuclear energy; nuclear waste management; reprocessing; recycling 1. Introduction Nuclear energy is a mature technology that has been developing and improving since its beginnings in the 1940s. However, the fear of nuclear power has always existed and, for the last two decades, there has been a general discussion around the world about the future of nuclear power [1,2].
    [Show full text]
  • PUREX Raffinate Concentration Extraction Experiments by Steam Distillation
    Implementation of americium recycling demonstration from spent nuclear fuel in the highlevel shielded process line CBP in the ATALANTE facility S. Costenoble, M.-J. Bollesteros, F. Antegnard, J.-N. Calor, V. Vanel, M. Montuir, C. Sorel, D. Espinoux, A. Juvenelle To cite this version: S. Costenoble, M.-J. Bollesteros, F. Antegnard, J.-N. Calor, V. Vanel, et al.. Implementation of americium recycling demonstration from spent nuclear fuel in the highlevel shielded process line CBP in the ATALANTE facility. ENC 2016 - 2016 European Nuclear Conference, Oct 2016, Varsovie, Poland. cea-02442324 HAL Id: cea-02442324 https://hal-cea.archives-ouvertes.fr/cea-02442324 Submitted on 16 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Implementation of americium recycling demonstration from spent nuclear fuel in the high- level shielded process line CBP in the ATALANTE facility S. Costenoble, M.-J. Bollesteros, F. Antegnard, J.-N. Calor, V. Vanel, M. Montuir, C. Sorel, D. Espinoux, A. Juvenelle CEA, Nuclear Energy Division, Radiochemistry and Process Department, Marcoule Research Centre, BP17171, F-30207 Bagnols sur Cèze ENC 2016 | Sylvain COSTENOBLE 10th OCTOBER 2016 15 JANVIER 2020 CEA | 10 AVRIL 2012 | PAGE 1 INTRODUCTION Study context As part of the French Act of June 2006 on sustainable radioactive and waste management: Investigation to recover minor actinides from spent nuclear fuel for heterogeneous recycling in Generation-IV reactors.
    [Show full text]
  • Curium and the Transactinides
    Curium and the Transactinides Dr Clint Sharrad Centre for Radiochemistry Research School of Chemical Engineering and Analytical Science Research Centre for Radwaste and Decommissioning Dalton Nuclear Institute The University of Manchester [email protected] Marie Curie No involvement in the discovery of curium or the transactinides. Who first discovered Cm? Glenn T. Albert Ralph A. Seaborg Ghiorso James • Nobel prize for Chemistry 1951 • Discovered 10 elements • Discovered 12 elements • Expert in developing radiation detection 1912 - 1999 instrumentation 1915 - 2010 G. T. Seaborg, R. A. James and A. Ghiorso, National Nuclear Energy Series , 1949, 14B , 1554-71. Was anyone else involved in the discovery of curium??? Stanley G. Thompson Submitted Ph.D. thesis entitled “Nuclear and Chemical Properties of Americium and Curium” in 1948 Why Curium? G. T. Seaborg, R. A. James and A. Ghiorso, National Nuclear Energy Series , 1949, 14B , 1554-71. Vasili Samarsky- Johan Why Bykhovets Gadolin Curium? Lanthanides Actinides Marie & Pierre Albert Einstein Enrico Dmitri Alfred Ernest Transactinides Curie Fermi Mendelev Noble Lawrence Cn Copernicium (285) Ernest Glenn T. Niels Bohr Lise Wilhelm Nicolaus Rutherford Seaborg Meitner Roentgen Copernicus 1850 Timeline 1859 – Pierre Curie born 1867 – Maria Skłodowska born 1891 – Maria Skłodowska moves to Paris to study chemistry at the Sarbonne 1895– Maria Skłodowska marries Pierre Curie 1898– Curie’s publish discovery of Po and Ra 1903– Curie’s awarded Nobel prize for physics (with Becquerel) 1906– Death of Pierre Curie 1911 – Marie Curie awarded Nobel prize for chemistry 1912 – Glenn Seaborg born 1915– Albert Ghiorso born 1934– Death of Marie Curie; Seaborg awarded B.Sc.
    [Show full text]
  • Part Ii: Technical Analysis and Systems Study
    PART II: TECHNICAL ANALYSIS AND SYSTEMS STUDY 111 1. PARTITIONING 1.1 Aqueous separation techniques This section briefly describes aqueous separation techniques currently used on industrial scale and research activities in the field of new separation methods for more effective separation of minor actinides and fission products. There has been a large number of reports published until now and a selection of the important ones is listed in Annex D. 1.1.1 PUREX process The PUREX process, see Figure II.1, which is universally employed in the irradiated fuel reprocessing industry, is a wet chemical process based on the use of TBP, a solvent containing phosphorus. As shown in Table II.1 this solvent displays the property of extracting actinide cations in even oxidation states IV and VI, in the form of a neutral complex of the type M•An•2TBP (where M is the metallic cation and A an anion, generally nitrate ion), from an acidic aqueous medium. Conversely, the actinide cations with odd oxidation state are not significantly extracted, at least in the high acidity conditions prevailing during reprocessing operations. Uranium and plutonium, whose stable oxidation states in nitric medium are VI and IV, respectively, are co-extracted by TBP and thus separated from the bulk of the fission products which remain in the aqueous phase. This is the basic principle of the PUREX process. Table II.1 Extractability of actinide nitrates in 3 M nitric acid by TBP Oxidation state III IV V VI U (m) (l) m Np (m) l m Pu (l) m (l) (m) Am l (m) Cm l m: extractable by TBP, l: not extractable by TBP, ( ): unstable in the media Uranium and plutonium are recovered with an industrial yield close to 99.9% (including losses in secondary wastes).
    [Show full text]
  • Comparison of the Proposed and Alternative Mox Fuel Fabrication Facility Plutonium-Polishing Processes
    COMPARISON OF THE PROPOSED AND ALTERNATIVE MOX FUEL FABRICATION FACILITY PLUTONIUM-POLISHING PROCESSES INTRODUCTION The U.S. Nuclear Regulatory Commission (NRC) is currently reviewing a license application from the consortium of Duke Cogema Stone & Webster (DCS) to build a mixed oxide (MOX) fuel fabrication facility (MFFF) at the Department of Energy’s (DOE’s) Savannah River Site (SRS). To aid in the NRC’s technical and environmental review for acceptability to license, this study has been tasked with obtaining and reviewing the available information and literature regarding the aqueous (or wet) and dry plutonium polishing processes for a comparison of the efficiencies, waste generation, environmental effects, cost, throughput, and other issues. Open sources were used for the technical information presented in this report, which included aqueous process information from documents provided by DCS to the NRC and dry process information from publically available documents. As presented in the MFFF Construction Authorization Request (CAR) and Environmental Report (ER), the aqueous plutonium-polishing technology using solvent extraction is the preferred process. In addition, another aqueous process using an ion exchanger for the removal of impurities was presented as an alternative in DOE documents. DOE also funded the research and development of a dry plutonium- polishing process principally through the Los Alamos National Laboratory (LANL). Each process will be reviewed and documented for a comparison of plutonium-polishing processes. The following sections provide a summary of each process from its reference source material, a comparison between the waste streams of each alternative, and the conclusions that can be drawn from information currently available and, if necessary, any lack of information that may affect the conclusions.
    [Show full text]
  • Chemical Disposition of Plutonium in Hanford Site Tank Wastes
    PNNL-23468 Rev. 1 WTP-RPT-234 Rev. 1 Chemical Disposition of Plutonium in Hanford Site Tank Wastes CH Delegard SA Jones May 2015 PNNL-23468 Rev. 1 WTP-RPT-234 Rev. 1 Chemical Disposition of Plutonium in Hanford Site Tank Wastes CH Delegard SA Jones May 2015 Prepared for the U.S. Department of Energy Under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 WTP-RPT-234 Rev 1 Summary This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases.
    [Show full text]
  • Demonstration of the LUCA Process for the Separation Of
    Radiochim. Acta 98, 193–201 (2010) / DOI 10.1524/ract.2010.1708 © by Oldenbourg Wissenschaftsverlag, München Demonstration of the LUCA process for the separation of americium(III) from curium(III), californium(III), and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate By G. Modolo1,∗,P.Kluxen1 and A. Geist2 1 Forschungszentrum Jülich, Institute for Energy Research, Safety Research and Reactor Technology, 52425 Jülich, Germany 2 Forschungszentrum Karlsruhe GmbH, Institut für Nukleare Entsorgung, Postfach 3640, 76021 Karlsruhe, Germany (Received December 11, 2008; accepted in revised form November 21, 2009) Minor actinides / Lanthanides / Americium / Curium / from spent fuel using the well-established PUREX process, Partitioning / Solvent extraction / Centrifugal contactors / which can also be adapted for partitioning Np [2]. There is LUCA process no potential for recovering Am or Cm using the PUREX process because the tri-n-butylphosphate (TBP) extractant shows a very low affinity for trivalent actinides. During the Summary. The LUCA process was developed at last decade a large amount of research has been conducted in Forschungszentrum Jülich for the selective separation of several countries on the separation and recovery of Am and Am(III) from an acidic solution containing the trivalent ac- Cm from the high-level liquid waste (HLLW) fraction of the tinides Am(III), Cm(III), and Cf(III) as well as lanthanides. PUREX process. A comprehensive survey on actinide sep- A mixture of 0.4mol/L bis(chlorophenyl)dithiophosphinic aration science and technology is given by Nash et al. [3]. acid and 0.15 mol/L tris(2-ethylhexyl)phosphate dissolved in 20% isooctane/80% tert-butyl benzene was used as the ex- Most partitioning strategies rely on the following separation tractant.
    [Show full text]
  • A Review of the Demonstration of Innovative Solvent Extraction Processes for the Recovery of Trivalent Minor Actinides from PUREX Raffinate
    Radiochim. Acta 100, 715–725 (2012) / DOI 10.1524/ract.2012.1962 © by Oldenbourg Wissenschaftsverlag, München A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate By G. Modolo1,∗, A. Wilden1,A.Geist2, D. Magnusson2 and R. Malmbeck3 1 Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany 2 Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung (INE), 76021 Karlsruhe, Germany 3 European Commission, JRC, Institute for Transuranium Elements (ITU,) 76125 Karlsruhe, Germany (Received February 23, 2012; accepted in final form April 23, 2012) (Published online August 13, 2012) Minor actinides / Partitioning / Solvent extraction / the closed fuel cycle including reprocessing and fabrication Americium / Curium of new fuel. Therefore, the protection of the biosphere from highly ra- diotoxic used nuclear fuel constituents over very long time- Summary. The selective partitioning (P) of long-lived minor scales is extremely important. The used nuclear fuel and the actinides from highly active waste solutions and their transmuta- highly active waste from reprocessing needs to be stored for tion (T) to short-lived or stable isotopes by nuclear reactions will a very long time (over 100 000 a) in a well-shielded deep ge- reduce the long-term hazard of the high-level waste and signifi- ological repository until its radiotoxicity has reached natural cantly
    [Show full text]
  • An Introduction to Technetium in the Gaseous Diffusion Cascades
    K/TSO - 39 LO C K H BED M A KT I H^sf An Introduction to Technetium in the Gaseous Diffusion Cascades D. W. Simmons Q S * Lockheed Martin Energy Systems, Inc. Oak Ridge, Tennessee, USA September 1996 Prepared by the Oak Ridge K-25 Site Oak Ridge, Tennessee 37831-7101 managed by LOCKHEED MARTIN ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-84OR21400 MANAGED BY LOCKHEED MARTIN ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY OF im UCN-13675 (S 6-65) it- DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency or agent thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or agent thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be fliegible in electronic image products. Images are produced from the best available original document. K/TSO - 39 An introduction to Technetium in the Gaseous Diffusion Cascades D.
    [Show full text]
  • Removal of Actinides from Nuclear Fuelreprocessing
    1 - ARH-SA-217 Qt - 96-09/3 - - /3 Removal of Actinides from Nuclear Fuel Reprocessing Waste Solutions with Bidentate Organophosphorus Extractants Wallace W. Schulz Lyle D. McIsaac August 1975 Prepared for the U.S. Energy Research and Development Administration Under Contract E(45-1)-2130 Atlantic Richfield Hanford Company Richland.Washington 99352 ARA *ASTER /, DISTRICI. 3-10:'1 OF ; Der:1.11·1Et,iT IS I.INLIMITED- DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Atlantic Richfield Hanford Company Richland, Washington 99352 A. .' NOTICE THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED STATES NOR THE UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION, NOR ANY OF THEIR EMPLOYEES, NOR ANYOF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY IN FORMATION, APPARATUS, PRODUCT OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.
    [Show full text]