Type Lectins

Total Page:16

File Type:pdf, Size:1020Kb

Type Lectins IN SILICO STUDY OF LEGUME AND LEGUME-TYPE LECTINS ___________________________ A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ By CUONG THE NGUYEN Dr. Gary Stacey, PhD Dissertation Supervisor NOVEMBER 2016 The undersigned, appointed by the Dean of the Graduate School, have examined the Dissertation entitled: IN SILICO STUDY OF LEGUME AND LEGUME-TYPE LECTINS Presented by CUONG THE NGUYEN A candidate for the degree of Doctor of Philosophy of Plant Breeding, Genetics, and Genomics And hereby certify that, in their opinion, it is worthy of acceptance. ______________________________________________________________ Professor Gary Stacey ______________________________________________________________ Professor Dong Xu ______________________________________________________________ Professor Melissa Goellner Mitchum ______________________________________________________________ Professor James Schoelz ACKNOWLEDGEMENTS My special thanks to my advisor, Dr. Gary Stacey, for giving me the privilege and a great opportunity to work in his lab under his whole-hearted guidance during my Ph.D. program. My sincere thanks to the Advisory Committee members, Dr. Dong Xu, Dr. Melissa G. Mitchum, and Dr. James Schoelz, who gave me valuable, constructive advice and directions for this project. My appreciation also goes to Dr. Jianlin Cheng, who provided me opportunity to work in his lab in the first two years. I would like to extend my deepest gratitude to Dr. Jerry Nelson, who first introduced the University of Missouri (MU) to me and then helped me to settle in Columbia during my first days in the United States. Thanks to his dedicated help and strong support, my time as a graduate student at the University has been a very memorable and productive experience. I would like to give my thanks to Dr. Kiwamu Tanaka, Dr. Bing Stacey, other members and colleagues in the laboratories of Dr. Gary Stacey, Dr. Dong Xu, and Dr. Jianlin Cheng for their time and help on my projects; and for the joyful and happy moments they have shared with me. I am grateful to all of my friends; especially those in Columbia, Missouri and in my hometown in Cantho, Vietnam for their continuous support. i I must express my heartfelt gratitude to my parents, parents-in-law, my wife, and two wonderful daughters who are always with me in hard times and during happy moments. Without their dedicated love, encouragement, patience and constant support, I would not be able to achieve one of my major goals in life today. I would like to thank the Vietnamese International Education Development, the US Department of Energy, the US National Institute of Health, and the Systems and Synthetic Agrobiotech Center of Korea for their funding support. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ________________________________________________________ i TABLE OF CONTENTS _________________________________________________________ iii LIST OF TABLES _____________________________________________________________ vi LIST OF FIGURES ___________________________________________________________ vii ABSTRACT _________________________________________________________________ ix Chapter 1 - GENERAL INTRODUCTION _______________________________________ 1 I. Research rationale: ________________________________________________________ 1 II. Literature review: _________________________________________________________ 3 1. Lectin super family: _______________________________________________________________ 3 2. L-type lectin proteins (LLPs): _______________________________________________________ 7 3. L-type lectin receptor-like kinases (LLRKs): ___________________________________________ 14 4. Animal legume-like lectins: _______________________________________________________ 18 5. Genome-scale analysis, expansion mechanisms and molecular evolution of LLDPs ___________ 20 III. Outline of the dissertation ________________________________________________ 23 Chapter 2 - ORIGIN, DISTRIBUTION, DIVERSIFICATION AND EVOLUTION OF PROTEINS CONTAINING THE L-TYPE LECTIN DOMAIN __________________________________ 25 Abstract __________________________________________________________________ 25 I. Introduction _____________________________________________________________ 26 II. Materials and methods ___________________________________________________ 28 1. Sequence databases used for identification of LLDPs ___________________________________ 28 2. Computational tools used for identification of LLDPs ___________________________________ 29 3. Computational approaches to identify members of the LLDP family _______________________ 30 4. Folding recognition and template search ____________________________________________ 32 5. Analysis of PFAM domains in association with L-type lectin domain of LLDPs _______________ 32 6. Linear structural analysis of plant LLDP genes _________________________________________ 33 7. LLDP phylogenetic tree reconstruction ______________________________________________ 33 8. Analysis of expansion mechanisms of LLDPs in soybean genome _________________________ 35 10. Analysis of LLDP gene expression patterns in soybean _________________________________ 37 11. Gene ontology (GO) term enrichment analysis for soybean LLDPs _______________________ 37 III. Results ________________________________________________________________ 38 1. Global searching for LLDPs ________________________________________________________ 38 2. Distribution of LLDPs in bacteria ___________________________________________________ 39 3. Distribution of the LLDP family in eukaryotes _________________________________________ 41 4. Genome-wide distribution of LLDPs in the plant kingdom _______________________________ 43 5. Fold topology of bacterial and lower eukaryote LLDs ___________________________________ 47 iii 6. Domain architectures of the LLDP family_____________________________________________ 48 7. Exon and intron structure of LLDP family members ____________________________________ 51 8. Phylogenetic analysis of the LLDP family _____________________________________________ 55 9. Duplication and expansion of the LLDP gene family in the soybean genome ________________ 61 10. Distribution of soybean LLDP genes on the chromosomes ______________________________ 64 12. The nature of selection pressure acting on soybean LLDP coding genes ___________________ 66 13. Expression profiles of soybean LLDP genes in different tissues and development stages _____ 68 14. Gene ontology (GO) enrichment of soybean LLDPs and functional implication _____________ 73 IV. Discussion _____________________________________________________________ 75 1. Occurrence and origin of LLDPs ____________________________________________________ 76 2. Domain diversification of LLDPs across the kingdoms __________________________________ 78 3. Gene exon and intron structure and divergence of plant LLDPs __________________________ 80 4. Expansion of the plant and soybean LLDP family ______________________________________ 82 5. Purifying selection of the soybean LLDP family ________________________________________ 84 6. Molecular evolution of the LLDPs __________________________________________________ 85 7. Involvement of LLDP genes in soybean growth and development _________________________ 88 8. Functional implication of the LLDP family members ____________________________________ 88 V. Concluding remarks ______________________________________________________ 90 VI. Supplementary figures ___________________________________________________ 91 VII. Supplementary tables ___________________________________________________ 96 Chapter 3 - COMPUTATIONAL ANALYSIS OF THE LIGAND BINDING SITE OF THE EXTRACELLULAR ATP RECEPTOR, DORN1 __________________________________ 104 Abstract _________________________________________________________________ 104 I. Introduction ____________________________________________________________ 105 II. Materials and Methods __________________________________________________ 108 1. In silico design for three dimensional (3D) modeling, binding site prediction and ligand docking of eATP to the DORN1 L-type lectin domain ___________________________________________ 108 2. Folding recognition and template search ___________________________________________ 109 3. Alignment, homology modeling and quality assessment of DORN1 models ________________ 110 4. Molecular dynamic simulation ____________________________________________________ 111 5. Identification of ligand binding sites _______________________________________________ 112 6. In vitro ATP binding assay for site-directed mutagenesis _______________________________ 113 7. Template redocking experiments _________________________________________________ 116 8. Target docking experiments ______________________________________________________ 116 III. Results _______________________________________________________________ 117 1. Fold topology, template search and sequence-structure alignment ______________________ 117 2. Homology model of the DORN1 lectin domain _______________________________________ 121 3. Prediction of ATP binding sites on the DORN1 lectin domain ___________________________ 123 4. Site-directed mutagenesis studies for the ATP binding site _____________________________ 124 5. High-resolution, template and target docking _______________________________________
Recommended publications
  • Genetics of Physiological Traits Associated with Drought Tolerance in Soybean (Glycine Max)
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2020 Genetics of Physiological Traits Associated with Drought Tolerance in Soybean (Glycine max) Sumandeep Kaur Bazzer University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, Cellular and Molecular Physiology Commons, and the Plant Breeding and Genetics Commons Citation Bazzer, S. K. (2020). Genetics of Physiological Traits Associated with Drought Tolerance in Soybean (Glycine max). Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3819 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Genetics of Physiological Traits Associated with Drought Tolerance in Soybean (Glycine max) A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop, Soil, and Environmental Sciences by Sumandeep Kaur Bazzer Punjab Agricultural University Bachelor of Science in Biotechnology, 2013 Punjab Agricultural University Master of Science in Plant Breeding and Genetics, 2015 July 2020 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. __________________________ Larry C. Purcell, Ph.D. Dissertation Director __________________________ __________________________ Jeffery D. Ray, Ph.D. Richard E. Mason, Ph.D. Committee Member Committee Member __________________________ __________________________ Mary C. Savin, Ph.D. Ken Korth, Ph.D. Committee Member Committee Member Abstract Soybean (Glycine max L.) is one of the major row crops in the United States, and its production is often limited by drought stress.
    [Show full text]
  • Plant Lectins: Targeting Programmed Cell Death Pathways As Antitumor Agents
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/51529797 Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol ARTICLE in THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY · JULY 2011 Impact Factor: 4.05 · DOI: 10.1016/j.biocel.2011.07.004 · Source: PubMed CITATIONS READS 56 232 6 AUTHORS, INCLUDING: Chengcheng Zhou Shun Yao Sichuan University Shanghai Institutes for Biological Sciences 2 PUBLICATIONS 61 CITATIONS 6 PUBLICATIONS 82 CITATIONS SEE PROFILE SEE PROFILE Available from: Chengcheng Zhou Retrieved on: 26 November 2015 This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy The International Journal of Biochemistry & Cell Biology 43 (2011) 1442–1449 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology jo
    [Show full text]
  • Investigation Into the Structures of a Lectin
    INVESTIGATION INTO THE STRUCTURES OF A LECTIN FROM TRICHOSANTHES DIOICA AND ONE FROM ERYTHRINA INDICA & BIOPHYSICAL CHARACTERIZATION OF ARACEAE LECTINS FROM SAUROMATUM GUTTATUM AND ARISAEMA TORTUOSUM THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY BY POORVA DHARKAR DIVISION OF BIOCHEMICAL SCIENCES NATIONAL CHEMICAL LABORATORY PUNE 411 008 INDIA April 2009 CERTIFICATE This is to certify that the work incorporated in the thesis entitled “Investigation into the structures of a lectin from Trichosanthes dioica and one from Erythrina indica & Biophysical characterization of araceae lectins from Sauromatum guttatum and Arisaema tortuosum.” submitted by Ms. Poorva Dharkar was carried out under my supervision. The material obtained from other sources has been duly acknowledged in the thesis. Date Dr. C. G. Suresh (Research Supervisor) Scientist Division of Biochemical Sciences National Chemical Laboratory Pune 411 008 DECLARATION I hereby declare that the thesis entitled “Investigation into the structures of a lectin from Trichosanthes dioica and one from Erythrina indica & Biophysical characterization of araceae lectins from Sauromatum guttatum and Arisaema tortuosum.” submitted by me to the University of Pune for the degree of Doctor of Philosophy is the record of original work carried out by me under the supervision of Dr. C. G. Suresh at the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 and has not formed the basis for the award of any degree, diploma, associateship, fellowship, titles in this or any other University or Institution. I further declare that the material obtained from other sources has been duly acknowledged in the thesis. Poorva Dharkar Date Division of Biochemical Sciences National Chemical Laboratory Pune 411008 Dedicated to…….
    [Show full text]
  • The Role of Weak Protein-Protein Interactions in Multivalent Lectin-Carbohydrate Binding: Crystal Structure of Cross-Linked FRIL
    doi:10.1006/jmbi.2000.3785 available online at http://www.idealibrary.com on J. Mol. Biol. (2000) 299, 875±883 COMMUNICATION The Role of Weak Protein-Protein Interactions in Multivalent Lectin-Carbohydrate Binding: Crystal Structure of Cross-linked FRIL Thomas W. Hamelryck1*, Jeffrey G. Moore2, Maarten J. Chrispeels3, Remy Loris1 and Lode Wyns1 1Laboratorium voor Binding of multivalent glycoconjugates by lectins often leads to the for- Ultrastructuur, Vlaams mation of cross-linked complexes. Type I cross-links, which are Interuniversitair Instituut voor one-dimensional, are formed by a divalent lectin and a divalent glycocon- Biotechnologie, Vrije jugate. Type II cross-links, which are two or three-dimensional, occur Universiteit Brussel when a lectin or glycoconjugate has a valence greater than two. Type II Paardenstraat 65, B-1640, Sint- complexes are a source of additional speci®city, since homogeneous type Genesius-Rode, Belgium II complexes are formed in the presence of mixtures of lectins and glyco- conjugates. This additional speci®city is thought to become important 2Phylogix LLC, P.O. Box 6790 when a lectin interacts with clusters of glycoconjugates, e.g. as is present 69 U.S. Route One on the cell surface. The cryst1al structure of the Glc/Man binding legume Scarborough, ME 04074, USA lectin FRIL in complex with a trisaccharide provides a molecular snap- 3Department of Biology shot of how weak protein-protein interactions, which are not observed in University of California, San solution, can become important when a cross-linked complex is formed. Diego, 9500 Gilman Drive, La In solution, FRIL is a divalent dimer, but in the crystal FRIL forms a tet- Jolla, CA 92093-0116, USA ramer, which allows for the formation of an intricate type II cross-linked complex with the divalent trisaccharide.
    [Show full text]
  • Project Summary
    Project Summary PROJECT SUMMARY Instructions: The summary is limited to 250 words. The names and affiliated organizations of all Project Directors/Principal Investigators (PD/PI) should be listed in additions to the title of the project. The summary should be a self-contained, specific description of the activity to be undertaken and should focus on: overall project goals(s) and supporting objectives; plans to accomplish project goal(s); and relevance of the project to the goals of the program. The importance of a concise, informative Project summary cannot be overemphasized. Title: Common Bean Coordinated Agricultural Project PD: McClean, Phillip E. Institution: North Dakota State University CO-PD: Garden-Robinson, Julie Institution: North Dakota State University CO-PD: Johnson, Christina Institution: North Dakota State University CO-PD: Osorno, Juan Institution: North Dakota State University CO-PD: Slator, Brian Institution: North Dakota State University CO-PD: Kelly, Jim Institution: Michigan State University CO-PD: Brick, Mark Institution: Colorado State University CO-PD: Ryan, Elizabeth Institution: Colorado State University CO-PD: Thompson, Henry Institution: Colorado State University CO-PD: Myers, Jim Institution: Oregon State University CO-PD: Gepts, Paul Institution: University of California, Davis CO-PD: Urrea, Carlos Institution: University of Nebraska, Lincoln CO-PD: Grusak, Michael A. Institution: USDA Children’s Nutrition Research Center, Houston, TX CO-PD: Cregan, Perry Institution: USDA Soybean Genomics and Improvement
    [Show full text]
  • In Silico Characterization of 1,2-Diacylglycerol Cholinephosphotransferase and Lysophospha- Tidylcholine Acyltransferase Genes in Glycine Max L
    In silico characterization of 1,2-diacylglycerol cholinephosphotransferase and lysophospha- tidylcholine acyltransferase genes in Glycine max L. Merrill C.S. Sousa1,2, B.A. Barros3, D. Barh4, P. Ghosh5, V. Azevedo2, E.G. Barros6,7 and M.A. Moreira1 1Departamento de Bioquímica e Biologia Molecular - BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brasil 2Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil 3Empresa Brasileira de Pesquisa Agropecuária, Sete Lagoas, MG, Brasil 4Institute of Integrative Omics and Applied Biotechnology, Medinipur, WB, India 5Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA 6Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brasil 7Universidade Católica de Brasília, Brasília, DF, Brasil Corresponding author: C.S. Sousa E-mail: [email protected] Genet. Mol. Res. 15 (3): gmr.15038974 Received July 14, 2016 Accepted August 9, 2016 Published August 26, 2016 DOI http://dx.doi.org/10.4238/gmr.15038974 Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. The enzymes 1,2-diacylglycerol cholinephosphotrans- ferase (CPT) and lysophosphatidylcholine acyltransferase (LPCAT) are important in lipid metabolism in soybean seeds. Thus, understand- Genetics and Molecular Research 15 (3): gmr.15038974 C.S. Sousa et al. 2 ing the genes that encode these enzymes may enable their modification and aid the improvement of soybean oil quality. In soybean, the genes encoding these enzymes have not been completely described; there- fore, this study aimed to identify, characterize, and analyze the in silico expression of these genes in soybean.
    [Show full text]
  • Publications Imberty
    Publications Dr Anne Imberty CERMAV-CNRS Databases for glycobiology 3D-lectin Database: our Internet database of 3 structures of lectins, and the carbohydrate energy parameters PIM for the TRIPOS force field 2021 346 - Kuhaudomlar S., Siebs E., Shanina E., Topin J., Joachim I., da Silva Figueiredo Celestino Gomes P., Varrot A., Rognan D., Rademacher C., Imberty A.* & Titz A* (in press) Non-carbohydrate glycomimetics as inhibitors of calcium(II)-binding lectins. Angew. Chem. in press, (doi: 10.1002/anie.202013217) [OpenAccess] [hal-03083693] 345 - Gajdos L., Forsyth V.T., Blakeley M.P., Haertlein,M., Imberty A.*, Samain E.*, & Devos J.M.* (2021) Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 31, 151-158 (doi: 10.1093/glycob/cwaa059) [OpenAccess] [hal-02911649] 344 - Bonnardel F., Mariethoz J., Pérez S., Imberty A.* & Lisacek F.* (2021) LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Ac. Res. 49, D1548-D1554 (doi: 10.1093/nar/gkaa1019) [OpenAccess] [hal- 03000205] 2020 343 - Suhaudomlarp S., Cerofolini L., Santarsia S., Gillon E., Denis M., Fallarini S., Giuntini S.,Valori C., Lombardi G., Fragai M*, Imberty A.*, Dondoni A. & Nativi C.* (2020) Fucosylated ubiquitin and orthogonally glycosylated mutant A28C: Conceptually new ligands for Burkholderia ambifaria lectin (BambL). Biomolecules 10, 1660 (doi: 10.1039/d0sc03741a) [OpenAccess] [hal-02995036] 342 - Pérez S., Bonnardel F., Lisacek F., Imberty A., Ricard-Blum S. & Makshakova O. (2020) GAG- DB, the new interface of the three-dimensional landscape of glycosaminoglycans. Biomolecules 10, 1660 (doi: 10.3390/biom10121660) [OpenAccess] [hal-03083684] 341 - Zahorska E., Kuhaudomlarp S., Minervini S., Yousaf S., Lepsik M., Kinsinger T., Hirsch A.K.H., Imberty A &.
    [Show full text]
  • Combining QTL-Seq and Linkage Mapping to Fine Map a Wild
    Zhang et al. BMC Genomics (2018) 19:226 https://doi.org/10.1186/s12864-018-4582-4 RESEARCH ARTICLE Open Access Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height Xiaoli Zhang, Wubin Wang, Na Guo, Youyi Zhang, Yuanpeng Bu, Jinming Zhao* and Han Xing* Abstract Background: Plant height (PH) is an important agronomic trait and is closely related to yield in soybean [Glycine max (L.) Merr.]. Previous studies have identified many QTLs for PH. Due to the complex genetic background of PH in soybean, there are few reports on its fine mapping. Results: In this study, we used a mapping population derived from a cross between a chromosome segment substitution line CSSL3228 (donor N24852 (G. Soja), a receptor NN1138–2(G. max)) and NN1138–2 to fine map a wild soybean allele of greater PH by QTL-seq and linkage mapping. We identifiedaQTLforPHina1.73Mbregiononsoybeanchromosome13 through QTL-seq, which was confirmed by SSR marker-based classical QTL mapping in the mapping population. The linkage analysis showed that the QTLs of PH were located between the SSR markers BARCSOYSSR_13_1417 and BARCSOYSSR_13_1421 on chromosome 13, and the physical distance was 69.3 kb. RT-PCR and sequence analysis of possible candidate genes showed that Glyma.13 g249400 revealed significantly higher expression in higher PH genotypes, and the gene existed 6 differences in the amino acids encoding between the two parents. Conclusions: Data presented here provide support for Glyma.13 g249400 as a possible candidate genes for higher PH in wild soybean line N24852.
    [Show full text]
  • Identification of SSR Markers Linked to Partial Resistance to Soybean Rust in Brazil from Crosses Using the Resistant Genotype IAC 100
    Identification of SSR markers linked to partial resistance to soybean rust in Brazil from crosses using the resistant genotype IAC 100 F.C. Juliatti1, K.R.C. Santos1, T.P. Morais1,2 and B.C.M. Juliatti3 1 Laboratório de Micologia e Proteção de Plantas, Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil 2 Instituto Federal de Educação, Ciência e Tecnologia, IFSULDEMINAS, Machado, MG, Brasil 3Juliagro Bioprodutos, Genética e Proteção de Plantas, Uberlândia, MG,Brasil Corresponding author: F.C. Juliatti E-mail: [email protected] Genet. Mol. Res. 18 (3): gmr18249 Received January 29, 2018 Accepted July 01, 2019 Published August 31, 2019 DOI http://dx.doi.org/10.4238/gmr18249 ABSTRACT. Soybean rust is considered a highly aggressive disease in soybean crops. Most research has focused on obtaining resistant genotypes based on dominant or recessive alleles, which provide vertical resistance. The identification of promising crosses that may be used to develop genotypes with horizontal resistance from IAC 100 may help to increase the longevity of the recommended cultivars. However, this type of resistance is limited by environmental variables that may hinder selection. We ranked crosses based on their response to soybean rust using genetic estimates and predicted gains. It was also an objective to identify quantitative trait loci (QTLs) associated with resistance to soybean rust in two generations derived from the same cross. Eighty- seven F4 progenies from IAC 100 (partial resistance) x BRS Caiapônia (susceptible) cross were field phenotyped. The data divided the DNA samples into two groups for bulked segregant analysis, which was carried out using simple sequence repeat (SSR) primers.
    [Show full text]
  • Chapter 1 Introduction
    Chapter 1 CHAPTER 1 INTRODUCTION Chapter 1 1.1 Lectins: an overview Lectins are proteins of non-immune, non-enzymatic origin which bind to carbohydrates specifically and reversibly and without modifying them (Lis and Sharon, 1998). They are di or polyvalent in nature and therefore when they interact with cells like erythrocytes, they will not only combine with the sugars on their surfaces but will also cause cross-linking of the cells and their subsequent precipitation, a phenomenon referred to as cell agglutination. The hemagglutinating, activity of lectins is a major attribute and is used routinely for their identification and characterization. Lectins also form cross-links between polysaccharide or glycoprotein molecules in solution and induce their precipitation. Both the agglutination and precipitation reactions of lectins are inhibited by the sugar ligands for which the lectins are specific (Lis and Sharon, 1998). Lectins are ubiquitously present across different life forms and are involved in various biological processes such as cell–cell communication, host–pathogen interaction, cancer metastasis, embryogenesis, tissue development and mitogenic stimulation glycoprotein synthesis (Lis et al., 1998; Wragg et al ., 1999; Vijayan et al ., 1999; Loris et al ., 2002). They are being explored intensely due to the fact that they act as recognition determinants in diverse biological processes like clearance of glycoproteins from the circulatory system, control of intracellular traffic of glycoproteins, adhesion of infectious agents to host cells, recruitment of leukocytes to inflammatory sites, as well as cell interactions in the immune system, malignancy, and metastasis. Investigation of lectins and their role in cell recognition, as well as the application of these proteins for the study of carbohydrates in solution and on cell surfaces, are making marked contributions to the advancement of glycobiology.
    [Show full text]
  • Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi Annick Barre, Yves Bourne, Els Van Damme, Pierre Rougé
    Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi Annick Barre, Yves Bourne, Els van Damme, Pierre Rougé To cite this version: Annick Barre, Yves Bourne, Els van Damme, Pierre Rougé. Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. International Journal of Molecular Sciences, MDPI, 2019, 20 (2), pp.254. 10.3390/ijms20020254. hal-02388775 HAL Id: hal-02388775 https://hal-amu.archives-ouvertes.fr/hal-02388775 Submitted on 21 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Review Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi Annick Barre 1, Yves Bourne 2, Els J. M. Van Damme 3 and Pierre Rougé 1,* 1 UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; [email protected] 2 Centre National
    [Show full text]
  • Structure-Function and Application of Plant Lectins in Disease Biology and Immunity T
    Food and Chemical Toxicology 134 (2019) 110827 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Structure-function and application of plant lectins in disease biology and immunity T Abtar Mishraa,1, Assirbad Behuraa,1, Shradha Mawatwala, Ashish Kumara, Lincoln Naika, Subhashree Subhasmita Mohantya, Debraj Mannaa, Puja Dokaniaa, Amit Mishrab, ∗ ∗∗ Samir K. Patrac, ,1, Rohan Dhimana, ,1 a Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India b Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India c Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India ARTICLE INFO ABSTRACT Keywords: Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form re- Lectins versible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, ani- Microbes mals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to Antimicrobial action the unique carbohydrate recognition property, lectins have been extensively used in many biological functions Immune responses that make use of protein-carbohydrate recognition like detection, isolation and characterization of glyco- conjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including anti- microbial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism.
    [Show full text]