Human-Centered Artificial Intelligence and Machine Learning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Commonsense Reasoning for Natural Language ProcessingIntroductory Tutorial: Commonsense Reasoning for Natural Language Processing Maarten Sap 1 Vered Shwartz 1;2 Antoine Bosselut 1;2 Yejin Choi 1;2 Dan Roth 3 1 Paul G. Allen School of Computer Science & Engineering, Seattle, WA, USA 2 Allen Institute for Artificial Intelligence, Seattle, WA, USA 3 Department of Computer and Information Science, University of Pennsylvania fmsap, vereds, antoineb, yejing @cs.washington.edu, [email protected] 1 Introduction settings, such as social interactions (Sap et al., 2019b; Rashkin et al., 2018a) and physical situ- Commonsense knowledge, such as knowing that ations (Zellers et al., 2019; Talmor et al., 2019). “bumping into people annoys them” or “rain We hope that in the future, machines develop makes the road slippery”, helps humans navigate the kind of intelligence required to, for exam- everyday situations seamlessly (Apperly, 2010). ple, properly assist humans in everyday situations Yet, endowing machines with such human-like (e.g., a chatbot that anticipates the needs of an el- commonsense reasoning capabilities has remained derly person; Pollack, 2005). Current methods, an elusive goal of artificial intelligence research however, are still not powerful or robust enough to for decades (Gunning, 2018). be deployed in open-domain production settings, Commonsense knowledge and reasoning have despite the clear improvements provided by large- received renewed attention from the natural lan- scale pretrained language models. This shortcom- guage processing (NLP) community in recent ing is partially due to inadequacy in acquiring, years, yielding multiple exploratory research di- understanding and reasoning about commonsense rections into automated commonsense under- knowledge, topics which remain understudied by standing.
- 
												  A Survey of Top-Level Ontologies to Inform the Ontological Choices for a Foundation Data ModelA survey of Top-Level Ontologies To inform the ontological choices for a Foundation Data Model Version 1 Contents 1 Introduction and Purpose 3 F.13 FrameNet 92 2 Approach and contents 4 F.14 GFO – General Formal Ontology 94 2.1 Collect candidate top-level ontologies 4 F.15 gist 95 2.2 Develop assessment framework 4 F.16 HQDM – High Quality Data Models 97 2.3 Assessment of candidate top-level ontologies F.17 IDEAS – International Defence Enterprise against the framework 5 Architecture Specification 99 2.4 Terminological note 5 F.18 IEC 62541 100 3 Assessment framework – development basis 6 F.19 IEC 63088 100 3.1 General ontological requirements 6 F.20 ISO 12006-3 101 3.2 Overarching ontological architecture F.21 ISO 15926-2 102 framework 8 F.22 KKO: KBpedia Knowledge Ontology 103 4 Ontological commitment overview 11 F.23 KR Ontology – Knowledge Representation 4.1 General choices 11 Ontology 105 4.2 Formal structure – horizontal and vertical 14 F.24 MarineTLO: A Top-Level 4.3 Universal commitments 33 Ontology for the Marine Domain 106 5 Assessment Framework Results 37 F. 25 MIMOSA CCOM – (Common Conceptual 5.1 General choices 37 Object Model) 108 5.2 Formal structure: vertical aspects 38 F.26 OWL – Web Ontology Language 110 5.3 Formal structure: horizontal aspects 42 F.27 ProtOn – PROTo ONtology 111 5.4 Universal commitments 44 F.28 Schema.org 112 6 Summary 46 F.29 SENSUS 113 Appendix A F.30 SKOS 113 Pathway requirements for a Foundation Data F.31 SUMO 115 Model 48 F.32 TMRM/TMDM – Topic Map Reference/Data Appendix B Models 116 ISO IEC 21838-1:2019
- 
												  Artificial IntelligenceBROAD AI now and later Michael Witbrock, PhD University of Auckland Broad AI Lab @witbrock Aristotle (384–322 BCE) Organon ROOTS OF AI ROOTS OF AI Santiago Ramón y Cajal (1852 -1934) Cerebral Cortex WHAT’S AI • OLD definition: AI is everything we don’t yet know how program • Now some things that people can’t do: • unique capabilities (e.g. Style transfer) • superhuman performance (some areas of speech, vision, games, some QA, etc) • Current AI Systems can be divided by their kind of capability: • Skilled (Image recognition, Game Playing (Chess, Atari, Go, DoTA), Driving) • Attentive (Trading: Aidyia; Senior Care: CareMedia, Driving) • Knowledgeable, (Google Now, Siri, Watson, Cortana) • High IQ (Cyc, Soar, Wolfram Alpha) GOFAI • Thought is symbol manipulation • Large numbers of precisely defined symbols (terms) • Based on mathematical logic (implies (and (isa ?INST1 LegalAgreement) (agreeingAgents ?INST1 ?INST2)) (isa ?INST2 LegalAgent)) • Problems solved by searching for transformations of symbolic representations that lead to a solution Slow Development Thinking Quickly Thinking Slowly (System I) (System II) Human Superpower c.f. other Done well by animals and people animals Massively parallel algorithms Serial and slow Done poorly until now by computers Done poorly by most people Not impressive to ordinary people Impressive (prizes, high pay) "Sir, an animal’s reasoning is like a dog's walking on his hind legs. It is not done well; but you are surprised to find it done at all.“ - apologies to Samuel Johnson Achieved on computers by high- Fundamental design principle of power, low density, slow computers simulation of vastly different Computer superpower c.f. neural hardware human Recurrent Deep Learning & Deep Reasoning MACHINE LEARNING • Meaning is implicit in the data • Thought is the transformation of learned representations http://karpathy.github.io/2015/05/21/rnn- effectiveness/ .
- 
												  Knowledge Graphs on the Web – an Overview Arxiv:2003.00719V3 [CsJanuary 2020 Knowledge Graphs on the Web – an Overview Nicolas HEIST, Sven HERTLING, Daniel RINGLER, and Heiko PAULHEIM Data and Web Science Group, University of Mannheim, Germany Abstract. Knowledge Graphs are an emerging form of knowledge representation. While Google coined the term Knowledge Graph first and promoted it as a means to improve their search results, they are used in many applications today. In a knowl- edge graph, entities in the real world and/or a business domain (e.g., people, places, or events) are represented as nodes, which are connected by edges representing the relations between those entities. While companies such as Google, Microsoft, and Facebook have their own, non-public knowledge graphs, there is also a larger body of publicly available knowledge graphs, such as DBpedia or Wikidata. In this chap- ter, we provide an overview and comparison of those publicly available knowledge graphs, and give insights into their contents, size, coverage, and overlap. Keywords. Knowledge Graph, Linked Data, Semantic Web, Profiling 1. Introduction Knowledge Graphs are increasingly used as means to represent knowledge. Due to their versatile means of representation, they can be used to integrate different heterogeneous data sources, both within as well as across organizations. [8,9] Besides such domain-specific knowledge graphs which are typically developed for specific domains and/or use cases, there are also public, cross-domain knowledge graphs encoding common knowledge, such as DBpedia, Wikidata, or YAGO. [33] Such knowl- edge graphs may be used, e.g., for automatically enriching data with background knowl- arXiv:2003.00719v3 [cs.AI] 12 Mar 2020 edge to be used in knowledge-intensive downstream applications.
- 
												  Review Articlesreview articles DOI:10.1145/2701413 AI has seen great advances of many kinds recently, but there is one critical area where progress has been extremely slow: ordinary commonsense. BY ERNEST DAVIS AND GARY MARCUS Commonsense Reasoning and Commonsense Knowledge in Artificial Intelligence WHO IS TALLER, Prince William or his baby son Prince key insights George? Can you make a salad out of a polyester shirt? ˽ To achieve human-level performance in domains such as natural language If you stick a pin into a carrot, does it make a hole processing, vision, and robotics, basic knowledge of the commonsense world— in the carrot or in the pin? These types of questions time, space, physical interactions, people, may seem silly, but many intelligent tasks, such as and so on—will be necessary. understanding texts, computer vision, planning, and ˽ Although a few forms of commonsense reasoning, such as taxonomic reasoning scientific reasoning require the same kinds of real- and temporal reasoning are well world knowledge and reasoning abilities. For instance, understood, progress has been slow. ˽ Extant techniques for implementing if you see a six-foot-tall person holding a two-foot-tall commonsense include logical analysis, handcrafting large knowledge bases, person in his arms, and you are told they are father Web mining, and crowdsourcing. Each of these is valuable, but none by itself is a and son, you do not have to ask which is which. If you full solution. need to make a salad for dinner and are out of lettuce, ˽ Intelligent machines need not replicate you do not waste time considering improvising by human cognition directly, but a better understanding of human commonsense taking a shirt of the closet and cutting might be a good place to start.
- 
												  Using Linked Data for Semi-Automatic GuesstimationUsing Linked Data for Semi-Automatic Guesstimation Jonathan A. Abourbih and Alan Bundy and Fiona McNeill∗ [email protected], [email protected], [email protected] University of Edinburgh, School of Informatics 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom Abstract and Semantic Web systems. Next, we outline the process of GORT is a system that combines Linked Data from across guesstimation. Then, we describe the organisation and im- several Semantic Web data sources to solve guesstimation plementation of GORT. Finally, we close with an evaluation problems, with user assistance. The system uses customised of the system’s performance and adaptability, and compare inference rules over the relationships in the OpenCyc ontol- it to several other related systems. We also conclude with a ogy, combined with data from DBPedia, to reason and per- brief section on future work. form its calculations. The system is extensible with new Linked Data, as it becomes available, and is capable of an- Literature Survey swering a small range of guesstimation questions. Combining facts to answer a user query is a mature field. The DEDUCOM system (Slagle 1965) was one of the ear- Introduction liest systems to perform deductive query answering. DE- The true power of the Semantic Web will come from com- DUCOM applies procedural knowledge to a set of facts in bining information from heterogeneous data sources to form a knowledge base to answer user queries, and a user can new knowledge. A system that is capable of deducing an an- also supplement the knowledge base with further facts.
- 
												  Why Has AI Failed? and How Can It Succeed?Why Has AI Failed? And How Can It Succeed? John F. Sowa VivoMind Research, LLC 10 May 2015 Extended version of slides for MICAI'14 ProblemsProblems andand ChallengesChallenges Early hopes for artificial intelligence have not been realized. Language understanding is more difficult than anyone thought. A three-year-old child is better able to learn, understand, and generate language than any current computer system. Tasks that are easy for many animals are impossible for the latest and greatest robots. Questions: ● Have we been using the right theories, tools, and techniques? ● Why haven’t these tools worked as well as we had hoped? ● What other methods might be more promising? ● What can research in neuroscience and psycholinguistics tell us? ● Can it suggest better ways of designing intelligent systems? 2 Early Days of Artificial Intelligence 1960: Hao Wang’s theorem prover took 7 minutes to prove all 378 FOL theorems of Principia Mathematica on an IBM 704 – much faster than two brilliant logicians, Whitehead and Russell. 1960: Emile Delavenay, in a book on machine translation: “While a great deal remains to be done, it can be stated without hesitation that the essential has already been accomplished.” 1965: Irving John Good, in speculations on the future of AI: “It is more probable than not that, within the twentieth century, an ultraintelligent machine will be built and that it will be the last invention that man need make.” 1968: Marvin Minsky, technical adviser for the movie 2001: “The HAL 9000 is a conservative estimate of the level of artificial intelligence in 2001.” 3 The Ultimate Understanding Engine Sentences uttered by a child named Laura before the age of 3.
- 
												  Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectivesinformation Article Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectives Roberta Calegari 1,* , Giovanni Ciatto 2 , Enrico Denti 3 and Andrea Omicini 2 1 Alma AI—Alma Mater Research Institute for Human-Centered Artificial Intelligence, Alma Mater Studiorum–Università di Bologna, 40121 Bologna, Italy 2 Dipartimento di Informatica–Scienza e Ingegneria (DISI), Alma Mater Studiorum–Università di Bologna, 47522 Cesena, Italy; [email protected] (G.C.); [email protected] (A.O.) 3 Dipartimento di Informatica–Scienza e Ingegneria (DISI), Alma Mater Studiorum–Università di Bologna, 40136 Bologna, Italy; [email protected] * Correspondence: [email protected] Received: 25 February 2020; Accepted: 18 March 2020; Published: 22 March 2020 Abstract: Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future.
- 
												  Downloading ProgramsFutures of Artificial Intelligence through Technology Readiness Levels Fernando Mart´ınez-Plumed1,2, Emilia Gomez´ 1, Jose´ Hernandez-Orallo´ 2 Abstract Artificial Intelligence (AI) offers the potential to transform our lives in radical ways. However, the main unanswered questions about this foreseen transformation are its depth, breadth and timelines. To answer them, not only do we lack the tools to determine what achievements will be attained in the near future, but we even ignore what various technologies in present-day AI are capable of. Many so-called breakthroughs in AI are associated with highly-cited research papers or good performance in some particular benchmarks. However, research breakthroughs do not directly translate into a technology that is ready to use in real-world environments. In this paper, we present a novel exemplar- based methodology to categorise and assess several AI technologies, by mapping them onto Technology Readiness Levels (TRL) (representing their depth in maturity and availability). We first interpret the nine TRLs in the context of AI, and identify several categories in AI to which they can be assigned. We then introduce a generality dimension, which represents increasing layers of breadth of the technology. These two dimensions lead to the new readiness-vs-generality charts, which show that higher TRLs are achievable for low-generality technologies, focusing on narrow or specific abilities, while high TRLs are still out of reach for more general capabilities. We include numerous examples of AI technologies in a variety of fields, and show their readiness-vs-generality charts, serving as exemplars. Finally, we show how the timelines of several AI technology exemplars at different generality layers can help forecast some short-term and mid-term trends for AI.
- 
												  Knowledge on the Web: Towards Robust and Scalable Harvesting of Entity-Relationship FactsKnowledge on the Web: Towards Robust and Scalable Harvesting of Entity-Relationship Facts Gerhard Weikum Max Planck Institute for Informatics http://www.mpi-inf.mpg.de/~weikum/ Acknowledgements 2/38 Vision: Turn Web into Knowledge Base comprehensive DB knowledge fact of human knowledge assets extraction • everything that (Semantic (Statistical Web) Web) Wikipedia knows • machine-readable communities • capturing entities, (Social Web) classes, relationships Source: DB & IR methods for knowledge discovery. Communications of the ACM 52(4), 2009 3/38 Knowledge as Enabling Technology • entity recognition & disambiguation • understanding natural language & speech • knowledge services & reasoning for semantic apps • semantic search: precise answers to advanced queries (by scientists, students, journalists, analysts, etc.) German chancellor when Angela Merkel was born? Japanese computer science institutes? Politicians who are also scientists? Enzymes that inhibit HIV? Influenza drugs for pregnant women? ... 4/38 Knowledge Search on the Web (1) Query: sushi ingredients? Results: Nori seaweed Ginger Tuna Sashimi ... Unagi http://www.google.com/squared/5/38 Knowledge Search on the Web (1) Query:Query: JapaneseJapanese computerscomputeroOputer science science ? institutes ? http://www.google.com/squared/6/38 Knowledge Search on the Web (2) Query: politicians who are also scientists ? ?x isa politician . ?x isa scientist Results: Benjamin Franklin Zbigniew Brzezinski Alan Greenspan Angela Merkel … http://www.mpi-inf.mpg.de/yago-naga/7/38 Knowledge Search on the Web (2) Query: politicians who are married to scientists ? ?x isa politician . ?x isMarriedTo ?y . ?y isa scientist Results (3): [ Adrienne Clarkson, Stephen Clarkson ], [ Raúl Castro, Vilma Espín ], [ Jeannemarie Devolites Davis, Thomas M. Davis ] http://www.mpi-inf.mpg.de/yago-naga/8/38 Knowledge Search on the Web (3) http://www-tsujii.is.s.u-tokyo.ac.jp/medie/ 9/38 Take-Home Message If music was invented Information is not Knowledge.
- 
												  Commonsense Knowledge in WikidataCommonsense Knowledge in Wikidata Filip Ilievski1, Pedro Szekely1, and Daniel Schwabe2 1 Information Sciences Institute, University of Southern California 2 Dept. of Informatics, Pontificia Universidade Cat´olicaRio de Janeiro filievski,[email protected], [email protected] Abstract. Wikidata and Wikipedia have been proven useful for reason- ing in natural language applications, like question answering or entity linking. Yet, no existing work has studied the potential of Wikidata for commonsense reasoning. This paper investigates whether Wikidata con- tains commonsense knowledge which is complementary to existing com- monsense sources. Starting from a definition of common sense, we devise three guiding principles, and apply them to generate a commonsense subgraph of Wikidata (Wikidata-CS). Within our approach, we map the relations of Wikidata to ConceptNet, which we also leverage to integrate Wikidata-CS into an existing consolidated commonsense graph. Our ex- periments reveal that: 1) albeit Wikidata-CS represents a small portion of Wikidata, it is an indicator that Wikidata contains relevant com- monsense knowledge, which can be mapped to 15 ConceptNet relations; 2) the overlap between Wikidata-CS and other commonsense sources is low, motivating the value of knowledge integration; 3) Wikidata-CS has been evolving over time at a slightly slower rate compared to the overall Wikidata, indicating a possible lack of focus on commonsense knowl- edge. Based on these findings, we propose three recommended actions to improve the coverage and quality of Wikidata-CS further. Keywords: Commonsense Knowledge · Wikidata · Knowledge Graphs 1 Introduction Common sense is \the basic ability to perceive, understand, and judge things that are shared by nearly all people and can be reasonably expected of nearly all people without need for debate" [10].
- 
												  Natural Language Understanding with Commonsense ReasoningE.T.S. DE INGENIEROS INFORMÁTICOS UNIVERSIDAD POLITÉCNICA DE MADRID MASTER TESIS MSc IN ARTIFICIAL INTELLIGENCE (MUIA) NATURAL LANGUAGE UNDERSTANDING WITH COMMONSENSE REASONING: APPLICATION TO THE WINOGRAD SCHEMA CHALLENGE AUTHOR: ALFONSO LÓPEZ TORRES SUPERVISOR: MARTÍN MOLINA GONZÁLEZ JUNE, 2016 This is for my children Carla and Alonso, and my wife Véronique Thanks for their unconditional support and patient (also for the coming adventures…) v Acknowledgments: I’d like to thank the advices and help received from Martín. I was very lucky being your student. vi RESUMEN En 1950, Alan Turing propuso un test para evaluar el grado de inteligencia humana que podría presentar una máquina. La idea principal era realmente sencilla: llevar a cabo una charla abierta entre un evaluador y la máquina. Si dicho evaluador era incapaz de discernir si el examinado era una persona o una máquina, podría afirmarse que el test había sido superado. Desde entonces, a lo largo de los últimos 60 años se han presentado numerosas propuestas a través de los cuales se han puesto al descubierto ciertas debilidades del test. Quizás la más importante es el hecho de centrarse en la inteligencia humana, dejando a un lado otros tipos de inteligencia. El test obliga en gran medida a definir en la máquina un comportamiento antropomórfico y de imitación con el único fin de pasar el test. Con el fin de superar estos y otros puntos débiles, Hector Levesque propuso en 2011 un nuevo reto, “The Winograd Schema Challenge”. Un sencillo test basado en Pregunta y Respuesta sobre una frase que describe una situación cotidiana.