Bioassessment and the Partitioning of Community Composition and Diversity Across Spatial Scales in Wetlands of the Bonneville Basin

Total Page:16

File Type:pdf, Size:1020Kb

Bioassessment and the Partitioning of Community Composition and Diversity Across Spatial Scales in Wetlands of the Bonneville Basin Brigham Young University BYU ScholarsArchive Theses and Dissertations 2007-07-13 Bioassessment and the Partitioning of Community Composition and Diversity Across Spatial Scales in Wetlands of the Bonneville Basin Mary Jane Keleher Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Keleher, Mary Jane, "Bioassessment and the Partitioning of Community Composition and Diversity Across Spatial Scales in Wetlands of the Bonneville Basin" (2007). Theses and Dissertations. 980. https://scholarsarchive.byu.edu/etd/980 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. BIOASSESSMENT AND THE PARTITIONING OF COMMUNITY COMPOSITION AND DIVERSITY ACROSS SPATIAL SCALES IN WETLANDS OF THE BONNEVILLE BASIN by: Mary Jane Keleher A Dissertation Submitted to the Faculty of Brigham Young University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Biology Brigham Young University August 2007 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a dissertation submitted by Mary Jane Keleher This dissertation has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. _____________________ _____________________________ Date Dr. Russell Rader (Chair) _____________________ _____________________________ Date Dr. Steven Peck _____________________ _____________________________ Date Dr. Sam Rushforth _____________________ _____________________________ Date Dr. Dennis Shiozawa _____________________ _____________________________ Date Dr. Loreen Woolstenhulme ii BRIGHAM YOUNG UNIVERSITY DEPARTMENT AND COLLEGE ACCEPTANCE As chair of the candidate’s graduate committee, I have read the dissertation of Mary Jane Keleher in its final form and found that (1) its format, citations and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library. ___________________ ___________________________________________ Date Dr. Russell B. Rader (Chair, Graduate Committee) Accepted for the Department of Biology ___________________ __________________________________________ Date Dr. Russell B. Rader (Graduate Coordinator) Accepted for the College of Life Sciences ___________________ __________________________________________ Date Dr. Rodney Brown (Dean, College of Life Sciences) iii ABSTRACT Bioassessment and the Partitioning of Community Composition and Diversity Across Spatial Scales in Wetlands of the Bonneville Basin Mary Jane Keleher Department of Biology Doctor of Philosophy The Bonneville Basin encompasses an area that was covered by ancient Lake Bonneville and which today lies within the Great Basin province. The Bonneville Basin is distinguished geologically by its characteristic parallel north-south mountain ranges that are separated by broad, alluviated desert basins and valleys. Benches and other shoreline features of ancient Lake Bonneville prominently mark the steep, gravelly slopes of these ranges. Numerous artesian desert springs are present at the base of the mountains and in the valley floors that form various sizes of both isolated wetlands and wetland complexes. Many these wetlands are some of the most unique and currently some of the most threatened wetlands in the United States. Several aquatic species and communities have maintained an existence as relict populations and communities in these wetlands since the receding of Lake Bonneville over 10,000 years ago. For example, Hershler has described 58 previously undescribed species of hydrobiid snails, 22 of which are endemic to single locations. Like hydrobiid snails, numerous other species, such as the least chub, Iotichthys phlegethontis and the iv Columbia spotted frog, Rana luteioventris, depend on these wetlands for their continued existence, many of which are already imperiled. The continued decline and loss of these wetlands would further push many of these species toward endangerment and/or extinction. Several factors have already eliminated or altered many of these habitats including capping and filling, water depletions, agricultural practices, livestock grazing, and introduction of nonnative species. In recent years, the significant loss and degradation of wetlands resulting in sensitive species designations have provided impetus for resource agencies to develop and implement management plans to conserve and protect these vital ecosystems. One problem facing appropriate management is the lack of biological information for determining which wetlands should receive protection priorities based on the presence of viable, functioning characteristics. The purpose of this dissertation project was to obtain biological information needed to support defensible decisions concerning conservation, protection, acquisition, restoration, and mitigation of the artesian springs in the Bonneville Basin. The primary objectives of this project were to 1) Develop bioassessment procedures for artesian wetlands of the Bonneville Basin using macroinvertebrates and 2) Determine patterns of community composition and diversity for macroinvertebrates and metaphyton algae at multiple scales in Bonneville Basin artesian wetlands. Keywords: Bonneville Basin, bioassessment, macroinvertebrates, metaphyton algae, community composition, community diversity, desert wetlands, artesian springs v ACKNOWLEGMENTS I would like to thank the following individuals, agencies, and other entities for making this project possible: 1) Our field crew; Dean Leavitt, Mark Merkley, John Rothesberger, and Ben Shettell for field data collection and laboratory sample processing and enduring sometimes inhospitable desert conditions, 2) Jane Keleher’s PhD graduate committee; Dr. Russell Rader (chair), Dr. Steven Peck, Dr. Sam Rushforth, Dr. Dennis Shiozawa and Dr. Loreen Woolstenhulme for their advice and review throughout this project, 3) the Utah Department of Natural Resources, United States Bureau of Land Management, and Brigham Young University for funding this project, 4) Dr. Richard Durfee for macroinvertebrate identifications, 5) Dr. Dick Dufford for metaphyton algal identifications and 6) The Utah Division of Wildlife Resources for sharing multiple year biological and chemical data at many of the sites associated with this project. I also would like to extend a special “thanks” to my husband, Christopher Keleher, my son, Finian Keleher and my mother and father, Patricia and Charles Perkins for their continued love, encouragement and support. vi TABLE OF CONTENTS BIOASSESSMENT AND THE PARTITIONING OF COMMUNITY COMPOSITION AND DIVERSITY ACROSS SPATIAL SCALES IN WETLANDS OF THE BONNEVILLE BASIN...........i GRADUATE COMMITTEE APPROVAL................................................................................................ ii DEPARTMENT AND COLLEGE ACCEPTANCE................................................................................ iii ABSTRACT ..................................................................................................................................................iv ACKNOWLEGMENTS...............................................................................................................................vi TABLE OF CONTENTS........................................................................................................................... vii CHAPTER ONE - BIOASSESSMENT OF ARTESIAN SPRINGS IN THE BONNEVILLE BASIN, UTAH - USA..................................................................................................................................................1 ABSTRACT .................................................................................................................................................2 METHODS .................................................................................................................................................8 Study Area and Site Selection................................................................................................................8 Physical and Chemical Data ..................................................................................................................9 Macroinvertebrates ..............................................................................................................................10 Reference Classification ......................................................................................................................11 Biological Indicators............................................................................................................................14 RESULTS..................................................................................................................................................18 Reference Classification ......................................................................................................................19 Diversity Indices..................................................................................................................................20
Recommended publications
  • Dorothy J. Jackson FRES FLS, Scottish Entomologist: a Bibliography Jack R
    The University of Maine DigitalCommons@UMaine Biology and Ecology Faculty Scholarship School of Biology and Ecology 10-2018 Dorothy J. Jackson FRES FLS, Scottish Entomologist: A Bibliography Jack R. McLachlan UMaine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/bio_facpub Part of the Entomology Commons, and the History of Science, Technology, and Medicine Commons Repository Citation McLachlan, JR (2018) Dorothy J. Jackson FRES FLS, Scottish entomologist: a bibliography. Latissimus 42: 10-13 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Biology and Ecology Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0966 2235 LATISSIMUS NEWSLETTER OF THE BALFOUR-BROWNE CLUB Number Forty Two October 2018 October 2018 LATISSIMUS 42 10 DOROTHY J. JACKSON FRES FLS, SCOTTISH ENTOMOLOGIST: A BIBLIOGRAPHY Jack R. McLachlan Dorothy Jean Jackson FRES FLS (1892-1973) should be familiar to anyone interested in water beetles. She published prolifically on the ecology, distribution, flight capacity, and parasites of water beetles, and made especially important contributions to our knowledge of dytiscids. Lees (1974) provided a very brief and somewhat accurate obituary. I am currently preparing a more comprehensive biography of her and would be grateful to receive any notes or anecdotes from those that knew or met her. Foster (1991), at the request of the late Hans Schaeflein, was the first effort in putting together a publication list. Here I provide a more extensive bibliography of her work that is almost certainly incomplete, but I think includes most of her scientific output between 1907 and 1973.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle
    Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle. Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science Vol. 34, No. 2 Appendix S1. References for trait state determination. Order Family Taxon Body Voltinism Dispersal Respiration FFG Diapause Locomotion Source size Amphipoda Crustacea Hyalella 3 3 1 2 2 2 3 1, 2 Annelida Hirudinea Hirudinea 2 2 3 3 6 2 5 3 Anostraca Anostraca Anostraca 2 3 3 2 4 1 5 1, 3 Basommatophora Ancylidae Ferrissia 1 2 1 1 3 3 4 1 Ancylidae Ancylidae 1 2 1 1 3 3 4 3, 4 Class:Arachnida subclass:Acari Acari 1 2 3 1 5 1 3 5,6 Coleoptera Dryopidae Helichus lithophilus 1 2 4 3 3 3 4 1,7, 8 Helichus suturalis 1 2 4 3 3 3 4 1 ,7, 9, 8 Helichus triangularis 1 2 4 3 3 3 4 1 ,7, 9,8 Postelichus confluentus 1 2 4 3 3 3 4 7,9,10, 8 Postelichus immsi 1 2 4 3 3 3 4 7,9, 10,8 Dytiscidae Agabus 1 2 4 3 6 1 5 1,11 Desmopachria portmanni 1 3 4 3 6 3 5 1,7,10,11,12 Hydroporinae 1 3 4 3 6 3 5 1 ,7,9, 11 Hygrotus patruelis 1 3 4 3 6 3 5 1,11 Hygrotus wardi 1 3 4 3 6 3 5 1,11 Laccophilus fasciatus 1 2 4 3 6 3 5 1, 11,13 Laccophilus maculosus 1 3 4 3 6 3 5 1, 11,13 Laccophilus mexicanus 1 2 4 3 6 3 5 1, 11,13 Laccophilus oscillator 1 2 4 3 6 3 5 1, 11,13 Laccophilus pictus 1 2 4 3 6 3 5 1, 11,13 Liodessus obscurellus 1 3 4 3 6 3 5 1 ,7,11 Neoclypeodytes cinctellus 1 3 4 3 7 3 5 14,15,1,10,11 Neoclypeodytes fryi 1 3 4 3 7 3 5 14,15,1,10,11 Neoporus 1 3 4 3 7 3 5 14,15,1,10,11 Rhantus atricolor 2 2 4 3 6 3 5 1,16 Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle.
    [Show full text]
  • Aquatic Insect and Factors Influencing Their Abundance in Temporary Habitats
    Journal of Food Health and Bioenvironmental Science (May - August 2020), 13(2): 17-27 17 Journal of Food Health and Bioenvironmental Science Journal homepage : http://jfhb.dusit.ac.th/ Aquatic Insect and Factors Influencing their Abundance in Temporary Habitats Thanya Reunura & Taeng On Prommi* Department of Biological Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand A r t i c l e i n f o A b s t r a c t Article history: Received : 05 July 2020 Temporary water habitats are usually inhabited by a diverse fauna of aquatic Revised : 10 July 2020 organisms such as aquatic and semiaquatic species and may include rare and Accepted : 19 August 2020 endangered species. In October and November 2016, aquatic insects were sampled Keywords: in selected four temporary sampling sites in Kasetsart University, central Thailand. Temporary Habitat, Aquatic Aquatic D-hand net was used to capture the aquatic insects. Water variables in each Insects, Water Variables habitat were simultaneously measured. A total of 4,820 aquatic insect belonging to 5 orders–Hemiptera (45.119%), Coleoptera (22.51%), Diptera (13.54%), Order Ephemeroptera (10.35%) and Odonata (8.42%) were collected. Eight families were recorded within the Order Hemiptera, with members of Family Notonectidae and the species Anisops bouvieri dominating. Five families were registered within Coleoptera, dominated by family Hydrophilidae, while order Odonata had 2 families dominated by family Libellulidae. Order Diptera was dominated by family Chironomidae. Order Ephemeroptera was dominated by family Baetidae. The values of the Shannon-Weiner index of diversity ranged from 2.118 to 2.487.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Common Insects of Freshwater Pond and Their Control ~
    COMMON INSECTS OF FRESHWATER POND AND THEIR CONTROL ~ Bulletin No. 54 Krishna Mitra and Kuldip Kumar 11 ~3r.J!I leAR CENTRAL INLAND CAPTURE FISHERIES RESEARCH INSTITUTE (Indfan Council of Agricultural Research) Barrackpore - 743101 West Bengal India. COMMON INSECTS OF FRESHWATER PONDS AND THEIR CONTROL Bulletin No. 54 March 1988 Krishna Mitra and Kuldip Kumar IfII'JrF ICAR CENTRAL INLAND CAPTURE FISHERIES RESEARCH INSTITUTE (Indian Council of Aqricultural Research) Barrackpore - 743101 West Bengal India. CONTENTS Introduction 1 Classification of insects 2 Order EPHEMEROPTERA 2 Family : Baetidae 2 Order ODONATA 3 Family: Libellulidae 4 Aeshnidae 5 Coenagrtonldae 5 Order HEMIPTERA 6 Family: Gerridae 7 Notonectidae 7 Pleidae 8 Nepidae 9 Belostomatidae 10 Cortxtdae 11 Order COLEOPTERA 12 Family : Dytiscidae 13 Hydrophilidae - 14 Gyrinidae 16 Curculionidae 16 Contents (contd.) Order TRICHOPTERA 17 Family: Leptocertdae 17 Order LEPIDOPTERA 18 Family: Pyralidae 18 Order DIPTERA 19 Family: Culicidae 19 Tendipedidae 20 Heleidae 20 Stratlomytdae 21 Tabanidae 21 Muscidae 22 Control 23 Acknowledgements 24 References 25 Enlarged text figures 2.5. ~--~------------------------~---I Foreword The insects which constitute an important component oJ the littoral Jauna oJ aquatic ecosystems play a vital role in the trophic structure and Junctions oJ culturable water bodies. Their primary role as converters oJ plant materials into animal protein and consumers oJ organic wastes oJ the fisti habitat is of great signifzcance Jor the healthy growth of fish populations. Though the insects serve as a source oJ natural food. for fishes, they ofteti impair the fist: productivity in the pond ecosystem by predating upon their young ones. By sharing a common trophic niche with the fist: Juveniles they also compete with them Jor food.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Bugs R Al, No
    ISSN 2230 – 7052 Newsletter of the $WIU4#NNInvertebrate Conservation & Information Network of South Asia (ICINSA) No. 22, MAY 2016 C. Sunil Kumar Photo: CONTENTS Pages Authenc report of Ceresium leucosccum White (Coleoptera: Cerambycidae: Callidiopini) from Pune and Satara in Maharashtra State --- Paripatyadar, S., S. Gaikwad and H.V. Ghate ... 2-3 First sighng of the Apefly Spalgis epeus epeus Westwood, 1851 (Lepidoptera: Lycaenidae: Milenae: Spalgini) from the Garhwal Himalaya --- Sanjay Sondhi ... 4-5 On a collecon of Odonata (Insecta) from Lonar (Crater) Lake and its environs, Buldhana district, Maharashtra, India --- Muhamed Jafer Palot ... 6-9 Occurrence of Phyllodes consobrina Westwood 1848 (Noctuidae: Lepidoptera) from Southern Western Ghats, India and a review of distribuonal records --- Prajith K.K., Anoop Das K.S., Muhamed Jafer Palot and Longying Wen ... 10-11 First Record of Gerosis bhagava Moore 1866 (Lepidoptera: Hesperiidae) from Bangladesh --- Ashis Kumar Daa ... 12 Present status on some common buerflies in Rahara area, West Bengal --- Wrick Chakraborty & Partha P. Biswas ... 13-17 Addions to the Buerfly fauna of Sundarbans Mangrove Forest, Bangladesh --- Ashis Kumar Daa ... 18 Study on buerfly (Papilionoidea) diversity of Bilaspur city --- Shubhada Rahalkar ... 19-23 Bio-ecology of Swallowtail (Lepidoptera:Papilionidae) Buerflies in Gautala Wildlife Sanctuary of Maharashtra India -- Shinde S.S. Nimbalkar R.K. and Muley S.P. ... 24-26 New report of midge gall (Diptera: Cecidomyiidae) on Ziziphus xylopyrus (Retz.) Willd. (Rhamnaceae) from Northern Western Ghats. Mandar N. Datar and R.M. Sharma ... 27 Rapid assessment of buerfly diversity in a ecotone adjoining Bannerghaa Naonal Park, South Bengaluru Alexander R. Avinash K. Phalke S. Manidip M.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts
    water Article Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts Lawrence E. Stevens * , Jeffrey Jenness and Jeri D. Ledbetter Springs Stewardship Institute, Museum of Northern Arizona, 3101 N. Ft. Valley Rd., Flagstaff, AZ 86001, USA; Jeff@SpringStewardship.org (J.J.); [email protected] (J.D.L.) * Correspondence: [email protected] Received: 27 April 2020; Accepted: 12 May 2020; Published: 24 May 2020 Abstract: The Colorado River basin (CRB), the primary water source for southwestern North America, is divided into the 283,384 km2, water-exporting Upper CRB (UCRB) in the Colorado Plateau geologic province, and the 344,440 km2, water-receiving Lower CRB (LCRB) in the Basin and Range geologic province. Long-regarded as a snowmelt-fed river system, approximately half of the river’s baseflow is derived from groundwater, much of it through springs. CRB springs are important for biota, culture, and the economy, but are highly threatened by a wide array of anthropogenic factors. We used existing literature, available databases, and field data to synthesize information on the distribution, ecohydrology, biodiversity, status, and potential socio-economic impacts of 20,872 reported CRB springs in relation to permanent stream distribution, human population growth, and climate change. CRB springs are patchily distributed, with highest density in montane and cliff-dominated landscapes. Mapping data quality is highly variable and many springs remain undocumented. Most CRB springs-influenced habitats are small, with a highly variable mean area of 2200 m2, generating an estimated total springs habitat area of 45.4 km2 (0.007% of the total CRB land area).
    [Show full text]
  • Algae and Invertebrates of a Great Basin Desert Hot Lake: a Description of the Borax Lake Ecosystem of Southeastern Oregon
    Conference Proceedings. Spring-fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region, 2002. http://www.wetlands.dri.edu Algae and Invertebrates of a Great Basin Desert Hot Lake: A description of the Borax Lake ecosystem of southeastern Oregon Joseph Furnish Pacific Southwest Region 5, U.S. Department of Agriculture, Forest Service, Vallejo, CA [email protected] James McIver Pacific Northwest Research Station, U.S. Department of Agriculture, Forest Service, LaGrande, OR Mark Teiser Department of Oceanography, Oregon State University, Corvallis, OR Abstract Introduction As part of the recovery plan for the Borax Lake is a geothermally heated endangered chub Gila boraxobius (Cyprinidae), alkaline lake in southeastern Oregon. It a description of algal and invertebrate represents one of the only permanent water populations was undertaken at Borax Lake in sources in the Alvord Desert, which receives 1991 and 1992. Borax Lake, the only known less than 20 cm of rain annually (Green 1978; habitat for G. boraxobius, is a warm, alkaline Cobb et al. 1981). Borax Lake is the only known water body approximately 10 hectares in size habitat for Gila boraxobius, the Borax Lake with an average surface water temperature of chub, a cyprinid fish recognized as a new 30°C. Periphyton algae were surveyed by species in 1980. The chub was listed as scraping substrates and incubating microscope endangered under the Endangered Species Act slides in the water column. Invertebrates were in 1982 because it was believed that geothermal- collected using dip nets, pitfall traps and Ekman energy test-well drilling activities near Borax dredges. The aufwuchs community was Lake might jeopardize its habitat by altering the composed of 23 species and was dominated by flow or temperature of water in the lake.
    [Show full text]
  • Coleoptera: Dytiscidae: Agabinae) with Phylogenetic Considerations
    Zootaxa 4646 (3): 401–433 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4646.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:D9362795-F949-4A1F-9E46-1A466EDD9301 Description of the larvae of four Japanese Platambus Thomson, 1859 (Coleoptera: Dytiscidae: Agabinae) with phylogenetic considerations RYOHEI OKADA1, YVES ALARIE2 & MARIANO C. MICHAT3 1Coleopterological Society of Japan. National Museum of Nature and Science, Tsukuba, 3050005 Japan. E–mail: [email protected] 2Department of Biology, Laurentian University, Ramsey Lake Road, P3E 2C6, Canada. E-mail: [email protected] 3Laboratory of Entomology, IBBEA, CONICET-UBA., DBBE-FCEN, University of Buenos Aires, Argentina. E-mail: [email protected] Abstract The larvae of four species of Platambus Thomson, 1859 from Japan, P. pictipennis (Sharp, 1873), P. convexus Okada, 2011, P. fimbriatus (Sharp, 1884) and P. sawadai (Kamiya, 1932) are described for the first time including a detailed chaetotaxy analysis of the cephalic capsule, head appendages, legs, last abdominal segment and urogomphi. A provisional parsimony analysis based on 39 informative larval characteristics of 15 species in seven genera of the subfamily Agabinae was conducted using the program TNT. Larvae of the Platambus species studied stand out from those of other genera of Agabinae by the unique presence of a subquadrate last abdominal segment not protruding posteriorly into siphon and the much shorter length of the primary urogomphal seta UR5 compared to seta UR7 in first instar larva. Key words: Coleoptera, Dytiscidae, Agabinae, Platambus, chaetotaxy, larvae, Palearctic Introduction The dytiscid genus Platambus Thomson, 1859 contains 67 species distributed in the Nearctic, Neotropical, Orien- tal and Palearctic regions (Bian & Ji 2008; Hendrich & Przewoźny 2015; Hájek & Zhang 2019; Nilsson & Hájek 2019).
    [Show full text]