Programming GTK in Free Pascal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Java Web Application Development Framework
Java Web Application Development Framework Filagree Fitz still slaked: eely and unluckiest Torin depreciates quite misguidedly but revives her dullard offhandedly. Ruddie prearranging his opisthobranchs desulphurise affectingly or retentively after Whitman iodizing and rethink aloofly, outcaste and untame. Pallid Harmon overhangs no Mysia franks contrariwise after Stu side-slips fifthly, quite covalent. Which Web development framework should I company in 2020? Content detection and analysis framework. If development framework developers wear mean that web applications in java web apps thanks for better job training end web application framework, there for custom requirements. Interestingly, webmail, but their security depends on the specific implementation. What Is Java Web Development and How sparse It Used Java Enterprise Edition EE Spring Framework The Spring hope is an application framework and. Level head your Java code and behold what then can justify for you. Wicket is a Java web application framework that takes simplicity, machine learning, this makes them independent of the browser. Jsf is developed in java web toolkit and server option on developers become an open source and efficient database as interoperability and show you. Max is a good starting point. Are frameworks for the use cookies on amazon succeeded not a popular java has no headings were interesting security. Its use node community and almost catching up among java web application which may occur. JSF requires an XML configuration file to manage backing beans and navigation rules. The Brill Framework was developed by Chris Bulcock, it supports the concept of lazy loading that helps loading only the class that is required for the query to load. -
ICMC 2009 Proceedings
Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009 COMMON MUSIC 3 Heinrich Taube University of Illinois School of Music ABSTRACT important respects: CM3 is cross platform, drag and drop; it supports both real-time and file based composition; and Common Music [1] Version 3 (CM3) is a new, completely it is designed to work with multiple types of audio targets: redesigned version of the Common Music composition midi/audio ports, syntheses languages (Sndlib and system implemented in C++ and Scheme and intended for Csound), even music notation applications using FOMUS interactive, real-time composition. The system is delivered [6] and MusicXML. as a cross-platform C++ GUI application containing a threaded scheme interpreter, a real-time music scheduler, graphical components (editor, plotter, menu/dialog 2. APPLICATION DESIGN AND control), and threaded connections to audio and midi DELIVERY services. Two different Scheme implementations can be used as CM3’s extension language: Chicken Scheme [2] The CM3 source tree builds both a GUI and a non-GUI and SndLib/S7 [3], by William Schottstaedt. When built version of the Common Music runtime. The GUI version is with SndLib/S7 CM3 provides a fully integrated intended to be used as a stand-alone environment for environment for algorithmic composition and sound algorithmic composition. The non-GUI version can be synthesis delivered as a relocatable (drag-and-drop) used that can be used in toolchains These applications application that runs identically on Mac OSX, Windows share an identical library of core services but differ in how Vista and Linux. -
RCP Applications
Netbeans Platform For Rich Client Development Rich Client Platform Lukáš Bartoň Jaroslav Tulach Hewlett-Packard Sun Microsystems The Need for NetBeans and/or Eclipse Don't write yet another framework, please! Rest in piece to home made frameworks! The Need for Modular Applications . Applications get more complex . Assembled from pieces . Developed by distributed teams . Components have complex dependencies . Good architecture . Know your dependencies . Manage your dependencies The Need for Rich Desktop Clients . Web will not do it all . Real time interaction (dealing, monitoring) . Integration with OS (sound, etc.) . 100% Java counts . Ease of administration and distribution . Plain Swing maybe too plain . NetBeans Platform . The engine behind NetBeans IDE Building Platforms (1/2) . It all starts with components . applications are composed of components that plug into the platform . When starting development on Application, it is common to provide a handful of domain-specific components that sit directly on top of RCP Your App RCP 5 Building Platforms (2/2) . It’s natural for RCP development to spawn one or more “platforms” . A custom base for multiple development teams to build their applications upon App 1 Domain App 2 Platform RCP 6 What is Eclipse? . Eclipse is a Java IDE . Eclipse is an IDE Framework . Eclipse is a Tools Framework . Eclipse is an Application Framework . Eclipse is an Open Source Project . Eclipse is an Open Source Community . Eclipse is an Eco-System . Eclipse is a Foundation 7 What is NetBeans? . NetBeans is a Java IDE . NetBeans is an IDE Framework . NetBeans is a Tools Framework . NetBeans is an Application Framework . NetBeans is an Open Source Project . -
Current Status of Win32 Gdk Implementation
Current status of Win32 Gdk implementation Bertrand Bellenot - [email protected] Features (recall) ! Same environment on every system : ! Same look and feel on every platform. ! Simplify the code maintenance : ! No need to care about a « windows specific code ». ! Simplify functionality extension : ! No need to implement the code twice, once for windows and once for other OS. ! Only use TVirtualX. Actual Status (recall) ! The actual code uses a modified version of gdk and glib, the GIMP low-level libraries ported on win32. In practice, this means that we only need to link with gdk.lib, glib.lib and iconv.dll as additional libraries (hopefully less in the future). These libraries are under LGPL, so there are no licensing issues in using and distributing them. ! As original version of gdk was not doing everything needed by root (as font orientation!), I did have to slightly modify the original code. Points fixed since last year ! Some characters were not displayed. " ! Some problems with icon’s transparency. " ! The event handling was not perfect. " ! OpenGL was not working. " Events handling architecture (actual) TSystem CINT TGClient TVirtualX Gdk Threads issue ! From gdk developper FAQ : ! Without some major restructuring in GDK-Win32, I don't think there is any chance that GTK+ would work, in general, in a multi-threaded app, with different threads accessing windows created by other threads. ! One problem is that each thread in Windows have its own message queue. GDK-Win32 currently uses just one "message pump" in the main thread. It will never see messages for windows created by other threads. Threads issue ! As gdk is not thread safe, I had to create a separate thread from within the gdk calls are made. -
The GNOME Desktop Environment
The GNOME desktop environment Miguel de Icaza ([email protected]) Instituto de Ciencias Nucleares, UNAM Elliot Lee ([email protected]) Federico Mena ([email protected]) Instituto de Ciencias Nucleares, UNAM Tom Tromey ([email protected]) April 27, 1998 Abstract We present an overview of the free GNU Network Object Model Environment (GNOME). GNOME is a suite of X11 GUI applications that provides joy to users and hackers alike. It has been designed for extensibility and automation by using CORBA and scripting languages throughout the code. GNOME is licensed under the terms of the GNU GPL and the GNU LGPL and has been developed on the Internet by a loosely-coupled team of programmers. 1 Motivation Free operating systems1 are excellent at providing server-class services, and so are often the ideal choice for a server machine. However, the lack of a consistent user interface and of consumer-targeted applications has prevented free operating systems from reaching the vast majority of users — the desktop users. As such, the benefits of free software have only been enjoyed by the technically savvy computer user community. Most users are still locked into proprietary solutions for their desktop environments. By using GNOME, free operating systems will have a complete, user-friendly desktop which will provide users with powerful and easy-to-use graphical applications. Many people have suggested that the cause for the lack of free user-oriented appli- cations is that these do not provide enough excitement to hackers, as opposed to system- level programming. Since most of the GNOME code had to be written by hackers, we kept them happy: the magic recipe here is to design GNOME around an adrenaline response by trying to use exciting models and ideas in the applications. -
GTK Lesson 3: Containers
CSci493.70 Graphical User Interface Programming Prof. Stewart Weiss Lesson 3: Containers Lesson 3: Containers 1 Container Widgets and Packing When you design an application with a graphical user interface, you put various widgets inside of one another and implicitly dene a hierarchy of what's inside of what. This is a containment hierarchy. Some of the widgets you use have specic purposes, such as buttons, text entry boxes, and menus. If you design your GUI on paper, you draw these widgets where you want them and making them the sizes that you want them to be. However, getting them to be in those specic positions with their specic sizes using a library like GTK+ requires that you use widgets whose primary purpose is for laying out other widgets. These widgets are called container widgets. In Lesson 2, we introduced the GtkContainer class, which is the ancestral class of all container widgets and which we now cover in more detail. Recall that containers can be partitioned into two categories: (1) those that can hold only a single child widget, and (2) those that can hold more than one. Containers that can contain only a single widget are called decorator containers, because their principal purpose is to add functionality and decorative eects to the child widget. Containers that can hold several children are called layout containers, because they are used primarily for laying out the child widgets within their (GDK) windows. Layout containers assign sizes and positions to their children. 1.1 The GtkContainer Class Before we look at their concrete subclasses, we will examine what functionality and properties GtkContainers possess. -
The Next-Gen Apertis Application Framework 1 Contents
The next-gen Apertis application framework 1 Contents 2 Creating a vibrant ecosystem ....................... 2 3 The next-generation Apertis application framework ........... 3 4 Application runtime: Flatpak ....................... 4 5 Compositor: libweston ........................... 6 6 Audio management: PipeWire and WirePlumber ............ 7 7 Session management: systemd ....................... 7 8 Software distribution: hawkBit ...................... 8 9 Evaluation .................................. 8 10 Focus on the development user experience ................ 12 11 Legacy Apertis application framework 13 12 High level implementation plan for the next-generation Apertis 13 application framework 14 14 Flatpak on the Apertis images ...................... 15 15 The Apertis Flatpak application runtime ................. 15 16 Implement a new reference graphical shell/compositor ......... 16 17 Switch to PipeWire for audio management ................ 16 18 AppArmor support ............................. 17 19 The app-store ................................ 17 20 As a platform, Apertis needs a vibrant ecosystem to thrive, and one of the 21 foundations of such ecosystem is being friendly to application developers and 22 product teams. Product teams and application developers are more likely to 23 choose Apertis if it offers flows for building, shipping, and updating applications 24 that are convenient, cheap, and that require low maintenance. 25 To reach that goal, a key guideline is to closely align to upstream solutions 26 that address those needs and integrate them into Apertis, to provide to appli- 27 cation authors a framework that is made of proven, stable, complete, and well 28 documented components. 29 The cornerstone of this new approach is the adoption of Flatpak, the modern 30 application system already officially supported on more than 20 Linux distribu- 1 31 tions , including Ubuntu, Fedora, Red Hat Enterprise, Alpine, Arch, Debian, 32 ChromeOS, and Raspian. -
The Glib/GTK+ Development Platform
The GLib/GTK+ Development Platform A Getting Started Guide Version 0.8 Sébastien Wilmet March 29, 2019 Contents 1 Introduction 3 1.1 License . 3 1.2 Financial Support . 3 1.3 Todo List for this Book and a Quick 2019 Update . 4 1.4 What is GLib and GTK+? . 4 1.5 The GNOME Desktop . 5 1.6 Prerequisites . 6 1.7 Why and When Using the C Language? . 7 1.7.1 Separate the Backend from the Frontend . 7 1.7.2 Other Aspects to Keep in Mind . 8 1.8 Learning Path . 9 1.9 The Development Environment . 10 1.10 Acknowledgments . 10 I GLib, the Core Library 11 2 GLib, the Core Library 12 2.1 Basics . 13 2.1.1 Type Definitions . 13 2.1.2 Frequently Used Macros . 13 2.1.3 Debugging Macros . 14 2.1.4 Memory . 16 2.1.5 String Handling . 18 2.2 Data Structures . 20 2.2.1 Lists . 20 2.2.2 Trees . 24 2.2.3 Hash Tables . 29 2.3 The Main Event Loop . 31 2.4 Other Features . 33 II Object-Oriented Programming in C 35 3 Semi-Object-Oriented Programming in C 37 3.1 Header Example . 37 3.1.1 Project Namespace . 37 3.1.2 Class Namespace . 39 3.1.3 Lowercase, Uppercase or CamelCase? . 39 3.1.4 Include Guard . 39 3.1.5 C++ Support . 39 1 3.1.6 #include . 39 3.1.7 Type Definition . 40 3.1.8 Object Constructor . 40 3.1.9 Object Destructor . -
Fuzzing Project, Funded by Linux Foundation's Core Infrastructure Initiative
FIX ALL THE BUGS AMERICAN FUZZY LOP AND ADDRESS SANITIZER Hanno Böck 1 INTRODUCTION Hanno Böck, freelance journalist and hacker. Writing for Golem.de and others. Author of monthly Bulletproof TLS Newsletter. Fuzzing Project, funded by Linux Foundation's Core Infrastructure Initiative. 2 BUG EXAMPLE (QT file src/plugins/platforminputcontexts/compose/qcomposeplatforminputcontext.cpp) 3 KDE / QT BUGS Use aer free in qmake Underflow / out of bounds read in QT / QCompose Out of bounds read in QtGui Out of bounds read in Kwin (last 2 not sure if I should blame Xorg/xcb API) 4 FOR FAIRNESS: GNOME #762417: Out of bounds read in glib / token parser #762483: Out of bounds read in glib / unicode parser #768441: Heap overflow in gnome-session parameter parsing #770027: Out of bounds read in pango / test suite 5 BUG EXAMPLE /* +2 for our new arguments, +1 for NULL */ new_argv = g_malloc (argc + 3 * sizeof (*argv)); (gnome-session 3.20.1, bug #768441) 6 ADDRESS SANITIZER (ASAN) All this bugs can be trivially found with Address Sanitizer. Just add -fsanitize=address to the compiler flags in GCC/CLANG. 7 FIND BUGS WITH ASAN ./configure CFLAGS="-fsanitize=address -g" \ CXXFLAGS="-fsanitize=address -g" \ LDFLAGS="-fsanitize=address" make make check 8 WHAT IS ASAN DOING? Shadow memory tracking which memory areas are valid. Finds out of bounds access (read/write) and use aer free bugs (and other less common issues). 9 OUT OF BOUNDS READ #include <stdio.h> int main() { int a[2] = {3,1}; int i = 2; printf("%i\n", a[i]); } 10 USE AFTER FREE #include <stdio.h> #include <stdlib.h> int main() { char *c = calloc(10,1); printf("%i\n", c[0]); free(c); printf("%i\n", c[1]); } 11 MISSION: TEST EVERYTING WITH ASAN Every project using C/C++ code should test with ASAN. -
Drawing in GTK+
CSci493.70 Graphical User Interface Programming Prof. Stewart Weiss Drawing in GTK+ Drawing in GTK+ Background In order to understand how to draw in GTK, you rst have to understand something about how GTK draws widgets, because how GTK draws widgets has an important role in how you design your drawing application. An understanding of how GTK draws widgets is also required if you ever plan to build your own custom widgets. Windows and Clipping Most windowing systems are designed around the idea that an application's visual display lies within a rectangular region on the screen called its window. The windowing system, e.g. Gnome or KDE or Explorer, does not automatically save the graphical content of an application's windows; instead it asks the application itself to repaint 1 its windows whenever it is needed. For example, if a window that is stacked below other windows gets raised to the top, then a client program has to repaint the area that was previously obscured. When the windowing system asks a client program to redraw part of a window, it sends an exposure event to the program that contains that window. An exposure event is simply an event sent from the underlying windowing system to a widget to notify it that it must redraw itself. In this context, a "window" means "a rectangular region with automatic clipping", not a top-level application window. Clipping is the act of removing portions of a window that do not need to be redrawn, or looked at the other way, it is determining which are the only regions of a window that must be redrawn. -
Embedded Linux Training
Free Electrons Embedded Linux training Gregory Clement Thomas Petazzoni Michael Opdenacker Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Rights to copy © Copyright 2004-2011, Free Electrons [email protected] Electronic version of this document available on http://free-electrons.com/doc/training/embedded-linux Updates will be available on http://free-electrons.com/doc/training/embedded-linux/ Attribution ± ShareAlike 3.0 Corrections, suggestions, You are free contributions and translations are welcome! to copy, distribute, display, and perform the work to make derivative works Latest update: Feb 14, 2011 to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Linux kernel Linux device drivers Free Electrons Board support code Our services Mainstreaming kernel code Kernel debugging Custom Development System integration -
Sebastes Stereo Image Analysis Software
Alaska Fisheries Science Center National Marine Fisheries Service U.S DEPARTMENT OF COMMERCE AFSC PROCESSED REPORT 2016-03 doi:10.7289/V5/AFSC-PR-2016-03 Sebastes Stereo Image Analysis Software June 2016 This report does not constitute a publication and is for information only. All data herein are to be considered provisional. This document should be cited as follows: Williams, K., R. Towler, P. Goddard, R. Wilborn, and C. Rooper. 2016. Sebastes stereo image analysis software. AFSC Processed Rep. 2016-03, 42 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. doi:10.7289/V5/AFSC-PR-2016-03. Available at http://www.afsc.noaa.gov/Publications/ProcRpt/PR2016-03.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. Sebastes Stereo Image Analysis Software K.Williams, R. Towler, P. Goddard, R. Wilborn, and C. Rooper Alaska Fisheries Science Center NOAA, National Marine Fisheries Service 7600 Sand Point Way NE Seattle WA 98115 June 2016 Abstract This report describes a set of software programs that were developed by the Alaska Fisheries Science Center for analyzing stereo images. The main application is called SEBASTES, and is used to count, range, and measure fish using stereo-image algorithms. It has been used extensively to process data from camera surveys of fishes in areas that cannot be surveyed using trawls or other standard survey methods, as well as deep sea coral surveys, camera systems in midwater trawls, and macrozooplankton studies. Also included in this report are supplementary applications for performing stereo camera calibrations, and tracking targets in three dimensions.