Pangolin Fact Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitochondrial Genomes of African Pangolins and Insights Into Evolutionary Patterns and Phylogeny of the Family Manidae Zelda Du Toit1,2, Morné Du Plessis2, Desiré L
du Toit et al. BMC Genomics (2017) 18:746 DOI 10.1186/s12864-017-4140-5 RESEARCH ARTICLE Open Access Mitochondrial genomes of African pangolins and insights into evolutionary patterns and phylogeny of the family Manidae Zelda du Toit1,2, Morné du Plessis2, Desiré L. Dalton1,2,3*, Raymond Jansen4, J. Paul Grobler1 and Antoinette Kotzé1,2,4 Abstract Background: This study used next generation sequencing to generate the mitogenomes of four African pangolin species; Temminck’s ground pangolin (Smutsia temminckii), giant ground pangolin (S. gigantea), white-bellied pangolin (Phataginus tricuspis) and black-bellied pangolin (P. tetradactyla). Results: The results indicate that the mitogenomes of the African pangolins are 16,558 bp for S. temminckii, 16,540 bp for S. gigantea, 16,649 bp for P. tetradactyla and 16,565 bp for P. tricuspis. Phylogenetic comparisons of the African pangolins indicated two lineages with high posterior probabilities providing evidence to support the classification of two genera; Smutsia and Phataginus. The total GC content between African pangolins was observed to be similar between species (36.5% – 37.3%). The most frequent codon was found to be A or C at the 3rd codon position. Significant variations in GC-content and codon usage were observed for several regions between African and Asian pangolin species which may be attributed to mutation pressure and/or natural selection. Lastly, a total of two insertions of 80 bp and 28 bp in size respectively was observed in the control region of the black-bellied pangolin which were absent in the other African pangolin species. Conclusions: The current study presents reference mitogenomes of all four African pangolin species and thus expands on the current set of reference genomes available for six of the eight extant pangolin species globally and represents the first phylogenetic analysis with six pangolin species using full mitochondrial genomes. -
Learning About Mammals
Learning About Mammals The mammals (Class Mammalia) includes everything from mice to elephants, bats to whales and, of course, man. The amazing diversity of mammals is what has allowed them to live in any habitat from desert to arctic to the deep ocean. They live in trees, they live on the ground, they live underground, and in caves. Some are active during the day (diurnal), while some are active at night (nocturnal) and some are just active at dawn and dusk (crepuscular). They live alone (solitary) or in great herds (gregarious). They mate for life (monogamous) or form harems (polygamous). They eat meat (carnivores), they eat plants (herbivores) and they eat both (omnivores). They fill every niche imaginable. Mammals come in all shapes and sizes from the tiny pygmy shrew, weighing 1/10 of an ounce (2.8 grams), to the blue whale, weighing more than 300,000 pounds! They have a huge variation in life span from a small rodent living one year to an elephant living 70 years. Generally, the bigger the mammal, the longer the life span, except for bats, which are as small as rodents, but can live for up to 20 years. Though huge variation exists in mammals, there are a few physical traits that unite them. 1) Mammals are covered with body hair (fur). Though marine mammals, like dolphins and whales, have traded the benefits of body hair for better aerodynamics for traveling in water, they do still have some bristly hair on their faces (and embryonically - before birth). Hair is important for keeping mammals warm in cold climates, protecting them from sunburn and scratches, and used to warn off others, like when a dog raises the hair on its neck. -
Identificado El Primer Fósil De Pangolín En La Península Ibérica
TIERRA Identificado el primer fósil de pangolín en la península ibérica El análisis del fémur de un pangolín de hace 16 millones de años, hallado en los años 70 en el yacimiento de Can Cerdà, en la cuenca del Vallès-Penedès (Cataluña), ha permitido identificar el primer registro de pangolines fósiles en la península ibérica. Los restos conservan características primitivas y se han asignado a un género ya extinto. Estos animales actualmente viven en Asia y África, pero hace más de cinco millones de años estuvieron también presentes en Europa. SINC 21/3/2018 10:30 CEST Ejemplar joven de pangolín asiático (Smutsia temminckii). / Maria Diekmann of Rare and Endangered Species Trust / CC BY 2.0 En la actualidad, los pangolines (u osos hormigueros escamosos) están representados por tres géneros, que difieren en su distribución geográfica y adaptaciones locomotoras. Los pangolines asiáticos se incluyen en el género Manis, mientras que los africanos están incluidos en Smutsia (pangolines de tierra) y Phataginus (pangolines arbóreos). Pero durante el Eoceno (hace más de 33 millones de años, los pangolines se extendían TIERRA desde Asia hasta América del Norte. El fémur fue excavado hace varias décadas en el yacimiento de Can Cerdà, pero el material nunca fue dibujado o descrito, y aparentemente fue olvidado En el Mioceno se encontraron exclusivamente en Europa, donde estuvieron representados por el género extinto Necromanis, de relaciones inciertas con las especies actuales. En Europa se han identificado distintas especies de este género durante el Oligoceno (hace más de 23 millones de años) y el Mioceno (hace entre 23 y 5 millones de años), generalmente representadas por restos fósiles fragmentarios. -
Autecology of the Sunda Pangolin (Manis Javanica) in Singapore
AUTECOLOGY OF THE SUNDA PANGOLIN (MANIS JAVANICA) IN SINGAPORE LIM T-LON, NORMAN (B.Sc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2007 An adult male Manis javanica (MJ17) raiding an arboreal Oceophylla smaradgina nest. By shutting its nostrils and eyes, the Sunda Pangolin is able to protect its vulnerable parts from the powerful bites of this ant speces. The scales and thick skin further reduce the impacts of the ants’ attack. ii ACKNOWLEDGEMENTS My supervisor Professor Peter Ng Kee Lin is a wonderful mentor who provides the perfect combination of support and freedom that every graduate student should have. Despite his busy schedule, he always makes time for his students and provides the appropriate advice needed. His insightful comments and innovative ideas never fail to impress and inspire me throughout my entire time in the University. Lastly, I am most grateful to Prof. Ng for seeing promise in me and accepting me into the family of the Systematics and Ecology Laboratory. I would also like to thank Benjamin Lee for introducing me to the subject of pangolins, and subsequently introducing me to Melvin Gumal. They have guided me along tremendously during the preliminary phase of the project and provided wonderful comments throughout the entire course. The Wildlife Conservation Society (WCS) provided funding to undertake this research. In addition, field biologists from the various WCS offices in Southeast Asia have helped tremendously throughout the project, especially Anthony Lynam who has taken time off to conduct a camera-trapping workshop. -
PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July -
Proposal for Amendment of Appendix I Or II for CITES Cop16
Original language: English and French1 CoP17 Prop. 12 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September – 5 October 2016 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal The proponents propose the transfer of Manis tetradactyla, M. tricuspis, M. gigantea and M. temminckii, from CITES Appendix II to Appendix I in accordance with Article II, paragraph 1, of the Convention. Specifically, all four species meet the biological criteria found in paragraphs C i) and ii) of Resolution Conf. 9.24 (Rev. CoP16), Annex 1, due to a marked decline in population sizes in the wild observed as ongoing or inferred or projected on the basis of levels or patterns of exploitation, and a high vulnerability to intrinsic (i.e. low reproductive output, low density, specialized niche requirements) and extrinsic (i.e. a decrease in the area and quality of habitat) factors, and a reduction in recruitment due to indiscriminate offtake. B. Proponent Angola, Botswana, Chad, Côte d’Ivoire, Gabon, Guinea, Kenya, Liberia, Nigeria, Senegal, South Africa, Togo and United States of America2: C. Supporting statement 1. Taxonomy 1.1 Class: Mammalia 1.2 Order: Pholidota Weber 1904 1.3 Family: ManidaeGray 1821 1.4 Genus, species or subspecies, including author and year: Manis tricuspis (Rafinesque 1821) Manis tetradactyla (Linnaeus 1766) Manis gigantea (Illiger 1815) Manis temminckii (Smuts 1832) 1.5 Scientific synonyms: Manis gigantea: Smutsia gigantea (Smuts, 1832); Phataginus gigantea (Grubbet al., 1998) Manis temminckii: Smutsiatemminckii (Smuts, 1832) Phataginus temminckii (Grubbet al., 1998) Manis tricuspis: Phataginustricuspis (Grubbet al. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Namibia, 2018
Nambia and little bits of Botswana, Zimbabwe, and Zambia, July-August 2018 Michael Kessler In 1994, my wife Elke and I did our first joint trip to Namibia, spending 3 weeks mainly in the arid western parts of the country and seeing such goodies as Brown Hyena, Caracal, Black Mongoose, Honey Badger, 3 species of sengis, and Southern African Porcupine. In 2010, we made our first family trip to Africa to KwaZulu Natal, seeing much of the large game. So now we decided to return to Namibia with the family, with the aim of exploring some new areas and searching out the less easily seen species. Time and budget limited the trip to about 2½ weeks and after some deliberation, we settled on the following sites: Sesriem + Sossusvlei for the dunes; Walvisbay for Heaviside’s Dolphin + Welwitschia; Erindi for African Wild Dog and the other game; Toko Lodge for the night drives, especially for Aardvark; Etosha only briefly for the amazing wildlife spectacle; Mahango for the Okavango specials (birds and mammals); and Victoria Falls for, well, the falls. This resulted in the following Itinerary: 25.7: Left Zurich in the evening, arriving on 26.7.: am in Jo’burg, followed by a connecting flight to Windhoek where we picked up the rental car, did some grocery shopping, and fell into our beds at Arebbusch Lodge on the southern outskirts of the city. 27.7.: Long drive to Desert Homestead Lodge at Sesriem. 28.7.: am: visit to Sossusvlei; pm: Cessna flight over the dunes, followed by a night drive back to the lodge, seeing some Bat-eared Foxes. -
Exploring the Natural Origins of SARS-Cov-2
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.22.427830; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Exploring the natural origins of SARS-CoV-2 1 1 2 3 1,* Spyros Lytras , Joseph Hughes , Wei Xia , Xiaowei Jiang , David L Robertson 1 MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, UK. 2 National School of Agricultural Institution and Development, South China Agricultural University, Guangzhou, China. 3 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China. * Correspondence: [email protected] Summary. The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2 and the distance (~1500 km) from Wuhan to Yunnan province, where the closest evolutionary related coronaviruses circulating in horseshoe bats have been identified, is fueling speculation on the natural origins of SARS-CoV-2. Here we analyse SARS-CoV-2’s related horseshoe bat and pangolin Sarbecoviruses and confirm Rhinolophus affinis continues to be the likely reservoir species as its host range extends across Central and Southern China. This would explain the bat Sarbecovirus recombinants in the West and East China, trafficked pangolin infections and bat Sarbecovirus recombinants linked to Southern China. Recent ecological disturbances as a result of changes in meat consumption could then explain SARS-CoV-2 transmission to humans through direct or indirect contact with the reservoir wildlife, and subsequent emergence towards Hubei in Central China. -
Structure and Binding Properties of Pangolin-Cov Spike Glycoprotein Inform the Evolution of SARS-Cov-2 ✉ ✉ Antoni G
ARTICLE https://doi.org/10.1038/s41467-021-21006-9 OPEN Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2 ✉ ✉ Antoni G. Wrobel 1,5 , Donald J. Benton 1,5 , Pengqi Xu2,1, Lesley J. Calder3, Annabel Borg4, ✉ Chloë Roustan4, Stephen R. Martin1, Peter B. Rosenthal 3, John J. Skehel1 & Steven J. Gamblin 1 1234567890():,; Coronaviruses of bats and pangolins have been implicated in the origin and evolution of the pandemic SARS-CoV-2. We show that spikes from Guangdong Pangolin-CoVs, closely related to SARS-CoV-2, bind strongly to human and pangolin ACE2 receptors. We also report the cryo-EM structure of a Pangolin-CoV spike protein and show it adopts a fully-closed conformation and that, aside from the Receptor-Binding Domain, it resembles the spike of a bat coronavirus RaTG13 more than that of SARS-CoV-2. 1 Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK. 2 Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China. 3 Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, NW1 1AT, London, UK. 4 Structural Biology Science Technology Platform, Francis Crick Institute, NW1 1AT, London, UK. 5These authors contributed equally: Antoni G. ✉ Wrobel, Donald J. Benton. email: [email protected]; [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:837 | https://doi.org/10.1038/s41467-021-21006-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21006-9 espite intensive research into the origins of the COVID- 19 pandemic, the evolutionary history of its causative A SARS-CoV-2 S D 1,2 agent SARS-CoV-2 remains unclear . -
Twin Mammals and COVID-19: Life and Science of the Suspects
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2020 doi:10.20944/preprints202003.0410.v1 Twin Mammals and COVID-19: Life and Science of the Suspects Naser A. Anjum Department of Botany, Aligarh Muslim University, Aligarh – 202 002 U.P. (India) e-mail: [email protected]; [email protected] SCOPUS author ID: https://www.scopus.com/authid/detail.uri?authorId=23097123400 © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2020 doi:10.20944/preprints202003.0410.v1 Abstract The world is puzzling over the origin of the current outbreak of the coronavirus disease (COVID-19) that is caused by a novel coronavirus-2019 (2019-nCoV). As of 25th March 2020, the World Health Organization has reported 4,14,179 confirmed cases and 18,440 confirmed deaths in total due to COVID-19. To this end, two unique mammals namely bats and pangolins are being investigated for their potential link to COVID-19. However, the evidence so far gathered in this context is far from clear. This paper aimed to: (i) enlighten the major aspects of life of bats and pangolins; (ii) briefly discusses their potential link to COVID-19; and also (iii) to highlight the way forward. The outcomes may contribute to future research on the subject. Keywords Coronavirus; 2019-nCoV; COVID-19; bat, pangolin Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2020 doi:10.20944/preprints202003.0410.v1 1. Introduction In humans, several respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS) are known to be due a large family of viruses called as coronaviruses. -
Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.