Modeling Neurodevelopment and Cortical Dysfunction in SPG11-Linked Hereditary Spastic Paraplegia Using Human Induced Pluripotent Stem Cells
Total Page:16
File Type:pdf, Size:1020Kb
Modeling neurodevelopment and cortical dysfunction in SPG11-linked hereditary spastic paraplegia using human induced pluripotent stem cells Untersuchung der Neuronalentwicklung und kortikalen Dysfunktion der SPG11 assoziierten Heriditären Spastische Paraplegie unter Zuhilfenahme von humanen induzierten pluripotenten Stammzellen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. Vorgelegt von: Himanshu Kumar Mishra aus Bhagalpur, Indien Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 26.02.2016 Vorsitzender des Promotionsorgans: Prof. Dr. Jörn Wilms Gutachter/in: Prof. Dr. Jürgen Winkler PD. Dr. Andreas Gießl “I have no special talents. I am only passionately curious.” ― Albert Einstein Table of Contents Table of Contents 1 List of figures .......................................................................................................................... 01 2 List of tables ............................................................................................................................ 04 3. Declaration .............................................................................................................................. 05 4. Summary/Zusammenfassung ................................................................................................ 06 4.1 Summary ............................................................................................................................. 06 4.2 Zusammenfassung .............................................................................................................. 08 5. Introduction ............................................................................................................................ 10 5.1 Motor neuron diseases ...................................................................................................... 10 5.2 Hereditary spastic paraplegias (HSP) ................................................................................ 13 5.2.1 Genetic heterogeneity and clinical symptoms ....................................................... 15 5.2.2 Neuropathology and emerging molecular mechanisms ........................................ 17 5.2.3 Treatment of HSP .................................................................................................. 19 5.3 SPG11/Spatacsin ............................................................................................................... 20 5.3.1 Clinical symptoms and disease etiology of SPG11 ............................................... 20 5.3.2 Mutation spectrum of SPG11 ................................................................................ 21 5.3.3 Cellular localization and and functions of spatacsin ............................................. 23 5.4 Human induced pluripotent stem cell (iPSC) technology ................................................. 26 5.4.1 Reprogramming strategies to generate iPSCs ...................................................... 26 5.4.2 Modeling neurodegenerative diseases using iPSCs ............................................... 27 5.5 Aims and hypotheses of the thesis ..................................................................................... 28 6. Materials and Methods .......................................................................................................... 31 6.1 SPG11 patients and Control subjects ................................................................................. 31 6.2 Cell culture ........................................................................................................................ 31 6.2.1 Fibroblasts derivation ............................................................................................ 31 6.2.2 Generation of iPSCs .............................................................................................. 33 6.2.3 Neural differentiation paradigm ............................................................................ 33 6.2.4 Karyotyping ........................................................................................................... 35 6.2.5 Neurite length and arborization analysis ............................................................... 35 6.2.6 Electrophysiology .................................................................................................. 36 6.3 Animals.............................................................................................................................. 36 6.3.1 Synaptosomes preparation ..................................................................................... 37 6.4 Molecular Biology ............................................................................................................. 38 6.4.1 Real Time PCR analysis ........................................................................................ 38 6.4.2 Western Blot .......................................................................................................... 39 Table of Contents 6.4.3 Transfections of siRNA and plasmid DNA ........................................................... 40 6.4.4 TOP-flash/FOP-flash Luciferase reporter assay .................................................... 40 6.5 Immunofluorescence staining and analysis ....................................................................... 41 6.5.1 Proliferation analysis ............................................................................................. 41 6.5.2 Cell death analysis ................................................................................................. 43 6.5.3 Acetyl tubulin staining ........................................................................................... 43 6.6 Flow cytometry-PI analysis ............................................................................................... 44 6.7 Pharmacological rescue of NPCs proliferation ................................................................. 44 6.8 Synaptic vesicle transport experiments ............................................................................. 45 6.9 Microscopy ........................................................................................................................ 45 6.9.1 Fluorescence and confocal microscopy ................................................................. 45 6.9.2 Electron microscopy .............................................................................................. 46 6.10 Statistics ............................................................................................................................ 46 7. Results ...................................................................................................................................... 47 7.1 Generation of human models for SPG11 and expression analysis of SPG11 ............ 47 7.1.1 Generation of human iPSCs from SPG11 patients and controls ........................... 47 7.1.2 Differentiation and characterisation of neuronal cultures derived from iPSCs ..... 51 7.1.3 Spatacsin is present in human and mouse cortical projection neurons ................. 52 7.1.4 Spatacsin is expressed in human embryonic and adult mouse neurons................. 54 7.1.5 Spatacsin is expressed throughout mouse brain development .............................. 55 7.1.6 Spatacsin is ubiquitously distributed in axons and dendrites of cortical neurons . 57 7.1.7 Spatacsin is localised in neurites, growth-cones and synapses of neurons ........... 59 7.2 Modeling neurodevelopmental phenotypes of SPG11 using iPSC derived NPCs .... 61 7.2.1 Impaired generation of cortical neural rosettes in SPG11-iPSCs .......................... 61 7.2.2 Transcriptome analysis of control and SPG11-NPCs ............................................ 63 7.2.3 Reduced proliferation and neurogenesis in SPG11-NPCs .................................... 71 7.2.4 Altered cell cycle distribution and stage-specific anomalies in SPG11-NPCs ..... 72 7.2.5 Checkpoint genes are downregulated in SPG11-NPCs ......................................... 75 7.2.6 SPG11-NPCs are less prevalent in cytokinesis and undergo cell death ................ 75 7.2.7 Impaired GSK3ß/ß-Catenin signaling in SPG11-NPCs ........................................ 78 7.2.8 Loss of spatacsin compromises proliferation of neuronal cell line ....................... 80 7.2.9 GSK3 inhibitors rescue proliferation and neurogenesis defects in SPG11-NPCs . 82 7.2.10 Premature differentiation of SPG11-NPCs is ameliorated by GSK3 inhibitor ..... 84 7.2.11 Impairment of autophagy related pathways in SPG11-NPCs ............................... 86 7.3 Modeling neurodegenerative phenotypes of SPG11 using iPSC derived neurons .... 88 7.3.1 Dysfunction of spatacsin in SPG11-dNeurons leads to aberrant gene expression 88 7.3.2 Neurite outgrowth and complexity are compromised in SPG11-dNeurons .......... 90 7.3.3 Disruption of spatacsin destabilizes microtubules in SPG11-dNeurons ............... 93 Table of Contents 7.3.4 Spatacsin dysfunction impairs axonal transport in SPG11-dNeurons ................... 95 7.3.5 Spatacsin dysfunction disturbs Na+/K+ current density in SPG11-dNeurons ....... 97 8. Discussion ................................................................................................................................ 99 8.1 Spatacsin expression in human and mouse cortical neurons