The Conundrum of Causal Reasoning in Elephants

Total Page:16

File Type:pdf, Size:1020Kb

The Conundrum of Causal Reasoning in Elephants The University of Southern Mississippi The Aquila Digital Community Master's Theses Spring 5-1-2018 The Conundrum of Causal Reasoning in Elephants Beri Brown University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Part of the Cognition and Perception Commons, and the Comparative Psychology Commons Recommended Citation Brown, Beri, "The Conundrum of Causal Reasoning in Elephants" (2018). Master's Theses. 340. https://aquila.usm.edu/masters_theses/340 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. THE CONUNDRUM OF CAUSAL REASONING IN ELEPHANTS by Beri Brown A Thesis Submitted to the Graduate School, the College of Education and Psychology, and the Department of Psychology at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Arts May2018 THE CONUNDRUM OF CAUSAL REASONING IN ELEPHANTS by Beri Brown May2018 Approved by: ________________________________________________ Dr. Alen Hajnal, Committee Chair Associate Professor, Psychology ________________________________________________ Dr. Richard Mohn, Committee Member Associate Professor, Educational Research and Administration ________________________________________________ Dr. Heather Hill, Committee Member Associate Research Professor, Psychology ________________________________________________ Dr. D. Joe Olmi Chair, Department of Psychology ________________________________________________ Dr. Karen S. Coats Dean of the Graduate School COPYRIGHT BY Beri Brown 2018 Published by the Graduate School ABSTRACT THE CONUNDRUM OF CAUSAL REASONING IN ELEPHANTS by Beri Brown May2018 Causal reasoning is marked by the ability to mentally reconstruct the missing part of a sequence in order to reproduce an outcome. While research on causal reasoning has been done with children, the results of the studies have been inconsistent. A standardized paradigm for comparative causal reasoning studies does not exist. Nissani (2006) investigated causal reasoning in a tool-use task with elephants and concluded that elephants were not capable of causal reasoning. The current study, a modified replication, yielded results that were not congruent with Nissani’s (2006) manuscript. Additionally, it was very unlikely that the Nissani (2006) study truly looked at causal reasoning or tool-use, and instead assessed a response acquired through associative learning. Based on the results of the current study, it appears that elephants are capable of a level of causal reasoning, although more research is necessary. ii ACKNOWLEDGMENTS It really does take a village and I am so grateful to have the most incredible village. To my committee: thank you! Dr. Richard Mohn, for your support and advice, Dr. Alen Hajnal for your patience, encouragement, and very appreciated dissemination of information, and to Dr. Heather Hill: my academic saving grace! You have been my biggest cheerleader, sounding board, and all around rock star throughout this process. I will always be beyond thankful for everything you have done for me, and for understanding all my quirky Beri-isms. Nick Way, I literally could not have done this without you! Thank you for being so amazing with the elephants, understanding of the scientific process, sweating in Salinas, putting me in touch with Charlie, your patience with even the long trials, and for all of your support and encouragement in making all of this happen! To Kara, Andrew, Brett, and Robert, and Patrick: thank you for working the elephants, going on an adventure to Salinas, and for making the jazziest food rewards for the elephants. Dianne Cameron, thank you for all of your guidance and help as well. The entire SFDK family has been so phenomenal: jazz pec-ies to all of you! And to Charlie Sammut, thank you so much for letting us borrow your elephants for the day! Dr. Pepper Hanna, thank you for being my MMBCL rock and for being willing to answer all of my questions, regardless of how ridiculous they are, and for cheering me on throughout our entire graduate journey. I would not have made it without you! To my brother, Dr. Dimitri Brown, for graciously doing my reliability coding, (and my sister Ariana Brown for also offering to do coding)! iii And to my parents who are the most incredible, patient, and loving support system. Thank you for always supporting me and encouraging me to pursue (all of) my dreams! I absolutely could not have done with without you! Mom, you’ve been my rock through everything, and I’m endlessly thankful! And to my little dog, Rora, you’ve literally been by my side every step of the way. Thank you for all of the cuddles and unconditional love! iv DEDICATION I would like to dedicate this manuscript to Dr. Stan Kuczaj. Stan, thank you for taking a chance on me, believing in me from the start, and always supporting me for being myself. While I wish that you were still here so we could talk about Texas, food, football, and marine mammal cognition, I am so honored and thankful for the time I got to spend under your guidance as a member of the MMBCL. From the trip to Honduras and The Bahamas to Boat Trips and lab meetings at The Keg… even our lab meetings and your lectures about developmental psychology. Thank you for all of the laughs, the fist bumps, the adventures, the knowledge, and for being such a huge part of shaping who I am as a scientist! You will always be missed, but also remembered for the incredible person you were! v TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................. iii DEDICATION .................................................................................................................... v LIST OF TABLES ........................................................................................................... viii LIST OF ILLUSTRATIONS ............................................................................................. ix LIST OF ABBREVIATIONS ............................................................................................. x CHAPTER I - INTRODUCTION ...................................................................................... 1 What is Causal Reasoning? ............................................................................................. 1 Current Methods Used to Assess Causal Reasoning in Nonverbal Individuals ............. 2 Nonverbal Humans. .................................................................................................... 2 Nonverbal Animals. .................................................................................................... 5 Causal Reasoning and Tool Use ..................................................................................... 6 Human Tests. .............................................................................................................. 7 Non-Human Animal Tests. ......................................................................................... 8 Trap-tube test. ......................................................................................................... 8 Avian Species.......................................................................................................... 9 Non-Human Primates............................................................................................ 10 Comparative Studies with Primates and Humans. .................................................... 12 Tool Use and Causal Reasoning in Dolphins. .......................................................... 13 vi Tool Use in Elephants. .................................................................................................. 14 Causal Reasoning and Tool Use in Elephants. ............................................................. 15 Purpose of the Study ..................................................................................................... 16 Limitations of the Original Study. ............................................................................ 16 Modifications to Original Study. .............................................................................. 17 CHAPTER II - METHODS .............................................................................................. 20 Subjects of Archived Data. ........................................................................................... 20 Experimental Testing Apparatus................................................................................... 20 Experimental Procedure ................................................................................................ 22 Experimental trials. ................................................................................................... 22 Coding of trials. ............................................................................................................ 24 Statistical Analyses. ...................................................................................................... 25 Intercoder Reliability. ............................................................................................... 26 CHAPTER III - RESULTS ..............................................................................................
Recommended publications
  • The Mathematics of Causal Relations
    In P.E. Shrout, K. Keyes, and K. Ornstein (Eds.), Causality and Psychopathology: Finding the TECHNICAL REPORT Determinants of Disorders and their Cures, Oxford University Press, 47-65, 2010. R-338 September 2010 The Mathematics of Causal Relations Judea Pearl Introduction Almost two decades have passed since Paul Holland published his highly cited review paper on the Neyman-Rubin approach to causal inference [Holland, 1986]. Our understanding of causal inference has since increased severalfold, due primarily to advances in three areas: 1. Nonparametric structural equations 2. Graphical models 3. Symbiosis between counterfactual and graphical methods These advances are central to the empirical sciences because the research questions that motivate most studies in the health, social, and behavioral sciences are not statistical but causal in nature. For example, what is the efficacy of a given drug in a given population? Can data prove an employer guilty of hiring discrimination? What fraction of past crimes could have been avoided by a given policy? What was the cause of death of a given individual in a specific incident? Remarkably, although much of the conceptual framework and many of the algorithmic tools needed for tackling such problems are now well established, they are hardly known to researchers in the field who could put them into practical use. Why? Solving causal problems mathematically requires certain extensions in the standard mathematical language of statistics, and these extensions are not generally emphasized in the mainstream literature and education. As a result, large segments of the statistical research community find it hard to appreciate and benefit from the many results that causal analysis has produced in the past two decades.
    [Show full text]
  • Causal Knowledge and the Development of Inductive Reasoning ⇑ Aimée K
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Experimental Child Psychology 122 (2014) 48–61 Contents lists available at ScienceDirect Journal of Experimental Child Psychology journal homepage: www.elsevier.com/locate/jecp Causal knowledge and the development of inductive reasoning ⇑ Aimée K. Bright a, , Aidan Feeney b a Psychology Division, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK b School of Psychology, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK article info abstract Article history: We explored the development of sensitivity to causal relations in chil- Received 5 April 2013 dren’s inductive reasoning. Children (5-, 8-, and 12-year-olds) and Revised 27 November 2013 adults were given trials in which they decided whether a property Available online 8 February 2014 known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally Keywords: related category. The direction of the causal link was either predictive Category-based induction Causal knowledge (prey ? predator) or diagnostic (predator ? prey), and the property Causal asymmetry that participants reasoned about established either a taxonomic or cau- Taxonomic knowledge sal context. There was a causal asymmetry effect across all age groups, Inductive selectivity with more causal choices when the causal link was predictive than Knowledge over-generalization when it was diagnostic. Furthermore, context-sensitive causal reason- ing showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Causal Action: A
    UNIVERSITY OF CALIFORNIA Los Angeles Causal Action: A Framework to Connect Action Perception and Understanding A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Psychology by Yujia Peng 2019 ©Copyright by Yujia Peng 2019 ABSTRACT OF THE DISSERTATION Causal Action: A Framework to Connect Action Perception and Understanding by Yujia Peng Doctor of Philosophy in Psychology University of California, Los Angeles, 2019 Professor Hongjing Lu, Chair Human actions are more than mere body movements. In contrast to dynamic events involving inanimate objects, human actions have a special status in that they control interactions with the world and afford privileged access to the experience of agency and to control interactions with the world. Several causal constraints on human actions support the generation and the understanding of actions. For example, human actions inherently involve a causal structure: limb movements generally cause changes in body position along a path through the environment to achieve intentional goals. However, it remains unclear how the system that supports action perception communicates with high-level reasoning system to recognize actions, and more importantly, to achieve a deeper understanding of observed actions. My dissertation aims to ii determine whether causality imposes critical motion constraints on action perception and understanding, and how causal relations involved in actions impact behavioral judgments. The project also investigates the developmental trajectory and neural substrate of action processing, and whether a feedforward deep learning model is able to learn causal relations solely from visual observations of human actions. Through behavioral experiments, an infant eye movement study, a neural study using magnetoencephalography, and model simulations, my dissertation yields a number of insights.
    [Show full text]
  • Novel Pancreatic Endocrine Maturation Pathways Identified by Genomic Profiling and Causal Reasoning
    Novel Pancreatic Endocrine Maturation Pathways Identified by Genomic Profiling and Causal Reasoning Alex Gutteridge2*, J. Michael Rukstalis1,4, Daniel Ziemek3, Mark Tie´ 1, Lin Ji1,4, Rebeca Ramos-Zayas1, Nancy A. Nardone4, Lisa D. Norquay4, Martin B. Brenner4, Kim Tang1, John D. McNeish1, Rebecca K. Rowntree1* 1 Pfizer Regenerative Medicine, Cambridge, Massachusetts, United States of America, 2 Pfizer Regenerative Medicine, Cambridge, United Kingdom, 3 Pfizer Computational Sciences Center of Emphasis, Cambridge, Massachusetts, United States of America, 4 Pfizer Cardiovascular and Metabolic Diseases, Cambridge, Massachusetts, United States of America Abstract We have used a previously unavailable model of pancreatic development, derived in vitro from human embryonic stem cells, to capture a time-course of gene, miRNA and histone modification levels in pancreatic endocrine cells. We investigated whether it is possible to better understand, and hence control, the biological pathways leading to pancreatic endocrine formation by analysing this information and combining it with the available scientific literature to generate models using a casual reasoning approach. We show that the embryonic stem cell differentiation protocol is highly reproducible in producing endocrine precursor cells and generates cells that recapitulate many aspects of human embryonic pancreas development, including maturation into functional endocrine cells when transplanted into recipient animals. The availability of whole genome gene and miRNA expression data from the early stages of human pancreatic development will be of great benefit to those in the fields of developmental biology and diabetes research. Our causal reasoning algorithm suggested the involvement of novel gene networks, such as NEUROG3/E2F1/KDM5B and SOCS3/STAT3/IL-6, in endocrine cell development We experimentally investigated the role of the top-ranked prediction by showing that addition of exogenous IL-6 could affect the expression of the endocrine progenitor genes NEUROG3 and NKX2.2.
    [Show full text]
  • Development of Causal Reasoning
    The Development of Causal Reasoning Oxford Handbooks Online The Development of Causal Reasoning Paul Muentener and Elizabeth Bonawitz The Oxford Handbook of Causal Reasoning Edited by Michael R. Waldmann Print Publication Date: Jun 2017 Subject: Psychology, Cognitive Psychology Online Publication Date: May 2017 DOI: 10.1093/oxfordhb/9780199399550.013.40 Abstract and Keywords Research on the development of causal reasoning has broadly focused on accomplishing two goals: understanding the origins of causal reasoning, and examining how causal reasoning changes with development. This chapter reviews evidence and theory that aim to fulfill both of these objectives. In the first section, it focuses on the research that explores the possible precedents for recognizing causal events in the world, reviewing evidence for three distinct mechanisms in early causal reasoning: physical launching events, agents and their actions, and covariation information. The second portion of the chapter examines the question of how older children learn about specific causal relationships. It focuses on the role of patterns of statistical evidence in guiding learning about causal structure, suggesting that even very young children leverage strong inductive biases with patterns of data to inform their inferences about causal events, and discussing ways in which children’s spontaneous play supports causal learning. Keywords: development, causal reasoning, learning, induction, bias Causality plays a fundamental role in human cognition, and has long been a topic of interest for many developmental researchers—causal reasoning has been proposed to be a central aspect of early learning in the physical (Baillargeon, 2004; Carey, 2009; Cohen, Amsel, Redford, & Casasola, 1998; Leslie, 1995; Spelke, 1990), psychological (Csibra & Gergely, 1998; Gopnik & Wellman, 1992; Meltzoff, 2007; White, 2014; Woodward, 2009), and biological world (Carey, 2009; Wellman & Gelman, 1992).
    [Show full text]
  • 1/4 New Caledonian Crows Afford Invaluable Comparative Insights Into
    Target article: Osiurak and Reynaud Word counts: abstract (60 words), main text (995), references (1191), entire text (2356) New Caledonian crows afford invaluable comparative insights into human cumulative technological culture Christian Rutza,b and Gavin R. Huntc aCentre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK; bRadcliffe Institute for Advanced Study, Harvard University, Cambridge MA 02138, USA; and cUnaffiliated. +1 617 899 6744 (C.R.) [email protected] [email protected] https://aviantooluse.org Abstract The New Caledonian crow may be the only non-primate species exhibiting cumulative technological culture. Its foraging tools show clear signs of diversification and progressive refinement, and it seems likely that at least some tool-related information is passed across generations via social learning. Here, we explain how these remarkable birds can help us uncover the basic biological processes driving technological progress. Cumulative culture – the social transmission and accumulation of innovations across generations – has enabled humans to develop technologies of astonishing complexity (Boyd & Richerson 1996). Osiurak and Reynaud (O&R) present a timely re-evaluation of the potential cognitive capacities enabling this process, shifting the focus from social-learning to technical-reasoning skills. We enjoyed O&R’s fresh perspective, but were surprised that they did not examine more carefully their starting assumption that only humans possess cumulative technological culture. Two non-human species have been suggested to refine their foraging tools in a cumulative manner – one of our closest relatives, the chimpanzee, and a tropical corvid, the New Caledonian crow (Dean et al. 2014).
    [Show full text]
  • Potency and Process: a Naturalistic Defense of Mental Causation
    University of Nevada, Reno Potency and Process: A Naturalistic Defense of Mental Causation A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Philosophy By Devin J. Bray Dr. Thomas Nickles/Thesis Advisor May, 2016 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by DEVIN JAMES BRAY Entitled Potency and Process: A Naturalistic Defense of Mental Causation be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Thomas Nickles, Ph.D., Advisor Christopher Williams, Ph.D., Committee Member Michael Webster, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2016 i Abstract It has been argued extensively in contemporary philosophy of mind and neuroscience that physicalism precludes the possibility of robust mental causation. “Exclusion arguments” of the sort offered by Jaegwon Kim present the physicalist with an apparent dilemma: either all putatively “mental” causation reduces to mere “bottom-up” causation, or else it is epiphenomenal. However, the purportedly “scientific” premises that bolster these arguments can be argued are metaphysically overladen, smuggling in assumptions about the fundamental nature of matter that are not warranted by our best current data. By examining the evidence against such assumptions and the feasibility of alternative metaphysical frameworks, serious doubt can be cast on the validity of Exclusion arguments. Accepting the plausibility of causal entanglements leading from
    [Show full text]
  • The Nebulous Issue of Coincidences
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/76252/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Johansen, Mark K. and Osman, Magda 2015. Coincidences: a fundamental consequence of rational cognition. New Ideas in Psychology 39 , pp. 34-44. 10.1016/j.newideapsych.2015.07.001 file Publishers page: http://dx.doi.org/10.1016/j.newideapsych.2015.07.0... <http://dx.doi.org/10.1016/j.newideapsych.2015.07.001> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. Coincidences and Rational Cognition 2 Coincidences: A Fundamental Consequence of Rational Cognition* Accepted postprint for New Ideas in Psychology Mark K. Johansena Magda Osmanb ** [email protected] *Authors Note. The author list is presented alphabetically. However, it should be noted that both Authors contributed equally to this article and so first authorship is joint. ** Corresponding author a. School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK b.
    [Show full text]
  • Cause and Intent: Social Reasoning in Causal Learning Noah D
    Cause and Intent: Social Reasoning in Causal Learning Noah D. Goodman, Chris L. Baker, Joshua B. Tenenbaum {ndg, clbaker, jbt}@mit.edu MIT, Dept. of Brain and Cognitive Sciences Abstract the structure of the world as background knowledge avail- able to all agents. We combine these modeling approaches by The acquisition of causal knowledge is a primary goal of child- hood; yet most of this knowledge is known already to adults. constructing a model of intuitive psychology in which beliefs We argue that causal learning which leverages social reason- about the causal structure of the world are represented and ing is a rapid and important route to knowledge. We present used for action selection, and showing how such an intuitive a computational model integrating knowledge about causality with knowledge about intentional agency, but using a domain- theory of causal-agency can explain the source of interven- general mechanism for reasoning. Inference in this model pre- tions and speed causal learning. dicts qualitatively different learning than an equivalent model We test this model experimentally by studying adult intu- based on causality alone or a hybrid causal-encoding model. We test these predictions experimentally with adult partici- itions in a set of scenarios that provide both social and causal pants, and discuss the relation of these results to the devel- information. These scenarios are chosen to distinguish be- opmental phenomenon of over-imitation. tween the combined social-causal model and two alternatives: Keywords: Causal learning, social cognition, Bayesian mod- a similar causal-only model, and a hybrid gated-inference eling, imitation. model.
    [Show full text]
  • Do New Caledonian Crows Solve Physical Problems Through Causal Reasoning? A
    Proc. R. Soc. B (2009) 276, 247–254 doi:10.1098/rspb.2008.1107 Published online 16 September 2008 Do New Caledonian crows solve physical problems through causal reasoning? A. H. Taylor*, G. R. Hunt, F. S. Medina and R. D. Gray* Department of Psychology, University of Auckland, Private Bag 92019, Auckland, New Zealand The extent to which animals other than humans can reason about physical problems is contentious. The benchmark test for this ability has been the trap-tube task. We presented New Caledonian crows with a series of two-trap versions of this problem. Three out of six crows solved the initial trap-tube. These crows continued to avoid the trap when the arbitrary features that had previously been associated with successful performances were removed. However, they did not avoid the trap when a hole and a functional trap were in the tube. In contrast to a recent primate study, the three crows then solved a causally equivalent but visually distinct problem—the trap-table task. The performance of the three crows across the four transfers made explanations based on chance, associative learning, visual and tactile generalization, and previous dispositions unlikely. Our findings suggest that New Caledonian crows can solve complex physical problems by reasoning both causally and analogically about causal relations. Causal and analogical reasoning may form the basis of the New Caledonian crow’s exceptional tool skills. Keywords: New Caledonian crows; causal reasoning; analogical reasoning; trap tube; trap table 1. INTRODUCTION that non-human animals use sophisticated cognition when The eighteenth century philosopher David Hume solving complex physical problems has led to suggestions (1711–1776) famously used the example of one billiard that causal reasoning in humans is fundamentally different ball rolling into another to illustrate his argument that (Penn & Povinelli 2007; Penn et al.
    [Show full text]
  • Causal Reasoning in Economics a Selective Exploration of Semantic, Epistemic and Dynamical Aspects
    Causal Reasoning in Economics A Selective Exploration of Semantic, Epistemic and Dynamical Aspects Causaal redeneren in de economische wetenschap Een selectieve studie naar semantische, epistemische en dynamische aspecten Thesis to obtain the degree of Doctor from the Erasmus University Rotterdam by command of the rector magnificus Prof.dr. H.G. Schmidt and in accordance with the decision of the Doctorate Board The public defence shall be held on Thursday the 13th of December 2012 at 15.30 hours by François Simon Claveau born in Dolbeau, Canada Doctoral Committee Promotors: Prof.dr. J.J. Vromen Prof.dr. K.D. Hoover Other members: Prof.dr. H.C.M. de Swart Prof.dr. J. de Koning Prof.dr. J. Williamson Copromotor: Dr. J. Reiss Contents List of Figures . iv List of Tables . v Acknowledgments . vii Introduction 1 I Semantics 19 1 Semantic Analysis of Causal Generalizations in Policy- Oriented Social Sciences 21 1.1 Introduction . 21 1.2 On the meaning of causal generalizations: a referentialist approach . 24 1.2.1 The meaning of the causal relata . 27 1.2.2 The relevant units . 30 1.2.3 Which causal relation? . 31 1.2.4 Truth-conditions of the generalizations . 41 1.3 A challenge for the referentialist procedure . 42 1.4 On the meaning of causal generalizations: an inferentialist approach . 46 1.4.1 Elements of an inferentialist semantics . 48 1.4.2 OECD Jobs Study: An inferentialist analysis . 50 1.4.3 Discussion . 60 1.5 Conclusion . 63 II Epistemology 65 Preliminaries 67 ii Causal Reasoning in Economics 2 Evidential Variety as a Source of Credibility for Causal Inference 73 2.1 Introduction .
    [Show full text]
  • Great Apes`Causal Cognition in the Physical Domain
    Humboldt-Universität zu Berlin Dissertation Great Apes’ Causal Cognition in the Physical Domain Zur Erlangung des akademischen Grades Doctor rerum naturalium Mathematisch-Naturwissenschaftliche Fakultät II Daniel Hanus Dekan: Prof. Dr. Peter Frensch Gutachter: 1. Prof. Dr. Elke van der Meer, Humboldt-Universität, Berlin 2. Prof. Dr. Michael Tomasello, Max Planck Institut für evolutionäre Anthropologie, Leipzig 3. Dr. Josep Call, Max Planck Institut für evolutionäre Anthropologie, Leipzig eingereicht: 04. August 2009 Datum der Promotion: 03. Dezember 2009 1 Table of content Zusammenfassung .................................................................................................................... 4 Summary ................................................................................................................................... 5 Acknowledgements ................................................................................................................... 6 List of original publications ..................................................................................................... 7 GENERAL INTRODUCTION ............................................................................................... 8 Prologue ................................................................................................................................. 8 General approach .................................................................................................................... 9 Causal cognition in children ................................................................................................
    [Show full text]