Integrated World Modeling Theory (IWMT) Expanded: Implications for Theories of Consciousness and Artificial Intelligence Adam Safron* 1,2,3 1 Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA 2 Kinsey Institute, Indiana University, Bloomington, IN 47405, USA 3 Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA *
[email protected] Abstract Integrated World Modeling Theory (IWMT) is a synthetic theory of consciousness that uses the Free Energy Principle and Active Inference (FEP-AI) framework to combine insights from Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). Here, I first review philosophical principles and neural systems contributing to IWMT’s integrative perspective. I then go on to describe predictive processing models of brains and their connections to machine learning architectures, with particular emphasis on autoencoders (perceptual and active inference), turbo- codes (establishment of shared latent spaces for multi-modal integration and inferential synergy), and graph neural networks (spatial and somatic modeling and control). Particular emphasis is placed on the hippocampal/entorhinal system, which may provide a source of high-level reasoning via predictive contrasting and generalized navigation, so affording multiple kinds of conscious access. Future directions for IIT and GNWT are considered by exploring ways in which modules and workspaces may be evaluated as both complexes of integrated information and arenas for iterated Bayesian model selection. Based on these considerations, I suggest novel ways in which integrated information might be estimated using concepts from probabilistic graphical models, flow networks, and game theory. Mechanistic and computational principles are also considered with respect to the ongoing debate between IIT and GNWT regarding the physical substrates of different kinds of conscious and unconscious phenomena.