Mictyris Longicarpus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Who Are the Important Predators of Sea Turtle Nests at Wreck Rock Beach?
Who are the important predators of sea turtle nests at Wreck Rock beach? Juan Lei and David T. Booth School of Biological Sciences, The University of Queensland, Brisbane, St. Lucia, Australia ABSTRACT Excessive sea turtle nest predation is a problem for conservation management of sea turtle populations. This study assessed predation on nests of the endangered loggerhead sea turtle (Caretta caretta) at Wreck Rock beach adjacent to Deepwater National Park in Southeast Queensland, Australia after a control program for feral foxes was instigated. The presence of predators on the nesting dune was evaluated by tracking plots (2 × 1 m) every 100 m along the dune front. There were 21 (2014–2015) and 41 (2015–2016) plots established along the dune, and these were monitored for predator tracks daily over three consecutive months in both nesting seasons. Predator activities at nests were also recorded by the presence of tracks on top of nests until hatchlings emerged. In addition, camera traps were set to record the predator activity around selected nests. The tracks of the fox (Vulpes vulpes) and goanna (Varanus spp) were found on tracking plots. Tracking plots, nest tracks and camera traps indicated goanna abundance varied strongly between years. Goannas were widely distributed along the beach and had a Passive Activity Index (PAI) (0.31 in 2014–2015 and 0.16 in 2015–2016) approximately seven times higher than that of foxes (PAI 0.04 in 2014–2015 and 0.02 in 2015–2016). Five hundred and twenty goanna nest visitation events were recorded by tracks but no fox tracks were found at turtle nests. -
17 the Crabs Belonging to the Grapsoidea Include a Lot Of
17 SUPERFAMILY GRAPSOIDEA The crabs belonging to the Grapsoidea include a lot of ubiquitous species collected in the mangrove and/or along the coastline. As a result, most of the species listed here under the ‘Coastal Rock-rubble’ biotope of table 2b could be reasonably listed also with marine species. This is particularly true for the Grapsidae: Grapsus, Pachygrapsus, Pseudograpsus, and Thalassograpsus. FAMILY GECARCINIDAE Cardisoma carnifex (Herbst, 1796). Figure 12. – Cardisoma carnifex - Guinot, 1967: 289 (Checklist of WIO species, with mention of Grande Comore and Mayotte). - Bouchard, 2009: 6, 8, Mayotte, Malamani mangrove, 16 April 2008, St. 1, 12°55.337 S, 44°09.263 E, upper mangrove in shaded area, burrow, about 1.5 m depth, 1 male 61×74 mm (MNHN B32409). - KUW fieldwork November 2009, St. 6, Petite Terre, Badamiers spillway, upper littoral, 1 female 53×64 mm (MNHN B32410), 1 male 65×75.5 mm (MNHN B32411); St. 29, Ngouja hotel, Mboianatsa beach, in situ photographs only. Distribution. – Widespread in the IWP. Red Sea, Somalia, Kenya, Tanzania, Mozambique, South Africa, Europa, Madagascar, Comoros, Seychelles, Réunion, Mauritius, India, Taiwan, Japan, Australia, New Caledonia, Fiji, Wallis & Futuna, French Polynesia. Comment. – Gecarcinid land crabs are of large size and eaten in some places (West Indies, Wallis & Futuna, and French Polynesia). In Mayotte, however, they are not much prized for food and are not eaten. Figure 12. Cardisoma carnifex. Mayotte, KUW 2009 fieldwork: A) aspect of station 29, upper littoral Ngouja hotel, Mboianatsa beach; B) same, detail of a crab at the entrance of its burrow; C) St. 6, 1 female 53×64 mm (MNHN B32410); D) probably the same specimen, in situ at St. -
Burrow Architectural Types of the Atlantic Ghost Crab, Ocypode Quadrata (Fabricius
bioRxiv preprint doi: https://doi.org/10.1101/006098; this version posted July 25, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Burrow architectural types of the Atlantic ghost crab, Ocypode quadrata (Fabricius, 2 1787) (Brachyura: Ocypodidae), in Brazil 3 4 WILLIAN T. A. F. SILVA1,2, TEREZA C. S. CALADO1 5 6 1Integrated Laboratories of Marine and Natural Sciences (LabMar), Federal University of 7 Alagoas (UFAL), Avenida Aristeu de Andrade, 452, Farol, CEP 57051-090, Maceió, 8 Alagoas, Brazil. 9 2Current affiliation: Department of Evolutionary Biology (Ecology and Genetics), 10 Evolutionary Biology Center (EBC), Uppsala University, Uppsala, Sweden. 11 Corresponding author: WTAFS, [email protected] 12 13 Running title: Shapes of ghost crab burrows 14 15 Abstract: A broad range of aspects from paleontology to physiology of the ghost crabs 16 Ocypode quadrata have been studied worldwide. These crabs have been used as ecological 17 indicators of the levels of anthropogenic impacts on sandy beaches. Our aim is to report the 18 variety of burrow architecture types constructed by ghost crabs Ocypode quadrata on 19 beaches of Maceió, Brazil. We found 20 types of burrows that differ in shape (number of 20 axes, number of openings, orientation of blind end, number of branches). The slash-shaped 21 burrows (type C) were the most frequent shape, followed by types K (spiral) and E (Y- 22 shaped). -
(1 & 2): 101-119 on Decapoda Brachyura from The
/. Mar. biol. Ass. India, 1961, 3 (1 & 2): 101-119 ON DECAPODA BRACHYURA FROM THE ANDAMAN AND NICOBAR ISLANDS 1. FAMILIES PORTUNIDAE, OCYPODIDAE, GRAPSIDAE AND MICTYRIDAE.* By C. SANKARANKUTTY Central Marine Fisheries Research Institute INTRODUCTION THE present paper begins a series on the brachyuran fauna of the Andaman and Nicobar Islands, and describes 29 species and a variety collected during February to March 1960 from (1) Localities around Port Blair, viz. Bimbletan, South Point, Corbins Cove, Aberdeen Bay, Phoenix Bay, North Bay and Kalapahad ; (2) Neil! Island ; (3) Car Nicobar ; (4) Maya Bandar ; (5) Long Island ; and (6) Nan- cauri. Of these reported in this account, 8 species and 1 variety are recorded for the first time from this region. Heller (1868) recorded 27 species of crabs belonging to the three famiUes Por- tunidae, Ocypodidae, and Grapsidae. Alcock (1899 & 1900) in his ' Materials for a Carcinological Fauna of India' described 35 species of portunids, 13 species of ocypodids and 24 species of grapsoids from the Andaman and Nicobar Islands, apart from Mictyris longicarpus Latreille. Later de Man (1908-09) reported Sesarma thelxionae de Man ; Kemp (1919) Macrophthalmus pacificus Dana (=M. bicari- natus Heller) and Dotilla wichmanni de Man and Chopra (1931) Lissocarcinus ornatus Chopra from the same region. The collections were made mainly from the coral reefs and the intertidal region, vast areas of which get exposed during the ebb tide. A number of specimens were collected from the submerged reef with the help of a mask and snorkel. Portunids were mainly collected with a small dredge operated at 10 metres in the Aberdeen Bay, Port Blair. -
How Do Goannas Find Sea Turtle Nests?
1 How do goannas find sea turtle nests? 2 Juan Lei 1,* and David T. Booth1 3 1 School of Biological Science, The University of Queensland, Brisbane, St. Lucia, QLD 4072, 4 Australia 5 * Corresponding author. Email: [email protected] 6 Phone: 0411565518 7 Address: School of Biological Science, The University of Queensland, Brisbane, St. Lucia, 8 QLD 4072, Australia 9 10 Acknowledgements 11 This work was supported by a grant from the Nest to Oceans Turtle Protection Program, a 12 program jointly funded by the Australian and Queensland Governments and would not have 13 been possible without the help of Nev and Bev McLachlan’s Turtle Care Volunteers 14 organization, the Burnett Mary Regional Group and WWF Australia. All work was approved 15 by a University of Queensland Animal Ethics Committee (permit #SBS/352/EHP/URG) and 16 conducted under Queensland Government scientific permit # WITK15315614. Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/AEC.12568 This article is protected by copyright. All rights reserved 1 2 MR. JUAN LEI (Orcid ID : 0000-0002-4324-7500) 3 4 5 Article type : Original Article 6 7 8 How do goannas find sea turtle nests? 9 10 Abstract 11 Squamate reptiles rely heavily on visual and chemical cues to detect their prey, so we 12 expected yellow spotted goannas (Varanus panoptes) which are predators of sea turtle nests 13 on mainland beaches in northern Australia would use these cues to find sea turtle nests. -
Population Structure of the Grapsid Crab, Helice Tridens Latimera (PARISI) in the Taiho Mangrove, Okinawa, Japan
Bangladesh]. Fish. Res., 5(2), 2001: 201-204 Short Note Population structure of the grapsid crab, Helice tridens latimera (PARISI) in the Taiho mangrove, Okinawa, Japan M.Y. Mia*, S. Shokita and N. Shikatani Department of Chemistry, Biology and Marine Science, University of the Ryukyus, I Senbaru, Nishihara-cho, Okinawa 903-0129, Japan *Corresponding and present address: Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh Abstract Grapsid crab Helice tridens latimera inhabiting mangroves, seashores as well as muddy and rocky areas. Ovigerous females were observed from December to May. Juveniles appeared in July and from December to April. In the laboratory they reached 9.50 mm in carapace width 4 months after hatching. It is likely that spawning of this crab occurs throughout the year. Key words: Helice tridens latimera, Spawning, Juvenile Helice tridens latimera PARISI, 1918 has so far been found in eastern Asia along the coasts of Japan, Taiwan and China (Miyake 1983, Dai and Yang 1991). This crab is common and dominant in Okinawan mangals. So far, no study has been carried out on this crab's population structure and reproductive cycle, but information exists on its larval development (Mia and Shokita 1997). The present study is a part of experiment aimed to assess the population structure of H. t. latimera including its breeding season, natural growth rates, abundance, and functional role in the shallow water community of the estuary of the Taiho River on Okinawa Island. A population census of Helice tridens latimera was carried out monthly from May 1995 to April 1996 in the estuary of the Taiho River. -
Human Threats to Sandy Beaches – a Meta-Analysis of Ghost Crabs
Estuarine, Coastal and Shelf Science 169 (2016) 56e73 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts. * Thomas A. Schlacher a, , Serena Lucrezi b, Rod M. Connolly c, Charles H. Peterson d, Ben L. Gilby a, Brooke Maslo e, Andrew D. Olds a, Simon J. Walker a, Javier X. Leon a, Chantal M. Huijbers a, Michael A. Weston f, Alexander Turra g, Glenn A. Hyndes h, Rebecca A. Holt c, David S. Schoeman a a School of Science and Engineering, The University of the Sunshine Coast, Q-4558, Maroochydore, Australia b TREESdTourism Research in Economic Environs and Society, North-West University, Potchefstroom, South Africa c Australian Rivers Institute e Coast & Estuaries, and School of Environment, Gold Coast Campus, Griffith University, Queensland, 4222, Australia d Institute of Marine Sciences, University of North Carolina, Chapel Hill, Morehead City, NC, 28557, USA e Department of Ecology, Evolution and Natural Resources Rutgers, The State University of New Jersey, USA f Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia g Departamento de Oceanografia Biologica, Instituto Oceanografico, Universidade de Sao~ Paulo, Praça do Oceanografico, 191, CEP 05508-120, Sao~ Paulo, SP, Brazil h Centre for Marine Ecosystems Research, Edith Cowan University, WA, Australia article info abstract Article history: Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures Received 23 October 2015 that on many shorelines require significant conservation and mitigation interventions. -
Coastal Crabs from Devbagh, Karwar
Karthikeyan S. COASTAL CRABS FROM DEVBAGH, KARWAR blog : www.wildwanderer.com email : [email protected] COASTAL CRABS A walk along the beach is something most people would enjoy. When we see crabs trying to run away from our path, often the child in us comes to the fore and we run about chasing them! It was during my first visit to Devbagh, Karwar that I was taken by surprise by the beauty of the few crabs that I saw. Even as I arrived at the jetty, I saw a large crab moving about on the rocks. It had stunning red legs. As I approached it, it disappeared under the rocks. On the same trip I also chanced upon my first fiddler crabs. Thus began my tryst with crabs. Over the years, during the many visits to Devbagh, I have spent considerable amount of time looking for crabs both on the shore and also in the mangroves around Devbagh. I have thoroughly enjoyed waiting for them to come out of their burrows, watching them at work, and in the process I have also managed to photograph a good number of them. Crabs are a very important and easily noticeable component of the coastal and mangrove ecosystems. They have adapted to the tidal actions and also the varying salinity that is so typical of delta areas. They are considered to be the most predominant species particularly in the mangrove forests. This also could be because many crabs use the mangroves for their very survival. They feed on the leaf litter and other organic matter. -
Nonbreeding Eastern Curlews Numenius Madagascariensis Do
Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology Nonbreeding Eastern Curlews Numenius madagascariensis Do Not Increase the Rate of Intake or Digestive Efficiency before Long‐Distance Migration because of an Apparent Digestive Constraint Author(s): Yuri Zharikov and Gregory A. Skilleter Source: Physiological and Biochemical Zoology, Vol. 76, No. 5 (September/October 2003), pp. 704-715 Published by: The University of Chicago Press. Sponsored by the Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology Stable URL: http://www.jstor.org/stable/10.1086/376427 . Accessed: 04/11/2015 23:25 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology are collaborating with JSTOR to digitize, preserve and extend access to Physiological and Biochemical Zoology. http://www.jstor.org This content downloaded from 23.235.32.0 on Wed, 4 Nov 2015 23:25:52 PM All use subject to JSTOR Terms and Conditions 704 Nonbreeding Eastern Curlews Numenius madagascariensis Do Not Increase the Rate of Intake or Digestive Efficiency before Long- Distance Migration because of an Apparent Digestive Constraint Yuri Zharikov1,* Introduction Gregory A. -
Marine Biological Resources Within the Guam Seashore Study Area .,., and the ;:.. ' War in the Pacific National Historical Park
MARINE BIOLOGICAL RESOURCES WITHIN THE GUAM SEASHORE STUDY AREA ., ., AND THE ;:.. ' WAR IN THE PACIFIC NATIONAL HISTORICAL PARK L. G . Eldredge I UNIVERSITY OF GUAM MARINE LABORATORY Technical Report No. 57 November 1979 • Cover PhotogTaph--Ma~aon Channel along Me~i~o . hor ~ 11ne .. MARINE BIOLOGICAL RESOURCES WITHIN THE GUAM SEASHORE STUDY AREA AND THE WAR IN THE PACIFIC NATIONAL HISTORICAL PARK by L. G. ELDREDGE Submitted to National Park Service U. S. Department of Interior University of Guam The Marine Laboratory Technical Report No. 57 November 1979 • TABLE OF CONTENTS INTRODUCTION 1 ASAN UNIT 2 Physiography 2 Biotic Communities 2 Resources and Recreation 3 AGAT UNIT 4 Physiography 4 Biotic Communities 4 Resources and Recreation 5 SEASHORE STUDY AREA 6 Physiography 6 Biotic Communities 8 Resources and Recreation 9 Significance 13 LITERATURE CITED 14 FIGURES 17 APPENDIX Table 1 Marine Plants 22 Table 2 Corals 25 Table 3 Gastropods 30 Table 4 Bivalves 34 Table 5 Crustaceans 35 Table 6 Echinoderms 37 Table 7 Fishes 39 MAPS 48 =--- ----=- INTRODUCTION ~ The marine areas of the Guam Seashore Study Area encompass a major l portion of the reef flats of the island from the Nimitz Beach and Taleyfac Bay area southward, including Cocos Lagoon and Cocos Island; 2 and eastward to Ajayan Bay. Of the two discontiguous shorelines of the War in the Pacific National Historical Park, the Asan Unit includes the 2 shore from Adelup Point westward, including Asan Bay and Asan Point, as 2 well as Gapan Islet (Camel Rock). The Agat Unit encompasses the reef 3 flat at Rizal Beach southward to Bangi Point and includes Bangi and Alutom Islands. -
University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA St
INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along witn adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
Microhabitat Use by the Soldier Crab
MICROHABITAT USE BY THE SOLDIER CRAB MICTYRIS BREVIDACTYLUS (BRACHYURA: MICTYRIDAE): INTERCHANGEABILITY OF SURFACE AND SUBSURFACE FEEDING THROUGH BURROW STRUCTURE ALTERATION Author(s): Satoshi Takeda and Minoru Murai Source: Journal of Crustacean Biology, 24(2):327-339. 2004. Published By: The Crustacean Society DOI: http://dx.doi.org/10.1651/C-2436 URL: http://www.bioone.org/doi/full/10.1651/C-2436 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. JOURNAL OF CRUSTACEAN BIOLOGY, 24(2): 327–339, 2004 MICROHABITAT USE BY THE SOLDIER CRAB MICTYRIS BREVIDACTYLUS (BRACHYURA: MICTYRIDAE): INTERCHANGEABILITY OF SURFACE AND SUBSURFACE FEEDING THROUGH BURROW STRUCTURE ALTERATION Satoshi Takeda and Minoru Murai (ST, correspondence) Marine Biological Station, Tohoku University, Asamushi, Aomori 039-3501, Japan ([email protected]); (MM) Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan ABSTRACT The soldier crab Mictyris brevidactylus Stimpson inhabits sandy flats of Southeast Asia.