Approximation of Conformal Mappings by Circle Patterns and Discrete Minimal Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Approximation of Conformal Mappings by Circle Patterns and Discrete Minimal Surfaces Approximation of conformal mappings by circle patterns and discrete minimal surfaces vorgelegt von Dipl.-Math. Ulrike Bucking¨ Von der Fakult¨at II – Mathematik und Naturwissenschaften der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss Vorsitzender: Prof. Dr. Volker Mehrmann, Technische Universit¨at Berlin Berichter: Prof. Dr. Alexander I. Bobenko, Technische Universit¨at Berlin Prof. Dr. Yuri B. Suris, Technische Universit¨at Munchen¨ zus¨atzlicher Gutachter: Prof. Kenneth Stephenson, University of Tennessee (USA) Tag der wissenschaftlichen Aussprache: 14. Dezember 2007 Berlin 2007 D 83 i Summary To a rhombic embedding of a planar graph with quadrilateral faces and vertices colored black and white there is an associated isoradial circle pattern C1 with centers of circles at white vertices and radii equal to the edge length. Let C2 be another circle pattern such that the rhombi correspond to kites of intersecting circles with the same intersection angles. We consider the mapping gC which maps the centers of circles and the intersection points to the corresponding points and which is an affine map on the rhombi. Let g be a locally injective holomorphic function. We specify the circle pattern C2 by prescribing the radii or the angles on the boundary corresponding to values of log g0. We show that gC approximates g and its first derivative uniformly on compact subsets and that a suitably normalized sequence converges to g if the radii of C1 converge to 0. In particular, we study the case that C1 is a quasicrystallic circle pattern, that is the number of different edge directions of the rhombic embedding is bounded by a fixed constant (for the whole sequence). For a class of such circle patterns we prove the convergence of discrete partial derivatives of arbitrary order to the corresponding continuous derivatives of g. For this purpose we use a discrete version of H¨older’s inequality and a discrete regularity lemma for solutions of elliptic differential equations. Furthermore, we consider the special case of regular circle patterns with the combina- torics of the square grid and two (different) intersection angles, which correspond to the two different edge directions. We show the uniqueness of the embedded infinite circle pattern (up to similarities) and prove an estimation for the quotients of radii of neighboring circles of such an (finite) circle pattern with error of order 1/combinatorial distance of the circle to the boundary. We also carry this result over to certain classes of quasicrystallic circle patterns. In addition, we study the Zγ -circle patterns with the combinatorics of the square grid and regular intersection angles for γ ∈ (0, 2). We prove the uniqueness (up to scaling) of such embedded circle patterns which cover a corresponding sector of the plane, subject to some conditions on the intersection angles and γ. Similar results are also shown for some classes of quasicrystallic Zγ -circle patterns. For the case of orthogonal circle patterns with the combinatorics of the square grid we consider the problem to approximate an homeomorphism of a square onto a kite which is conformal in the interior and maps the corner points of the square to the corner points of the kite. We prove uniform convergence on the square and convergence of all discrete derivatives on compact sets which do not contain any of the corner points. This result is generalized for other polygonal domains and stereographic projections of spherical polygonal domains which are bounded by arcs of great circles and contained in an open half-sphere of the unit sphere. As a consequence, we prove the convergence of S-isothermic discrete minimal surfaces to the corresponding smooth minimal surfaces away from nodal points. Furthermore, we construct examples of S-isothermic discrete minimal surfaces. ii Zusammenfassung Zu einer rhombischen Einbettung eines planaren Graphen mit viereckigen Fl¨achen und schwarz-weiß gef¨arbten Knoten geh¨ort ein isoradiales Kreismuster C1 mit Mittelpunkten in den weißen Knoten und Radien gleich der Kantenl¨ange. Fur¨ ein weiteres Kreismuster C2, bei dem den Rhomben Drachen von sich schneidenden Kreisen mit denselben Schnittwin- keln entsprechen, betrachten wir die Abbildung gC , die entsprechende Mittelpunkte und Schnittpunkte der Kreismuster aufeinander abbildet und affin auf den Rhomben ist. Fur¨ eine lokal injektive holomorphe Funktion g bestimmen wir das Kreismuster C2 durch die Vorgabe von Radien oder Winkeln am Rand mit Hilfe von log g0. Wir zeigen, dass gC die Abbildung g und ihre Ableitung gleichm¨aßig auf kompakten Teilmengen appro- ximiert und eine geeignet normierte Folge solcher Abbildungen gegen g konvergiert, falls die Radien von C1 gegen 0 konvergieren. Insbesondere untersuchen wir den Fall, dass C1 ein quasikristallisches Kreismuster ist, d.h. die Anzahl der verschiedenen Kantenrichtungen der rhombischen Einbettung ist durch eine feste Konstante beschr¨ankt (fur¨ die gesamte Folge). Fur¨ eine Klasse solcher Kreismuster beweisen wir die Konvergenz diskreter partieller Ablei- tungen beliebiger Ordnung gegen die entsprechenden kontinuierlichen Ableitungen von g. Dafur¨ verwenden wir eine diskrete H¨olderungleichung und ein diskretes Regularit¨atslemma fur¨ L¨osungen elliptischer Differentialgleichungen. Außerdem betrachten wir den Spezialfall regelm¨aßiger Kreismuster mit Quadratgit- terkombinatorik und zwei (verschiedenen) Schnittwinkeln, die den zwei Kantenrichtungen entprechen. Wir zeigen die Eindeutigkeit des eingebetteten unendlichen Kreismusters (bis auf Ahnlichkeitstransformationen)¨ und beweisen eine Absch¨atzung fur¨ die Radienquotien- ten fur¨ benachbarte Kreise eines solchen (endlichen) Kreismuster mit Fehler der Ordnung 1/kombinatorischen Abstand der Kreise zum Rand. Dieses Ergebnis ubertragen¨ wir auch auf gewisse Klassen quasikristallischer Kreismuster. Ferner untersuchen wir die Zγ -Kreismuster mit Quadratgitterkombinatorik und regelm¨aßigen Schnittwinkeln fur¨ γ ∈ (0, 2). Wir be- weisen die Eindeutigkeit (bis auf Skalierung) solcher eingebetteter Kreismuster, die einen entsprechenenden Sektor der Ebene uberdecken,¨ unter bestimmten Bedingungen an die Schnittwinkel und γ. Ahnliche¨ Aussagen zeigen wir auch fur¨ einige Klassen quasikristalli- scher Zγ -Kreismuster. Fur¨ den Fall orthogonaler Kreismuster mit Quadratgitterkombinatorik betrachten wir das Problem, den im Inneren konformen Homeomorphismus eines Quadrates auf einen Dra- chen zu approximieren, der die Eckpunkte aufeinander abbildet. Wir beweisen gleichm¨aßige Konvergenz auf dem Quadrat und Konvergenz aller diskreter Ableitungen auf kompakten Mengen, die keinen der Eckpunkte enthalten. Dieses Ergebnis verallgemeinern wir fur¨ ande- re polygonale Gebiete und stereographische Projektionen sph¨arischer polygonaler Gebiete, die von Großkreisb¨ogen begrenzt werden und in einer offenen Halbsph¨are der Einheitss- ph¨are liegen. Als Folgerung beweisen wir die Konvergenz von S-isothermen diskreten Mi- nimalfl¨achen außerhalb von Nabelpunkten gegen entsprechende glatte Minimalfl¨achen. Des Weiteren konstruieren wir Beispiele von S-isothermen diskreten Minimalfl¨achen. Contents 1 Introduction 1 2 Circle patterns 11 2.1 Definitions and existence ............................. 11 2.2 The radius function ............................... 14 2.3 Estimations on the radius function ....................... 17 2.4 Relations between radius and angle function .................. 20 2.5 The angle function ................................ 23 3 Quasicrystallic circle patterns 27 3.1 Quasicrystallic rhombic embeddings and Zd .................. 27 3.2 Examples of quasicrystallic rhombic embeddings ............... 28 3.3 Properties of discrete Green’s function and some consequences ....... 31 3.3.1 Asymptotic development for discrete Green’s function ........ 33 3.3.2 Regularity of discrete solutions of elliptic equations .......... 36 3.4 Quasicrystallic circle patterns and integrability ................ 40 3.5 Local changes of rhombic embeddings ..................... 41 3.6 Regular circle patterns with square grid combinatorics ............ 45 3.6.1 Uniqueness of regular circle patterns with square grid combinatorics 45 3.6.2 An analog of the Rodin-Sullivan Conjecture .............. 52 3.7 Uniqueness of embedded quasicrystallic circle patterns ............ 59 4 Some properties of the Zγ -circle patterns 61 4.1 Brief review of orthogonal Zγ -circle patterns ................. 61 4.2 Geometric properties of the Zγ -circle patterns and consequences ...... 63 4.3 Uniqueness of the Zγ -circle patterns ...................... 66 4.4 Brief review on Zγ -circle patterns corresponding to regular SG-circle patterns 69 4.5 Uniqueness of quasicrystallic Zγ -circle patterns ................ 70 5 Convergence for isoradial circle patterns 77 5.1 C1-convergence for Dirichlet boundary conditions ............... 77 5.2 C1-Convergence for Neumann boundary conditions .............. 85 5.3 C∞-convergence of quasicrystallic circle patterns ............... 90 0 5.3.1 Estimations on the partial derivatives of log(rn/εn) − log |g | .... 93 5.3.2 Proof of C∞-convergence ........................ 96 5.4 Connections to the linear theory of discrete holomorphic functions ..... 97 5.4.1 Connections of discrete holomorphic functions and isoradial circle patterns .................................. 98 5.4.2 Convergence results ........................... 98 6 Convergence for isoradial circle packings
Recommended publications
  • Computer Experiments for Circle Packings on Surfaces
    Interdisciplinary Information Sciences, Vol. 9, No. 1, pp. 175–182 (2003) Computer Experiments for Circle Packings on Surfaces Shigeru MIZUSHIMA Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8552, Japan Received July 1, 2002; final version accepted January 31, 2003 Circle packings on surfaces with complex projective structures were investigated in the previous paper ‘‘Circle packings on surfaces with projective structures’’. This paper describes computer experiments performed in the process. KEYWORDS: circle packings, complex projective structures, computer experiments, visualization 1. Introduction An orientable closed surface Æg of genus g admits a spherical metric (g ¼ 0), a Euclidean metric (g ¼ 1)ora hyperbolic metric (g 2) according to its genus. Though the sphere admits the unique metric essentially, the space of Euclidean metrics on the torus and the space of hyperbolic metrics on a surface with genus higher than one are topologically cells of dimension 2 and 6g À 6 respectively. In spite of these plentifulness of metrics for g 1,the Andreev–Thurston theorem [1, 4] shows the uniqueness of the metric which admits a circle packing for each combinatorial type of a circle packing. In the previous paper [2], we started from the Andreev–Thurston theorem, let the metric structures relax into complex projective structures, and then deformed the structure admitting packing. The main result of the paper states that the space of deformations for packings with one circle is a cell of dimension 2 for g ¼ 1 and 6g À 6 for g 2. (Note that the dimension of the space of complex projective structures on a surface is 4 for g ¼ 1 and 12g À 12 for g 2.) In the process of the study, computer experiments were performed with some programs.
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 978-0-521-82356-2 - Introduction to Circle Packing: The Theory of Discrete Analytic Functions Kenneth Stephenson Index More information Index algebraic curve, 287 brain flattening, 299, 301 parabolic, 52 algebraic number field, 287 branch point, 56, 142, 197, 344 spherical, 52 analytic function classical, 135, 311 universal covering, 122 classical, 133, 309 fractional, 208 composition, 173 discrete, 134, 139 multiplicity, 142 conductance, see random walk Andreev-Thurston Theorem, 332 order, 56, 141 cone angle, 275, 281, 304 angle sum, θR, 56 branch structure, 142 cone point, 275 boundary, 149, 161 infinite, 175 conformal, 137, 219, 281, 309 formulas, 57 polynomial, 197 automorphism, 42 angular derivative, 171 branch value, 142, 165 rectangle, 220, 315 angular resolution, 335 Brooks parameter, 328 ring domain, 315 Apollonian packing, 214 Brooks quadrilateral, 231, 327 torus, 120, 215 arclength element, ds, 41 Brooks spiral, 324, 330 conformal mapping area element, ds2, 41 Brownian motion, 234, 264, 266 classical, 249, 309 argument principle, 68, 141, 310 discrete, 137, 217, 249 argument, arg (z), 40 C-bound, 185, 259, 317 conformal structure, 50, 51, 276 asymptotic value, 188, 191 cadre, 106, 113, 171 classical, 275 asymptotically parabolic, 152, 257, Caratheodory´ Kernel Theorem, 253, discrete, 137, 219, 283 262 270, 315 conformal tiling, 290 atlas, 36, 50, 276 carrier, 58, 251 conformally equivalent, 50, 310 augmented boundary, 104, 106 Cauchy-Riemann equations, 312, convergence augmented carrier, 104 340 combinatorial,
    [Show full text]
  • Author Index ______
    ______AUTHOR INDEX ______ a space; Homology group; Infinite­ Arellano, E. Ramirez de see: Ramirez de form in logarithms; Siegel theorem; dimensional space; Local decompo­ Arellano, E. Transcendental number sition; Metrizable space; Pontryagin __A __ Argand, J .R. see: Arithmetic; Complex Ball, R. see: Helical calculus duality; Projection spectrum; Suslin number; Imaginary number Balusabramanian, R. see: Waring prob­ theorem; Topological space; Width Aristotle see: Modal logic; Space-time lem Abel, N.H. see: Abel differential Alexander, J.W. see: Alexander dual­ Arkhangel'skil, A.V. see: Feathering Banach, S. see: Area; Banach indica­ equation; Abel-Goncharov prob­ ity; Alexander invariants; Duality; Arno I'd, V.I. see: Composite function; trix; Banach-Mazur functional; Ba­ lem; Abel problem; Abel theorem; Homology group; Jordan theorem; Quasi-periodic motion nach space; Banach-Steinhaus the­ Abel transformation; Abelian group; Knot theory; Manifold; Pontryagin Arsenin, V. Ya. see: Descriptive set the­ orem; Completely-continuous oper­ Abelian integral; Abelian variety; duality; Reaction-diffusion equation; ory ator; Contracting-mapping princi­ Algebra; Algebraic equation; Alge­ Topology of imbeddings Artin, E. see: Abstract algebraic ge­ ple; Franklin system; Hahn-Banach braic function; Algebraic geometry; Alexandrov, A.B. see: Boundary prop­ ometry; Algebra; Algebraic number theorem; Lacunary system; Linear Binomial series; Convergence, types erties of analytic functions theory; Alternative rings and alge­ operator; Luzin N -property; Non­ of; Elliptic function; Finite group; Alling, N.L. see: Surreal numbers bras; Commutative algebra; Con­ differentiable function; Nuclear op­ Galois theory; Group; Interpola­ Almgren, F.J. see: Plateau problem, gruence modulo a prime number; erator; Open-mapping theorem; Or­ tion; Inversion of an elliptic integral; multi-dimensional Divisorial ideal; Foundations of ge­ thogonal series; Tonelli plane vari­ Jacobi elliptic functions; Liouville­ Alvarez-Gaume, L.
    [Show full text]
  • Geometry Instructional Supports for the Model Curriculum
    OHIO’S MODEL CURRICULUM WITH INSTRUCTIONAL SUPPORTS | Mathematics | 2018 1 Ohio’s Model Curriculum Mathematics with Instructional Supports Geometry Course High School Geometry Course OHIO’S MODEL CURRICULUM WITH INSTRUCTIONAL SUPPORTS | Mathematics | 2018 2 Mathematics Model Curriculum with Instructional Supports Geometry Course TABLE OF CONTENTS INTRODUCTION 8 STANDARDS FOR MATHEMATICAL PRACTICE—GEOMETRY 10 MODELING (★) 11 GEOMETRY (G) 13 CONGRUENCE (G.CO) 13 EXPERIMENT WITH TRANSFORMATIONS IN THE PLANE. (G.CO.1-5) 13 EXPECTATIONS FOR LEARNING 13 CONTENT ELABORATIONS 14 INSTRUCTIONAL STRATEGIES 15 • Van Hiele Connection 15 • Defining Geometric Terms 16 • Transformations as Functions 19 • Definitions of Rigid Motions 20 • Transformations That Preserve Distance and Those That Do Not 24 • Representing and Drawing Transformations 25 • Symmetry 27 INSTRUCTIONAL TOOLS/RESOURCES 29 UNDERSTAND CONGRUENCE IN TERMS OF RIGID MOTIONS. (G.CO.6-8) 32 EXPECTATIONS FOR LEARNING 32 CONTENT ELABORATIONS 33 INSTRUCTIONAL STRATEGIES 34 • Van Hiele Connection 34 • Congruence and Rigid Motions 34 • Corresponding Parts of Congruent Figures are Congruent 36 INSTRUCTIONAL TOOLS/RESOURCES 39 High School Geometry Course OHIO’S MODEL CURRICULUM WITH INSTRUCTIONAL SUPPORTS | Mathematics | 2018 3 CONGRUENCE, CONTINUED (G.CO) 42 PROVE GEOMETRIC THEOREMS BOTH FORMALLY AND INFORMALLY USING A VARIETY OF METHODS. (G.CO.9-11) 42 EXPECTATIONS FOR LEARNING 42 CONTENT ELABORATIONS 43 INSTRUCTIONAL STRATEGIES 44 • Van Hiele Connection 46 • Proofs 46 INSTRUCTIONAL TOOLS/RESOURCES 54 MAKE GEOMETRIC CONSTRUCTIONS. (G.CO.12-13) 57 EXPECTATIONS FOR LEARNING 57 CONTENT ELABORATIONS 58 INSTRUCTIONAL STRATEGIES 59 • Van Hiele Connection 59 • Making Formal Constructions 59 CLASSIFY AND ANALYZE GEOMETRIC FIGURES. (G.CO.14) 69 EXPECTATIONS FOR LEARNING 69 CONTENT ELABORATIONS 70 INSTRUCTIONAL STRATEGIES 71 • Van Hiele Connection 71 • Hierarchies 72 INSTRUCTIONAL TOOLS/RESOURCES 74 SIMILARITY, RIGHT TRIANGLES, AND TRIGONOMETRY (G.SRT) 76 UNDERSTAND SIMILARITY IN TERMS OF SIMILARITY TRANSFORMATIONS.
    [Show full text]
  • Complementarity in the Structure and Dynamics of Protein-DNA Search and Recognition: a Multiscale Modeling Study
    Complementarity in the Structure and Dynamics of Protein-DNA Search and Recognition: A Multiscale Modeling Study A Dissertation Presented by Kevin Eduard Hauser to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry (Chemical Biology) Stony Brook University December 2016 Kevin Eduard Hauser 2016 Stony Brook University The Graduate School Kevin E. Hauser We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Carlos Simmerling – Dissertation Advisor Professor, Department of Chemistry Orlando Schärer – Chairperson of Defense Professor, Department of Chemistry Robert Rizzo – Committee Member Associate Professor, Department of Applied Mathematics & Statistics Miguel Garcia-Diaz – Dissertation Co-Advisor Associate Professor, Department of Pharmacological Sciences Evangelos Coutsias – External Member Professor, Department of Applied Mathematics & Statistics This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Dedication Page To Johnny, and any kid who had a bad gene. iii Frontispiece A human transcription factor partners its superhelical geometry with a distorted DNA helix. iv Table of Contents List of Figures ............................................................................................................................. vii List of Tables .............................................................................................................................
    [Show full text]
  • Arxiv:2106.12333V2 [Math.NT] 12 Jul 2021
    Packing theory derived from phyllotaxis and products of linear forms S. E. Graiff Zurita*1, B. Kane†2, and R. Oishi-Tomiyasu‡3 1Graduate School of Mathematics, Kyushu University 2Department of Mathematics, University of Hong Kong 3Institute of Mathematics for Industry (IMI), Kyushu University Abstract Parastichies are spiral patterns observed in plants and numerical patterns generated using golden angle method. We generalize this method for botan- ical pattern formation, by using Markoff theory and the theory of product of linear forms, to obtain a theory for (local) packing of any Riemannian mani- folds of general dimensions n with a locally diagonalizable metric, including the Euclidean spaces. Our method is based on the property of some special lattices that the density of the lattice packing maintains a large value for any scale transfor- mations in the directions of the standard Euclidean axes, and utilizes maps that fulfill a system of partial differential equations. Using this method, we prove that it is possible to generate almost uniformly distributed point sets on any real analytic Riemann surfaces. The packing density is bounded below by approximately 0.7. A packing with logarithmic-spirals and a 3D analogue of the Vogel spi- ral are obtained as a result. We also provide a method to construct (n + 1)- dimensional Riemannian manifolds with diagonal and constant-determinant metrics from n-dimensional manifolds with such a metric, which generally works for n = 1;2. The obtained manifolds have the self-similarity of bio- logical
    [Show full text]