Particle Orbits in General Relativity: from Planetary Solar System to Black Hole Environment Kirill Vankov
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
Uncommon Sense in Orbit Mechanics
AAS 93-290 Uncommon Sense in Orbit Mechanics by Chauncey Uphoff Consultant - Ball Space Systems Division Boulder, Colorado Abstract: This paper is a presentation of several interesting, and sometimes valuable non- sequiturs derived from many aspects of orbital dynamics. The unifying feature of these vignettes is that they all demonstrate phenomena that are the opposite of what our "common sense" tells us. Each phenomenon is related to some application or problem solution close to or directly within the author's experience. In some of these applications, the common part of our sense comes from the fact that we grew up on t h e surface of a planet, deep in its gravity well. In other examples, our mathematical intuition is wrong because our mathematical model is incomplete or because we are accustomed to certain kinds of solutions like the ones we were taught in school. The theme of the paper is that many apparently unsolvable problems might be resolved by the process of guessing the answer and trying to work backwards to the problem. The ability to guess the right answer in the first place is a part of modern magic. A new method of ballistic transfer from Earth to inner solar system targets is presented as an example of the combination of two concepts that seem to work in reverse. Introduction Perhaps the simplest example of uncommon sense in orbit mechanics is the increase of speed of a satellite as it "decays" under the influence of drag caused by collisions with the molecules of the upper atmosphere. In everyday life, when we slow something down, we expect it to slow down, not to speed up. -
Orbital Mechanics
Orbital Mechanics These notes provide an alternative and elegant derivation of Kepler's three laws for the motion of two bodies resulting from their gravitational force on each other. Orbit Equation and Kepler I Consider the equation of motion of one of the particles (say, the one with mass m) with respect to the other (with mass M), i.e. the relative motion of m with respect to M: r r = −µ ; (1) r3 with µ given by µ = G(M + m): (2) Let h be the specific angular momentum (i.e. the angular momentum per unit mass) of m, h = r × r:_ (3) The × sign indicates the cross product. Taking the derivative of h with respect to time, t, we can write d (r × r_) = r_ × r_ + r × ¨r dt = 0 + 0 = 0 (4) The first term of the right hand side is zero for obvious reasons; the second term is zero because of Eqn. 1: the vectors r and ¨r are antiparallel. We conclude that h is a constant vector, and its magnitude, h, is constant as well. The vector h is perpendicular to both r and the velocity r_, hence to the plane defined by these two vectors. This plane is the orbital plane. Let us now carry out the cross product of ¨r, given by Eqn. 1, and h, and make use of the vector algebra identity A × (B × C) = (A · C)B − (A · B)C (5) to write µ ¨r × h = − (r · r_)r − r2r_ : (6) r3 { 2 { The r · r_ in this equation can be replaced by rr_ since r · r = r2; and after taking the time derivative of both sides, d d (r · r) = (r2); dt dt 2r · r_ = 2rr;_ r · r_ = rr:_ (7) Substituting Eqn. -
Optimisation of Propellant Consumption for Power Limited Rockets
Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets. -
Spacecraft Trajectories in a Sun, Earth, and Moon Ephemeris Model
SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL A Project Presented to The Faculty of the Department of Aerospace Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Romalyn Mirador i ABSTRACT SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL by Romalyn Mirador This project details the process of building, testing, and comparing a tool to simulate spacecraft trajectories using an ephemeris N-Body model. Different trajectory models and methods of solving are reviewed. Using the Ephemeris positions of the Earth, Moon and Sun, a code for higher-fidelity numerical modeling is built and tested using MATLAB. Resulting trajectories are compared to NASA’s GMAT for accuracy. Results reveal that the N-Body model can be used to find complex trajectories but would need to include other perturbations like gravity harmonics to model more accurate trajectories. i ACKNOWLEDGEMENTS I would like to thank my family and friends for their continuous encouragement and support throughout all these years. A special thank you to my advisor, Dr. Capdevila, and my friend, Dhathri, for mentoring me as I work on this project. The knowledge and guidance from the both of you has helped me tremendously and I appreciate everything you both have done to help me get here. ii Table of Contents List of Symbols ............................................................................................................................... v 1.0 INTRODUCTION -
General Relativity Fall 2019 Lecture 20: Geodesics of Schwarzschild
General Relativity Fall 2019 Lecture 20: Geodesics of Schwarzschild Yacine Ali-Ha¨ımoud November 7, 2019 In this lecture we study geodesics in the vacuum Schwarzschild metric, at r > 2M. Last lecture we derived the following equations for timelike geodesics in the equatorial plane (θ = π=2): d' L 1 dr 2 M L2 ML2 = ; + Veff (r) = ;Veff (r) + ; (1) dτ r2 2 dτ E ≡ − r 2r2 − r3 where (E2 1)=2 can be interpreted as a kinetic + potential energy per unit mass. The radial equation can also be rewrittenE ≡ as− d2r M 3 h i = V 0 (r) = r~2 L~2r~ + 3L~2 ; r~ r=M; L~ = L=M: (2) dτ 2 − eff − r4 − ≡ CIRCULAR ORBITS AND THE ISCO We show the effective potential in Fig. 1. In contrast to the Newtonian effective potential for orbits around a central 2 2 2 3 2 mass (i.e. Veff M=r + L =2r , without the last term ML =r ), which always has a minimum at rNewt = L =M, ≡ − − the relativistic effective potential has both a maximum and a minimun for L > p12 M, an inflection point for L = p12 M, and is strictly monotonic for L < p12 M. 0 Circular orbits (with r = constant) are such that Veff (r) = 0. Solving this equation, one finds that such orbits exist only for L > p12 M. When this condition is satisfied, the radii of circular orbits are L2 p r± = 1 1 12M 2=L2 : (3) c 2M ± − The Newtonian limit is obtained for L M, in which case r+ L2=M. -
GRAVITATION UNIT H.W. ANS KEY Question 1
GRAVITATION UNIT H.W. ANS KEY Question 1. Question 2. Question 3. Question 4. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as shown in the diagram above. The stars themselves each have radius r. Question 55.. What is the force each star exerts on the other? Answer D—In Newton's law of gravitation, the distance used is the distance between the centers of the planets; here that distance is 2R. But the denominator is squared, so (2R)2 = 4R2 in the denominator here. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as shown in the diagram above. The stars themselves each have radius r. Question 65.. In terms of each star's tangential speed v, what is the centripetal acceleration of each star? Answer E—In the centripetal acceleration equation the distance used is the radius of the circular motion. Here, because the planets orbit around a point right in between them, this distance is simply R. Question 76.. A Space Shuttle orbits Earth 300 km above the surface. Why can't the Shuttle orbit 10 km above Earth? (A) The Space Shuttle cannot go fast enough to maintain such an orbit. (B) Kepler's Laws forbid an orbit so close to the surface of the Earth. (C) Because r appears in the denominator of Newton's law of gravitation, the force of gravity is much larger closer to the Earth; this force is too strong to allow such an orbit. -
Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes
universe Communication Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes Yu-Peng Zhang 1,2, Shao-Wen Wei 1,2 and Yu-Xiao Liu 1,2,3* 1 Joint Research Center for Physics, Lanzhou University and Qinghai Normal University, Lanzhou 730000 and Xining 810000, China; [email protected] (Y.-P.Z.); [email protected] (S.-W.W.) 2 Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China 3 Key Laboratory for Magnetism and Magnetic of the Ministry of Education, Lanzhou University, Lanzhou 730000, China * Correspondence: [email protected] Received: 27 June 2020; Accepted: 27 July 2020; Published: 28 July 2020 Abstract: In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of a spinning test particle in this background could have two minima when the Gauss–Bonnet coupling parameter a is nearly in a special range −8 < a/M2 < −2 (M is the mass of the black hole), which means a particle can be in two separate orbits with the same spin-angular momentum and orbital angular momentum, and the accretion disc could have discrete structures. We also investigate the innermost stable circular orbits of the spinning test particle and find that the corresponding radius could be smaller than the cases in general relativity. Keywords: Gauss–Bonnet; innermost stable circular orbits; spinning test particle 1. -
Satellite Splat II: an Inelastic Collision with a Surface-Launched Projectile and the Maximum Orbital Radius for Planetary Impact
European Journal of Physics Eur. J. Phys. 37 (2016) 045004 (10pp) doi:10.1088/0143-0807/37/4/045004 Satellite splat II: an inelastic collision with a surface-launched projectile and the maximum orbital radius for planetary impact Philip R Blanco1,2,4 and Carl E Mungan3 1 Department of Physics and Astronomy, Grossmont College, El Cajon, CA 92020- 1765, USA 2 Department of Astronomy, San Diego State University, San Diego, CA 92182- 1221, USA 3 Physics Department, US Naval Academy, Annapolis, MD 21402-1363, USA E-mail: [email protected] Received 26 January 2016, revised 3 April 2016 Accepted for publication 14 April 2016 Published 16 May 2016 Abstract Starting with conservation of energy and angular momentum, we derive a convenient method for determining the periapsis distance of an orbiting object, by expressing its velocity components in terms of the local circular speed. This relation is used to extend the results of our previous paper, examining the effects of an adhesive inelastic collision between a projectile launched from the surface of a planet (of radius R) and an equal-mass satellite in a circular orbit of radius rs. We show that there is a maximum orbital radius rs ≈ 18.9R beyond which such a collision cannot cause the satellite to impact the planet. The difficulty of bringing down a satellite in a high orbit with a surface- launched projectile provides a useful topic for a discussion of orbital angular momentum and energy. The material is suitable for an undergraduate inter- mediate mechanics course. Keywords: orbital motion, momentum conservation, energy conservation, angular momentum, ballistics (Some figures may appear in colour only in the online journal) 4 Author to whom any correspondence should be addressed. -
Orbital Mechanics Course Notes
Orbital Mechanics Course Notes David J. Westpfahl Professor of Astrophysics, New Mexico Institute of Mining and Technology March 31, 2011 2 These are notes for a course in orbital mechanics catalogued as Aerospace Engineering 313 at New Mexico Tech and Aerospace Engineering 362 at New Mexico State University. This course uses the text “Fundamentals of Astrodynamics” by R.R. Bate, D. D. Muller, and J. E. White, published by Dover Publications, New York, copyright 1971. The notes do not follow the book exclusively. Additional material is included when I believe that it is needed for clarity, understanding, historical perspective, or personal whim. We will cover the material recommended by the authors for a one-semester course: all of Chapter 1, sections 2.1 to 2.7 and 2.13 to 2.15 of Chapter 2, all of Chapter 3, sections 4.1 to 4.5 of Chapter 4, and as much of Chapters 6, 7, and 8 as time allows. Purpose The purpose of this course is to provide an introduction to orbital me- chanics. Students who complete the course successfully will be prepared to participate in basic space mission planning. By basic mission planning I mean the planning done with closed-form calculations and a calculator. Stu- dents will have to master additional material on numerical orbit calculation before they will be able to participate in detailed mission planning. There is a lot of unfamiliar material to be mastered in this course. This is one field of human endeavor where engineering meets astronomy and ce- lestial mechanics, two fields not usually included in an engineering curricu- lum. -
Effective Potential
Murrary-Clay Group Notes By: John McCann Effective Potential Consider a three-body system with m3 << m2 ≤ m1, from this point narratored with m1 as a star, m2 as a planet and m3 as a small satellite. We shall use a rotating non-inertial coordinate system, which rotates about the barycenter but with the origin centered on the planet. Oriented such that the barycenter falls along the x{axis, in the x > 0 half, and the axis of rotation is parallel to the z{axis. Rewrite, m1 ≡ M∗ as the mass of the star, and m2 ≡ MP as the mass of the planet. Define ~a as the vector from center of the planet to the center of the star, ~` as the vector from the center of the planet to the barycenter, and ~r? ≡ ~ρ, as projection of the vector from the center of the planet to a given point into the plane normal to the axis of rotation (such given point denoted as ~r). ^ To be succinct, ~r? = j~rj sin(θ) sin(θ)^r + cos(θ)θ = ρρ^, where the angle is the usual spherical coordinate definition and ρ is the standard cylindrical coordinate, as used by physicist. We chose to define this last vector, since it is the relevant distance for determining the centrifugal potential, along with ` and Ω. The effective potential per unit mass, u, for a tertiary object in a planet-star system is GM GM 1 u (~r) = − P − ∗ − Ω2j~r − ~`j2: (1) eff j~rj j~a − ~rj 2 ? Respectively the terms are Newton's gravitational potential from the planet (thus defining G as Newton's gravitational constant), the gravitational potential from the star and the centrifugal potential from an object moving about the barycenter with angular frequency Ω. -
A620 Dynamics 2017 L
Dynamics and how to use the orbits of stars to do interesting things ! chapter 3 of S+G- parts of Ch 11 of MWB (Mo, van den Bosch, White)! READ S&G Ch 3 sec 3.1, 3.2, 3 .4! we are skipping over epicycles ! 1! A Guide to the Next Few Lectures ! •The geometry of gravitational potentials : methods to derive gravitational ! potentials from mass distributions, and visa versa.! •Potentials define how stars move ! consider stellar orbit shapes, and divide them into orbit classes.! •The gravitational field and stellar motion are interconnected : ! the Virial Theorem relates the global potential energy and kinetic energy of !the system. ! ! • Collisions?! • The Distribution Function (DF) : ! the DF specifies how stars are distributed throughout the system and ! !with what velocities.! For collisionless systems, the DF is constrained by a continuity equation :! ! the Collisionless Boltzmann Equation ! •This can be recast in more observational terms as the Jeans Equation. ! The Jeans Theorem helps us choose DFs which are solutions to the continuity equations! 2! A Reminder of Newtonian Physics sec 3.1 in S&G! eq 3.1! φ (x) is the potential! eq 3.2! eq 3.3! Gauss's thm ∫ !φ •ds2=4πGM! the Integral of the normal component! over a closed surface =4πG x mass within eq 3.4! that surface! ρ(x) is the mass density3! distribution! Conservation of Energy and Angular Momentum ! Angular momentum L! 4! Some Basics - M. Whittle! • The gravitational potential energy is a scalar field ! • its gradient gives the net gravitational force (per unit mass) which is a vector field : see S&G pg 113 ! Poissons eq inside the mass distribution ! Outside the mass dist ! 5! Poisson's Eq+ Definition of Potential Energy (W) ! ρ(x) is the density dist! S+G pg 112-113! Potential energy W ! 6! Derivation of Poisson's Eq ! see S+G pg112 for detailed derivation or web page 'Poisson's equation' ! 7! More Newton-Spherical Systems Newtons 1st theorem: a body inside a spherical shell has no net gravitational force from that shell; e.g.