Molecular Geometry and Bonding Theories Quantum Numbers – N 1

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Geometry and Bonding Theories Quantum Numbers – N 1 Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady Molecular Geometry and Bonding Theories Quantum Numbers – n 1. The Principal quantum number has the symbol – n. n = 1, 2, 3, 4, ...... “shells” n = K, L, M, N, ...... The electron’s energy depends principally on n and tells the average relative distance of the electron from the nucleus. – As n increases for a given atom, so does the average distance of the electrons from the nucleus. – Electrons with higher values of n are easier to remove from an atom. 2. The azimuthal quantum number has the symbol . describes the shape of the region of space occupied by the electron When linked with n defines the energy of the electron, All wave functions that have the same value of both n and l form a subshell = 0, 1, 2, 3, 4, 5, .......(n-1) = s, p, d, f, g, h, .......(n-1) Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady Quantum Numbers – m 3. The symbol for the magnetic quantum number is m. m = - , (- + 1), (- +2), .....0, ......., ( -2), ( -1), • If = 0 (or an s orbital), then m = 0. – There is only 1 value of m. Thus there is one s orbital per n value. n 1 • If = 1 (or a p orbital), then m = -1,0,+1. – There are 3 values of m. Thus there are three p orbitals per n value. n 2 • If = 2 (or a d orbital), then m = -2,-1,0,+1,+2. – There are 5 values of m. Thus there are five d orbitals per n value. n 3 • If = 3 (or an f orbital), then m = -3,-2,-1,0,+1,+2, +3. – There are 7 values of m. Thus there are seven f orbitals per n value, n – Theoretically, this series continues on to g,h,i, etc. orbitals. • Practically speaking atoms that have been discovered or made up to this point in time only have electrons in s, p, d, or f orbitals in their ground state configurations. Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady • Each wave function with an allowed combination of n, l, and ml values describes an atomic orbital, a particular spatial distribution for an electron • For a given set of quantum numbers, each principal shell contains a fixed number of subshells, and each subshell contains a fixed number of orbitals Atomic Orbitals S orbital P Orbital Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady d Orbital f- Orbital Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady 4. Quantum Numbers – ms The last quantum number is the spin quantum number which has the symbol ms. The spin quantum number only has two possible values. ms = +1/2 or -1/2 Quantum Numbers Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady Building up the Periodic Table • The Nucleus: • The Aufbau Process – Used to construct the periodic table – First, Build by adding the required number of protons (the atomic number) and neutrons (the mass of the atom) – Second, Determine the number of electrons in the atoms then add electrons one at a time to the lowest-energy orbitals available without violating the Pauli principle Electrons: Hund’s Rule states that each orbital will be filled singly before pairing begins. The singly filled orbitals will have a parallel spin. – Each of the orbitals can hold two electrons, one with spin up , which is written first, and one with spin down – A filled orbital is indicated by , in which the electron spins are paired Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady – The electron configuration is written in an abbreviated form, in which the occupied orbitals are identified by their principal quantum n and their value of l (s, p, d, or f), with the number of electrons in the subshell indicated by a superscript Pauli’s Exclusion Principle states that paired electrons in an orbital will have opposite spins. Neon - 2p 2s 1s • Valence electrons – It is tedious to keep copying the configurations of the filled inner subshells – The notation can be simplified by using a bracketed noble gas symbol to represent the configuration of the noble gas from the preceding row – Electrons in filled inner orbitals are closer and are more tightly bound to the nucleus and are rarely involved in chemical reactions Now we can write a complete set of quantum numbers for all of the electrons in these three elements as examples. • Na • First for 11Na. – When completed there must be one set of 4 quantum numbers for each of the 11 electrons in Na (remember Ne has 10 electrons) 3s 3p Configuration 1 11Na Ne Ne 3s [Ne] = 1s22s22p6 Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady Electronic Configuration of the Elements Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady A large local charge separation usually results when a shared electron pair is donated unilaterally. The three Kekulé formulas shown here illustrate this condition. In the formula for ozone the central oxygen atom has three bonds and a full positive charge while the right hand oxygen has a single bond and is negatively charged. The overall charge of the ozone molecule is therefore zero. Similarly, nitromethane has a positive-charged nitrogen and a negative-charged oxygen, the total molecular charge again being zero. Finally, azide anion has two negative-charged nitrogens and one positive-charged nitrogen, the total charge being minus one. In general, for covalently bonded atoms having valence shell electron octets, if the number of covalent bonds to an atom is greater than its normal valence it will carry a positive charge. If the number of covalent bonds to an atom is less than its normal valence it will carry a negative charge. The formal charge on an atom may also be calculated by the following formula: Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady VSEPR Theory • Regions of high electron density around the central atom are arranged as far apart as possible to minimize repulsions. • There are five basic molecular shapes based on the number of regions of high electron density around the central atom. • Lone pairs of electrons (unshared pairs) require more volume than shared pairs. • Consequently, there is an ordering of repulsions of electrons around central atom. • Criteria for the ordering of the repulsions: 1 Lone pair to lone pair is the strongest repulsion. 1 Lone pair to bonding pair is intermediate repulsion. 1 Bonding pair to bonding pair is weakest repulsion. • Mnemonic for repulsion strengths lp/lp > lp/bp > bp/bp • Lone pair to lone pair repulsion is why bond angles in water are less than 109.5o. Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady Valence-shell electron-pair repulsion (VSEPR) model predicts the shapes of many molecules and polyatomic ions but provides no information about bond lengths or the presence of multiple bonds Chemistry Lecture 1 Semester One/ Dr. Mohammed Awady .
Recommended publications
  • October 16, 2014
    October 16, 2014 Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. Each electron orbit has a fixed energy. Energy levels: the fixed energies of an electron. Quantum: The amount of energy required to move an electron from one energy level to another level. Light Electrons can jump from one energy level to another. The term quantum leap can be used to describe an The modern quantum model grew out of the study of light. 1. Light as a wave abrupt change in energy. 2. Light as a particle -Newton was the first to try to explain the behavior of light by assuming that light consists of particles. October 16, 2014 Light as a Wave 1. Wavelength-shortest distance between equivalent points on a continuous wave. symbol: λ (Greek letter lambda) 2. Frequency- the number of waves that pass a point per second. symbol: ν (Greek letter nu) 3. Amplitude-wave's height from the origin to the crest or trough. 4. Speed-all EM waves travel at the speed of light. symbol: c=3.00 x 108 m/s in a vacuum The speed of light Calculate the following: 8 1. The wavelength of radiation with a frequency of 1.50 x 1013 c=3.00 x 10 m/s Hz. Does this radiation have a longer or shorter wavelength than red light? (2.00 x 10-5 m; longer than red) c=λν 2.
    [Show full text]
  • Structure and Bonding Electron Configurations in the Periodic Table
    Structure and Bonding The study of organic chemistry must at some point extend to the molecular level, for the physical and chemical properties of a substance are ultimately explained in terms of the structure and bonding of molecules. This module introduces some basic facts and principles that are needed for a discussion of organic molecules. Electronic Configurations Electron Configurations in the Periodic Table 1A 2A 3A 4A 5A 6A 7A 8A 1 2 H He 1 2 1s 1s 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 2 2 2 2 2 2 2 2 1s 1s 1s 1s 1s 1s 1s 1s 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] 3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6 Four elements, hydrogen, carbon, oxygen and nitrogen, are the major components of most organic compounds. Consequently, our understanding of organic chemistry must have, as a foundation, an appreciation of the electronic structure and properties of these elements. The truncated periodic table shown above provides the orbital electronic structure for the first eighteen elements (hydrogen through argon). According to the Aufbau principle, the electrons of an atom occupy quantum levels or orbitals starting from the lowest energy level, and proceeding to the highest, with each orbital holding a maximum of two paired electrons (opposite spins). Electron shell #1 has the lowest energy and its s-orbital is the first to be filled.
    [Show full text]
  • VSEPR Theory
    VSEPR Theory The valence-shell electron-pair repulsion (VSEPR) model is often used in chemistry to predict the three dimensional arrangement, or the geometry, of molecules. This model predicts the shape of a molecule by taking into account the repulsion between electron pairs. This handout will discuss how to use the VSEPR model to predict electron and molecular geometry. Here are some definitions for terms that will be used throughout this handout: Electron Domain – The region in which electrons are most likely to be found (bonding and nonbonding). A lone pair, single, double, or triple bond represents one region of an electron domain. H2O has four domains: 2 single bonds and 2 nonbonding lone pairs. Electron Domain may also be referred to as the steric number. Nonbonding Pairs Bonding Pairs Electron domain geometry - The arrangement of electron domains surrounding the central atom of a molecule or ion. Molecular geometry - The arrangement of the atoms in a molecule (The nonbonding domains are not included in the description). Bond angles (BA) - The angle between two adjacent bonds in the same atom. The bond angles are affected by all electron domains, but they only describe the angle between bonding electrons. Lewis structure - A 2-dimensional drawing that shows the bonding of a molecule’s atoms as well as lone pairs of electrons that may exist in the molecule. Provided by VSEPR Theory The Academic Center for Excellence 1 April 2019 Octet Rule – Atoms will gain, lose, or share electrons to have a full outer shell consisting of 8 electrons. When drawing Lewis structures or molecules, each atom should have an octet.
    [Show full text]
  • Lecture #2: August 25, 2020 Goal Is to Define Electrons in Atoms
    Lecture #2: August 25, 2020 Goal is to define electrons in atoms • Bohr Atom and Principal Energy Levels from “orbits”; Balance of electrostatic attraction and centripetal force: classical mechanics • Inability to account for emission lines => particle/wave description of atom and application of wave mechanics • Solutions of Schrodinger’s equation, Hψ = Eψ Required boundaries => quantum numbers (and the Pauli Exclusion Principle) • Electron configurations. C: 1s2 2s2 2p2 or [He]2s2 2p2 Na: 1s2 2s2 2p6 3s1 or [Ne] 3s1 => Na+: [Ne] Cl: 1s2 2s2 2p6 3s23p5 or [Ne]3s23p5 => Cl-: [Ne]3s23p6 or [Ar] What you already know: Quantum Numbers: n, l, ml , ms n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to ∞(infinity) (Bohr’s discrete orbits) l (angular momentum) orbital 0s l is the angular momentum quantum number, 1p represents the shape of the orbital, has integer values of (n – 1) to 0 2d 3f ml is the magnetic quantum number, represents the spatial direction of the orbital, can have integer values of -l to 0 to l Other terms: electron configuration, noble gas configuration, valence shell ms is the spin quantum number, has little physical meaning, can have values of either +1/2 or -1/2 Pauli Exclusion principle: no two electrons can have all four of the same quantum numbers in the same atom (Every electron has a unique set.) Hund’s Rule: when electrons are placed in a set of degenerate orbitals, the ground state has as many electrons as possible in different orbitals, and with parallel spin.
    [Show full text]
  • Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values
    268 A Textbook of Physical Chemistry – Volume I Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values The Schrodinger wave equation for hydrogen and hydrogen-like species in the polar coordinates can be written as: 1 휕 휕휓 1 휕 휕휓 1 휕2휓 8휋2휇 푍푒2 (406) [ (푟2 ) + (푆푖푛휃 ) + ] + (퐸 + ) 휓 = 0 푟2 휕푟 휕푟 푆푖푛휃 휕휃 휕휃 푆푖푛2휃 휕휙2 ℎ2 푟 After separating the variables present in the equation given above, the solution of the differential equation was found to be 휓푛,푙,푚(푟, 휃, 휙) = 푅푛,푙. 훩푙,푚. 훷푚 (407) 2푍푟 푘 (408) 3 푙 푘=푛−푙−1 (−1)푘+1[(푛 + 푙)!]2 ( ) 2푍 (푛 − 푙 − 1)! 푍푟 2푍푟 푛푎 √ 0 = ( ) [ 3] . exp (− ) . ( ) . ∑ 푛푎0 2푛{(푛 + 푙)!} 푛푎0 푛푎0 (푛 − 푙 − 1 − 푘)! (2푙 + 1 + 푘)! 푘! 푘=0 (2푙 + 1)(푙 − 푚)! 1 × √ . 푃푚(퐶표푠 휃) × √ 푒푖푚휙 2(푙 + 푚)! 푙 2휋 It is obvious that the solution of equation (406) contains three discrete (n, l, m) and three continuous (r, θ, ϕ) variables. In order to be a well-behaved function, there are some conditions over the values of discrete variables that must be followed i.e. boundary conditions. Therefore, we can conclude that principal (n), azimuthal (l) and magnetic (m) quantum numbers are obtained as a solution of the Schrodinger wave equation for hydrogen atom; and these quantum numbers are used to define various quantum mechanical states. In this section, we will discuss the properties and significance of all these three quantum numbers one by one. Principal Quantum Number The principal quantum number is denoted by the symbol n; and can have value 1, 2, 3, 4, 5…..∞.
    [Show full text]
  • Vibrational Quantum Number
    Fundamentals in Biophotonics Quantum nature of atoms, molecules – matter Aleksandra Radenovic [email protected] EPFL – Ecole Polytechnique Federale de Lausanne Bioengineering Institute IBI 26. 03. 2018. Quantum numbers •The four quantum numbers-are discrete sets of integers or half- integers. –n: Principal quantum number-The first describes the electron shell, or energy level, of an atom –ℓ : Orbital angular momentum quantum number-as the angular quantum number or orbital quantum number) describes the subshell, and gives the magnitude of the orbital angular momentum through the relation Ll2 ( 1) –mℓ:Magnetic (azimuthal) quantum number (refers, to the direction of the angular momentum vector. The magnetic quantum number m does not affect the electron's energy, but it does affect the probability cloud)- magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field-Zeeman effect -s spin- intrinsic angular momentum Spin "up" and "down" allows two electrons for each set of spatial quantum numbers. The restrictions for the quantum numbers: – n = 1, 2, 3, 4, . – ℓ = 0, 1, 2, 3, . , n − 1 – mℓ = − ℓ, − ℓ + 1, . , 0, 1, . , ℓ − 1, ℓ – –Equivalently: n > 0 The energy levels are: ℓ < n |m | ≤ ℓ ℓ E E 0 n n2 Stern-Gerlach experiment If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by a different amount, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount.
    [Show full text]
  • Performance of Numerical Approximation on the Calculation of Two-Center Two-Electron Integrals Over Non-Integer Slater-Type Orbitals Using Elliptical Coordinates
    Performance of numerical approximation on the calculation of two-center two-electron integrals over non-integer Slater-type orbitals using elliptical coordinates A. Bağcı* and P. E. Hoggan Institute Pascal, UMR 6602 CNRS, University Blaise Pascal, 24 avenue des Landais BP 80026, 63177 Aubiere Cedex, France [email protected] Abstract The two-center two-electron Coulomb and hybrid integrals arising in relativistic and non- relativistic ab-initio calculations of molecules are evaluated over the non-integer Slater-type orbitals via ellipsoidal coordinates. These integrals are expressed through new molecular auxiliary functions and calculated with numerical Global-adaptive method according to parameters of non-integer Slater- type orbitals. The convergence properties of new molecular auxiliary functions are investigated and the results obtained are compared with results found in the literature. The comparison for two-center two- electron integrals is made with results obtained from one-center expansions by translation of wave- function to same center with integer principal quantum number and results obtained from the Cuba numerical integration algorithm, respectively. The procedures discussed in this work are capable of yielding highly accurate two-center two-electron integrals for all ranges of orbital parameters. Keywords: Non-integer principal quantum numbers; Two-center two-electron integrals; Auxiliary functions; Global-adaptive method *Correspondence should be addressed to A. Bağcı; e-mail: [email protected] 1 1. Introduction The idea of considering the principal quantum numbers over Slater-type orbitals (STOs) in the set of positive real numbers firstly introduced by Parr [1] and performed for the He atom and single- center calculations on the H2 molecule to demonstrate that improved accuracy can be achieved in Hartree-Fock-Roothaan (HFR) calculations.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • 4 Nuclear Magnetic Resonance
    Chapter 4, page 1 4 Nuclear Magnetic Resonance Pieter Zeeman observed in 1896 the splitting of optical spectral lines in the field of an electromagnet. Since then, the splitting of energy levels proportional to an external magnetic field has been called the "Zeeman effect". The "Zeeman resonance effect" causes magnetic resonances which are classified under radio frequency spectroscopy (rf spectroscopy). In these resonances, the transitions between two branches of a single energy level split in an external magnetic field are measured in the megahertz and gigahertz range. In 1944, Jevgeni Konstantinovitch Savoiski discovered electron paramagnetic resonance. Shortly thereafter in 1945, nuclear magnetic resonance was demonstrated almost simultaneously in Boston by Edward Mills Purcell and in Stanford by Felix Bloch. Nuclear magnetic resonance was sometimes called nuclear induction or paramagnetic nuclear resonance. It is generally abbreviated to NMR. So as not to scare prospective patients in medicine, reference to the "nuclear" character of NMR is dropped and the magnetic resonance based imaging systems (scanner) found in hospitals are simply referred to as "magnetic resonance imaging" (MRI). 4.1 The Nuclear Resonance Effect Many atomic nuclei have spin, characterized by the nuclear spin quantum number I. The absolute value of the spin angular momentum is L =+h II(1). (4.01) The component in the direction of an applied field is Lz = Iz h ≡ m h. (4.02) The external field is usually defined along the z-direction. The magnetic quantum number is symbolized by Iz or m and can have 2I +1 values: Iz ≡ m = −I, −I+1, ..., I−1, I.
    [Show full text]
  • 8.3 Bonding Theories >
    8.3 Bonding Theories > Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Molecular Orbitals How are atomic and molecular orbitals related? 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • The model you have been using for covalent bonding assumes the orbitals are those of the individual atoms. • There is a quantum mechanical model of bonding, however, that describes the electrons in molecules using orbitals that exist only for groupings of atoms. 3 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • When two atoms combine, this model assumes that their atomic orbitals overlap to produce molecular orbitals, or orbitals that apply to the entire molecule. 4 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Just as an atomic orbital belongs to a particular atom, a molecular orbital belongs to a molecule as a whole. • A molecular orbital that can be occupied by two electrons of a covalent bond is called a bonding orbital. 5 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Sigma Bonds When two atomic orbitals combine to form a molecular orbital that is symmetrical around the axis connecting two atomic nuclei, a sigma bond is formed. • Its symbol is the Greek letter sigma (σ).
    [Show full text]
  • Chemical Bonding & Chemical Structure
    Chemistry 201 – 2009 Chapter 1, Page 1 Chapter 1 – Chemical Bonding & Chemical Structure ings from inside your textbook because I normally ex- Getting Started pect you to read the entire chapter. 4. Finally, there will often be a Supplement that con- If you’ve downloaded this guide, it means you’re getting tains comments on material that I have found espe- serious about studying. So do you already have an idea cially tricky. Material that I expect you to memorize about how you’re going to study? will also be placed here. Maybe you thought you would read all of chapter 1 and then try the homework? That sounds good. Or maybe you Checklist thought you’d read a little bit, then do some problems from the book, and just keep switching back and forth? That When you have finished studying Chapter 1, you should be sounds really good. Or … maybe you thought you would able to:1 go through the chapter and make a list of all of the impor- tant technical terms in bold? That might be good too. 1. State the number of valence electrons on the following atoms: H, Li, Na, K, Mg, B, Al, C, Si, N, P, O, S, F, So what point am I trying to make here? Simply this – you Cl, Br, I should do whatever you think will work. Try something. Do something. Anything you do will help. 2. Draw and interpret Lewis structures Are some things better to do than others? Of course! But a. Use bond lengths to predict bond orders, and vice figuring out which study methods work well and which versa ones don’t will take time.
    [Show full text]
  • Electron Configurations, Orbital Notation and Quantum Numbers
    5 Electron Configurations, Orbital Notation and Quantum Numbers Electron Configurations, Orbital Notation and Quantum Numbers Understanding Electron Arrangement and Oxidation States Chemical properties depend on the number and arrangement of electrons in an atom. Usually, only the valence or outermost electrons are involved in chemical reactions. The electron cloud is compartmentalized. We model this compartmentalization through the use of electron configurations and orbital notations. The compartmentalization is as follows, energy levels have sublevels which have orbitals within them. We can use an apartment building as an analogy. The atom is the building, the floors of the apartment building are the energy levels, the apartments on a given floor are the orbitals and electrons reside inside the orbitals. There are two governing rules to consider when assigning electron configurations and orbital notations. Along with these rules, you must remember electrons are lazy and they hate each other, they will fill the lowest energy states first AND electrons repel each other since like charges repel. Rule 1: The Pauli Exclusion Principle In 1925, Wolfgang Pauli stated: No two electrons in an atom can have the same set of four quantum numbers. This means no atomic orbital can contain more than TWO electrons and the electrons must be of opposite spin if they are to form a pair within an orbital. Rule 2: Hunds Rule The most stable arrangement of electrons is one with the maximum number of unpaired electrons. It minimizes electron-electron repulsions and stabilizes the atom. Here is an analogy. In large families with several children, it is a luxury for each child to have their own room.
    [Show full text]