Drug-Induced Endocrine Blood Pressure Elevation T Katharina R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2010/0221245 A1 Kunin (43) Pub
US 2010O221245A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0221245 A1 Kunin (43) Pub. Date: Sep. 2, 2010 (54) TOPICAL SKIN CARE COMPOSITION Publication Classification (51) Int. Cl. (76) Inventor: Audrey Kunin, Mission Hills, KS A 6LX 39/395 (2006.01) (US) A6II 3L/235 (2006.01) A638/16 (2006.01) Correspondence Address: (52) U.S. Cl. ......................... 424/133.1: 514/533: 514/12 HUSCH BLACKWELL SANDERS LLP (57) ABSTRACT 4801 Main Street, Suite 1000 - KANSAS CITY, MO 64112 (US) The present invention is directed to a topical skin care com position. The composition has the unique ability to treat acne without drying out the user's skin. In particular, the compo (21) Appl. No.: 12/395,251 sition includes a base, an antibacterial agent, at least one anti-inflammatory agent, and at least one antioxidant. The (22) Filed: Feb. 27, 2009 antibacterial agent may be benzoyl peroxide. US 2010/0221 245 A1 Sep. 2, 2010 TOPCAL SKIN CARE COMPOSITION stay of acne treatment since the 1950s. Skin irritation is the most common side effect of benzoyl peroxide and other anti BACKGROUND OF THE INVENTION biotic usage. Some treatments can be severe and can leave the 0001. The present invention generally relates to composi user's skin excessively dry. Excessive use of some acne prod tions and methods for producing topical skin care. Acne Vul ucts may cause redness, dryness of the face, and can actually garis, or acne, is a common skin disease that is prevalent in lead to more acne. Therefore, it would be beneficial to provide teenagers and young adults. -
Lymphoid Organs of Neonatal and Adult Mice Preferentially Produce Active Glucocorticoids from Metabolites, Not Precursors ⇑ Matthew D
Brain, Behavior, and Immunity 57 (2016) 271–281 Contents lists available at ScienceDirect Brain, Behavior, and Immunity journal homepage: www.elsevier.com/locate/ybrbi Full-length Article Lymphoid organs of neonatal and adult mice preferentially produce active glucocorticoids from metabolites, not precursors ⇑ Matthew D. Taves a,b, , Adam W. Plumb c, Anastasia M. Korol a, Jessica Grace Van Der Gugten d, Daniel T. Holmes d, Ninan Abraham b,c,1, Kiran K. Soma a,b,e,1 a Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada b Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada c Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada d Department of Laboratory Medicine, St Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada e Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada article info abstract Article history: Glucocorticoids (GCs) are circulating adrenal steroid hormones that coordinate physiology, especially the Received 4 March 2016 counter-regulatory response to stressors. While systemic GCs are often considered immunosuppressive, Received in revised form 22 April 2016 GCs in the thymus play a critical role in antigen-specific immunity by ensuring the selection of competent Accepted 7 May 2016 T cells. Elevated thymus-specific GC levels are thought to occur by local synthesis, but the mechanism of Available online 7 May 2016 such tissue-specific GC production remains unknown. Here, we found metyrapone-blockable GC produc- tion in neonatal and adult bone marrow, spleen, and thymus of C57BL/6 mice. -
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
Download Product Insert (PDF)
PRODUCT INFORMATION Carbenoxolone (sodium salt) Item No. 18240 O- CAS Registry No.: 7421-40-1 O Formal Name: (3β,20β)-3-(3-carboxy-1- oxopropoxy)-11-oxo-olean-12- en-29-oic acid, disodium salt + MF: C34H48O7 • 2Na • 2Na O FW: 614.7 H Purity: ≥98% Stability: ≥2 years at -20°C O H - O Supplied as: A crystalline solid O H O UV/Vis.: λmax: 250 nm Laboratory Procedures For long term storage, we suggest that carbenoxolone (sodium salt) be stored as supplied at -20°C. It should be stable for at least two years. Carbenoxolone (sodium salt) is supplied as a crystalline solid. A stock solution may be made by dissolving the carbenoxolone (sodium salt) in the solvent of choice. Carbenoxolone (sodium salt) is soluble in organic solvents such as ethanol, which should be purged with an inert gas. The solubility of carbenoxolone (sodium salt) in this solvent is approximately 14 mg/ml. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of carbenoxolone (sodium salt) can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of carbenoxolone (sodium salt) in PBS, pH 7.2, is approximately 3 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Carbenoxolone is a derivative of β-glycyrrhetinic acid (Item No. 11845), a major metabolite of glycyrrhizin, one of the main constituents of licorice. -
MMC International BV
M.M.C. International Steroid Substances Steroid Test A Colour Steroid Test B Colour Steroid Test B Colour with UV Light Stanozolol/ Oxandrolone Test Clenbuterol/ Oxymetholone Test Ephedrine Test Alfadolone Orange Yellow Nil - - - Androsterone Orange Yellow White - - - Beclometasone Brown–yellow Orange Nil - - - Betamethasone Orange–brown Pink–Orange Nil - - - Boldenone Base (Equipoise, Ganabol) (pure powder) Warm red after 2 min. Dark Orange after 2 min. Bright Light Orange - - - Boldenone Undecanoate (oil) Dark brownish-red Dark Red Bright Light Orange - - - Boldenone Undecylenate (oil) Orange - Light Brown Dark Orange → Brown Bright Light Orange-Yellow - - - Carbenoxolone (CBX) Orange Yellow Yellow - - - Cholesterol Violet Orange White - - - Clenbuterol (Spiropent, Ventipulmin) - - - - Purple - Dark brown with yellow-green on the Dark brown with yellow-green on the Clomiphene (Androxal, Clomid, Omifin) Nil Dark brown to black No reaction Dark brown to black sides of the ampoule sides of the ampoule Cortisone Orange Yellow Green - - - Desoxycortone Blue–black Yellow Yellow - - - Dexamethasone Yellow Orange–pink Nil - - - Dienestrol Yellow Orange–red Nil - - - Diethylstilbestrol (DES) Orange (→yellow–green) Nil - - - Dimethisterone Brown–green Orange–red Yellow - - - Drostanolone Propionate (Masteron) (oil) Bright green Yellow-Orange Orange - - - Dydrogesterone (Duphaston) - Orange Green-Yellow - - - Enoxolone Orange Yellow Green-Yellow - - - Ephedrine (also for Pseudo- and Nor-Ephedrine) - - - - - Orange Estradiol (Oestradiol) Orange -
Plasma Li-Hydroxycorticoid Levels After Carbenoxolone Sodium Br Med J: First Published As 10.1136/Bmj.3.5721.498 on 29 August 1970
BRMs 498 29 August 1970 MEDICAL JOURNAL Plasma li-Hydroxycorticoid Levels after Carbenoxolone Sodium Br Med J: first published as 10.1136/bmj.3.5721.498 on 29 August 1970. Downloaded from D. MATTINGLY,* M.B., F.R.C.P. ; CHRISTINE TYLER,t B.SC., PH.D.; ELAINE BILTON,t A.I.M.L.T. British Medical Journal, 1970, 3, 498-500 Summary: A definite rise in plasma l1-hydroxycorti- Methods coid levels has been shown in eight patients with All the tests were carried out in the morning, and a single duodenal ulcer following the oral administration of car- dose of 100 mg. of carbenoxolone sodium was given orally to benoxolone sodium. A similar rise was seen in one patient with sarcoidosis whose pituitary A.C.T.H. secretion had the subjects between 10.30 and 11.30, with the exception of been acutely suppressed with dexamethasone. No such one man who was given only 50 mg. The tablets were given with 20-30 ml. of water. Patients had breakfasted normally at rise, however, was seen in three patients suffering from adrenal insufficiency. It is suggested that carbenoxolone 7.30. Venous blood samples of 5-6 ml. were taken from the antecubital fossa by means of an indwelling cannula. Two acts directly on the adrenal cortex, causing an increased production of corticosteroids. control samples were taken at intervals of one hour before the dose of carbenoxolone, and further samples were taken over the subsequent two and a half hours. Plasma 1l-hydroxycorticoids (11-OHCS) were estimated by the fluorimetric method previously described, 2 ml. -
A Stratified Approach for Cushing's Syndrome Diagnosis
Global Journal of Health Science; Vol. 11, No. 10; 2019 ISSN 1916-9736 E-ISSN 1916-9744 Published by Canadian Center of Science and Education A Stratified Approach for Cushing’s Syndrome Diagnosis Mervin Chavez1, Joselyn Rojas1,2, Miguel Aguirre1, Marjorie Villalobos1, Juan Salazar1, Luis Bello1, Roberto Añez1, Luis Olivar1, María Calvo1, Yaneth Herazo-Beltrán3, Maricarmen Chacín González3, Jhoalmis Sierra-Castrillo4 & Valmore Bermúdez-Pirela1,3 1 Endocrine and Metabolic Diseases Research Center, “Dr. Félix Gómez,” School of Medicine. University of Zulia, Maracaibo 4004, Venezuela 2 Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 3 Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia 4 Universidad de Santander (UDES), Programa de Bacteriología y Laboratorio Clínico, Cúcuta, Colombia Correspondence: Valmore Bermúdez-Pirela, MD, MgS, MPH, PhD. Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia. E-mail: [email protected] Received: May 2, 2019 Accepted: July 3 18, 2019 Online Published: August 15, 2019 doi:10.5539/gjhs.v11n10p55 URL: https://doi.org/10.5539/gjhs.v11n10p55 Abstract Cushing’s syndrome is an endocrine disorder broadly renowned as a diagnostic challenge. From the initial clinical presentation up to the identification of the underlying etiology, it is necessary to adhere to a logical and stratified plan of action, directed to the correlation of signs and symptoms to the physiopathology of the syndrome, in order to accurately establish a diagnosis and adequate treatment. From stages as early as the patient’s first clinical evaluation, the physician should be specially attentive of a constellation of clinical signs which strongly suggest the diagnosis of Cushing’s syndrome, such as the presence of a “moon face”, a “buffalo hump”, cutaneous atrophy, proximal muscle weakness and purplish cutaneous striae, among others. -
Malta Medicines List April 08
Defined Daily Doses Pharmacological Dispensing Active Ingredients Trade Name Dosage strength Dosage form ATC Code Comments (WHO) Classification Class Glucobay 50 50mg Alpha Glucosidase Inhibitor - Blood Acarbose Tablet 300mg A10BF01 PoM Glucose Lowering Glucobay 100 100mg Medicine Rantudil® Forte 60mg Capsule hard Anti-inflammatory and Acemetacine 0.12g anti rheumatic, non M01AB11 PoM steroidal Rantudil® Retard 90mg Slow release capsule Carbonic Anhydrase Inhibitor - Acetazolamide Diamox 250mg Tablet 750mg S01EC01 PoM Antiglaucoma Preparation Parasympatho- Powder and solvent for solution for mimetic - Acetylcholine Chloride Miovisin® 10mg/ml Refer to PIL S01EB09 PoM eye irrigation Antiglaucoma Preparation Acetylcysteine 200mg/ml Concentrate for solution for Acetylcysteine 200mg/ml Refer to PIL Antidote PoM Injection injection V03AB23 Zovirax™ Suspension 200mg/5ml Oral suspension Aciclovir Medovir 200 200mg Tablet Virucid 200 Zovirax® 200mg Dispersible film-coated tablets 4g Antiviral J05AB01 PoM Zovirax® 800mg Aciclovir Medovir 800 800mg Tablet Aciclovir Virucid 800 Virucid 400 400mg Tablet Aciclovir Merck 250mg Powder for solution for inj Immunovir® Zovirax® Cream PoM PoM Numark Cold Sore Cream 5% w/w (5g/100g)Cream Refer to PIL Antiviral D06BB03 Vitasorb Cold Sore OTC Cream Medovir PoM Neotigason® 10mg Acitretin Capsule 35mg Retinoid - Antipsoriatic D05BB02 PoM Neotigason® 25mg Acrivastine Benadryl® Allergy Relief 8mg Capsule 24mg Antihistamine R06AX18 OTC Carbomix 81.3%w/w Granules for oral suspension Antidiarrhoeal and Activated Charcoal -
Update on Medical Treatment for Cushing's Disease
Cuevas-Ramos et al. Clinical Diabetes and Endocrinology (2016) 2:16 DOI 10.1186/s40842-016-0033-9 REVIEWARTICLE Open Access Update on medical treatment for Cushing’s disease Daniel Cuevas-Ramos1, Dawn Shao Ting Lim2 and Maria Fleseriu2* Abstract Cushing’s disease (CD) is the most common cause of endogenous Cushing’s syndrome (CS). The goal of treatment is to rapidly control cortisol excess and achieve long-term remission, to reverse the clinical features and reduce long-term complications associated with increased mortality. While pituitary surgery remains first line therapy, pituitary radiotherapy and bilateral adrenalectomy have traditionally been seen as second-line therapies for persistent hypercortisolism. Medical therapy is now recognized to play a key role in the control of cortisol excess. In this review, all currently available medical therapies are summarized, and novel medical therapies in phase 3 clinical trials, such as osilodrostat and levoketoconazole are discussed, with an emphasis on indications, efficacy and safety. Emerging data suggests increased efficacy and better tolerability with these novel therapies and combination treatment strategies, and potentially increases the therapeutic options for treatment of CD. New insights into the pathophysiology of CD are highlighted, along with potential therapeutic applications. Future treatments on the horizon such as R-roscovitine, retinoic acid, epidermal growth factor receptor inhibitors and somatostatin-dopamine chimeric compounds are also described, with a focus on potential -
(12) Patent Application Publication (10) Pub. No.: US 2004/0013741 A1 Meisel Et Al
US 20040013741A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0013741 A1 Meisel et al. (43) Pub. Date: Jan. 22, 2004 (54) GASTROINTESTINAL COMPOSITIONS Publication Classification (51) Int. Cl." ......................... A61K 38/39; A61K 35/78; (76) Inventors: Gerard M. Meisel, Budd Lake, NJ A61K 33/06; A61K 33/08; (US); Arthur A. Ciociola, Far Hills, NJ A61K 31/12: A01N 33/02 (US) (52) U.S. Cl. ......................... 424/601; 424/692; 424/697; 424/731; 424/738; 424/750; 514/57; 514/23: 514/574; 514/540; Correspondence Address: 514/357; 514/651; 514/547; Warner-Lambert Company 514/680; 514/161; 514/282; 201 Tabor Road 514/2; 514/762 Morris Plains, NJ 07950 (US) (57) ABSTRACT The invention relates to compositions and methods for (21) Appl. No.: 10/196,053 treating and/or preventing lower gastrointestinal (GI) disor ders in mammalian patients, more particularly for alleviating and/or preventing the lower GI symptoms associated with (22) Filed: Jul. 15, 2002 Such disorders. US 2004/0013741 A1 Jan. 22, 2004 GASTRONTESTINAL COMPOSITIONS antagonists, Serotonin (5HT) receptor agonists, Selective 0001. This Continuation-In-Part application claims pri Serotonin reuptake inhibitor and mixtures thereof. ority to the utility application filed on Jul. 10, 2002 by SUMMARY OF THE INVENTION Express Mail No. EL819323530US. 0011. The present invention relates to compositions for FIELD OF THE INVENTION treating or preventing gastrointestinal disorders, comprising: 0002 The invention relates to compositions and methods 0012 a.) an amino-ether and/or -ester oxide having for treating and/or preventing lower gastrointestinal (GI) the formula: disorders in mammalian patients, more particularly for alle viating and/or preventing the lower GI symptoms associated with Such disorders. -
Rxoutlook® 1St Quarter 2019
® RxOutlook 1st Quarter 2020 optum.com/optumrx a RxOutlook 1st Quarter 2020 Orphan drugs continue to feature prominently in the drug development pipeline In 1983 the Orphan Drug Act was signed into law. Thirty seven years later, what was initially envisioned as a minor category of drugs has become a major part of the drug development pipeline. The Orphan Drug Act was passed by the United States Congress in 1983 in order to spur drug development for rare conditions with high unmet need. The legislation provided financial incentives to manufacturers if they could demonstrate that the target population for their drug consisted of fewer than 200,000 persons in the United States, or that there was no reasonable expectation that commercial sales would be sufficient to recoup the developmental costs associated with the drug. These “Orphan Drug” approvals have become increasingly common over the last two decades. In 2000, two of the 27 (7%) new drugs approved by the FDA had Orphan Designation, whereas in 2019, 20 of the 48 new drugs (42%) approved by the FDA had Orphan Designation. Since the passage of the Orphan Drug Act, 37 years ago, additional regulations and FDA designations have been implemented in an attempt to further expedite drug development for certain serious and life threatening conditions. Drugs with a Fast Track designation can use Phase 2 clinical trials to support FDA approval. Drugs with Breakthrough Therapy designation can use alternative clinical trial designs instead of the traditional randomized, double-blind, placebo-controlled trial. Additionally, drugs may be approved via the Accelerated Approval pathway using surrogate endpoints in clinical trials rather than clinical outcomes.