Statistical Tests, P-Values, Confidence Intervals, and Power: a Guide To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(STROBE) Statement: Guidelines for Reporting Observational Studies
Policy and practice The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies* Erik von Elm,a Douglas G Altman,b Matthias Egger,a,c Stuart J Pocock,d Peter C Gøtzsche e & Jan P Vandenbroucke f for the STROBE Initiative Abstract Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study’s generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a two-day workshop, in September 2004, with methodologists, researchers and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies. -
Dictionary Epidemiology
A Dictionary ofof Epidemiology Fifth Edition Edited for the International Epidemiological Association by Miquel Porta Professor of Preventive Medicine & Public Health, School of Medicine, Universitat Autònoma de Barcelona; Senior Scientist, Institut Municipal d’Investigació Mèdica, Barcelona, Spain; Adjunct Professor of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill Associate Editors Sander Greenland John M. Last 1 2008 PPorta_FM.inddorta_FM.indd iiiiii 44/16/08/16/08 111:51:201:51:20 PPMM 1 Oxford University Press, Inc., publishes works that further Oxford University’s objective excellence in research, schollarship, and education Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 1983, 1988, 1995, 2001, 2008 International Epidemiological Association, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup-usa.org All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. This edition was prepared with support from Esteve Foundation (Barcelona, Catalonia, Spain) (http://www.esteve.org) Library of Congress Cataloging-in-Publication Data A dictionary of epidemiology / edited for the International Epidemiological Association by Miquel Porta; associate editors, John M. Last . [et al.].—5th ed. p. cm. Includes bibliographical references and index. -
Statistics As a Condemned Building: a Demolition and Reconstruction Plan
EPIDEMIOLOGY SEMINAR / WINTER 2019 THE DEPARTMENT OF EPIDEMIOLOGY, BIOSTATISTICS AND OCCUPATIONAL HEALTH, - SEMINAR SERIES IS A SELF-APPROVED GROUP LEARNING ACTIVITY (SECTION 1) AS DEFINED BY THE MAINTENANCE OF CERTIFICATION PROGRAM OF THE ROYAL COLLEGE OF PHYSICIANS AND SURGEONS OF CANADA Sander Greenland Emeritus Professor Epidemiology and Statistics University of California, Los Angeles Statistics as a Condemned Building: A Demolition and Reconstruction Plan MONDAY, 18 FEBRUARY 2019 / 4:00PM 5:00PM McIntyre Medical Building 3655 promenade Sir William Osler – Meakins Rm 521 ALL ARE WELCOME ABSTRACT: OBJECTIVES BIO: As part of the vast debate about how 1. To stop dichotomania Sander Greenland is Emeritus to reform statistics, I will argue that (unnecessary chopping of quan- Professor of Epidemiology and Sta- probability-centered statistics should tities into dichotomies); tistics at the University of California, be replaced by an integra- Los Angeles, specializing in the lim- 2. To stop nullism (unwarranted tion of cognitive science, caus- itations and misuse of statistical bias toward "null hypotheses" of al modeling, data descrip- methods, especially in observational no association or no effect); tion, and information transmis- studies. He has published over 400 sion, with probability entering as 3. To replace terms and concepts articles and book chapters in epide- one of the mathemati- like "statistical significance" and miology, statistics, and medicine, cal tools for delineating the pri- "confidence interval" with com- and given over 250 invited lectures, mary elements. Ironically, giv- patibility statements about hy- seminars and courses en the decades of treating it as potheses and models. worldwide in epidemiologic and scapegoat for all the ills of statistics, statistical methodology. -
Methods to Calculate Uncertainty in the Estimated Overall Effect Size from a Random-Effects Meta-Analysis
Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis Areti Angeliki Veroniki1,2*; Email: [email protected] Dan Jackson3; Email: [email protected] Ralf Bender4; Email: [email protected] Oliver Kuss5,6; Email: [email protected] Dean Langan7; Email: [email protected] Julian PT Higgins8; Email: [email protected] Guido Knapp9; Email: [email protected] Georgia Salanti10; Email: [email protected] 1 Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, East Building. Toronto, Ontario, M5B 1T8, Canada 2 Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece 3 MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, U.K | downloaded: 28.9.2021 4 Department of Medical Biometry, Institute for Quality and Efficiency in Health Care (IQWiG), Im Mediapark 8, 50670 Cologne, Germany 5 Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany 6 Institute of Medical Statistics, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany This article has been accepted for publication and undergone full peer review but has not https://doi.org/10.7892/boris.119524 been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jrsm.1319 source: This article is protected by copyright. All rights reserved. 7 Institute of Child Health, UCL, London, WC1E 6BT, UK 8 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K. -
Dictionary of Epidemiology, 5Th Edition
A Dictionary of Epidemiology This page intentionally left blank A Dictionary ofof Epidemiology Fifth Edition Edited for the International Epidemiological Association by Miquel Porta Professor of Preventive Medicine & Public Health School of Medicine, Universitat Autònoma de Barcelona Senior Scientist, Institut Municipal d’Investigació Mèdica Barcelona, Spain Adjunct Professor of Epidemiology, School of Public Health University of North Carolina at Chapel Hill Associate Editors Sander Greenland John M. Last 1 2008 1 Oxford University Press, Inc., publishes works that further Oxford University’s objective excellence in research, scholarship, and education Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 1983, 1988, 1995, 2001, 2008 International Epidemiological Association, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup-usa.org All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. This edition was prepared with support from Esteve Foundation (Barcelona, Catalonia, Spain) (http://www.esteve.org) Library of Congress Cataloging-in-Publication Data A dictionary of epidemiology / edited for the International Epidemiological Association by Miquel Porta; associate editors, John M. Last . [et al.].—5th ed. p. cm. Includes bibliographical references and index. ISBN 978–0-19–531449–6 ISBN 978–0-19–531450–2 (pbk.) 1. -
Principles of Statistical Inference
Principles of Statistical Inference In this important book, D. R. Cox develops the key concepts of the theory of statistical inference, in particular describing and comparing the main ideas and controversies over foundational issues that have rumbled on for more than 200 years. Continuing a 60-year career of contribution to statistical thought, Professor Cox is ideally placed to give the comprehensive, balanced account of the field that is now needed. The careful comparison of frequentist and Bayesian approaches to inference allows readers to form their own opinion of the advantages and disadvantages. Two appendices give a brief historical overview and the author’s more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The underlying mathematics is kept as elementary as feasible, though some previous knowledge of statistics is assumed. This book is for every serious user or student of statistics – in particular, for anyone wanting to understand the uncertainty inherent in conclusions from statistical analyses. Principles of Statistical Inference D.R. COX Nuffield College, Oxford CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521866736 © D. R. Cox 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. -
Confidence Distribution
Confidence Distribution Xie and Singh (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A Review Céline Cunen, 15/09/2014 Outline of Article ● Introduction ● The concept of Confidence Distribution (CD) ● A classical Definition and the History of the CD Concept ● A modern definition and interpretation ● Illustrative examples ● Basic parametric examples ● Significant (p-value) functions ● Bootstrap distributions ● Likelihood functions ● Asymptotically third-order accurate confidence distributions ● CD, Bootstrap, Fiducial and Bayesian approaches ● CD-random variable, Bootstrap estimator and fiducial-less interpretation ● CD, fiducial distribution and Belief function ● CD and Bayesian inference ● Inferences using a CD ● Confidence Interval ● Point estimation ● Hypothesis testing ● Optimality (comparison) of CDs ● Combining CDs from independent sources ● Combination of CDs and a unified framework for Meta-Analysis ● Incorporation of Expert opinions in clinical trials ● CD-based new methodologies, examples and applications ● CD-based likelihood caluculations ● Confidence curve ● CD-based simulation methods ● Additional examples and applications of CD-developments ● Summary CD: a sample-dependent distribution that can represent confidence intervals of all levels for a parameter of interest ● CD: a broad concept = covers all approaches that can build confidence intervals at all levels Interpretation ● A distribution on the parameter space ● A Distribution estimator = contains information for many types of -
Statistical Tests, P Values, Confidence Intervals, and Power
Eur J Epidemiol (2016) 31:337–350 DOI 10.1007/s10654-016-0149-3 ESSAY Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations 1 2 3 4 Sander Greenland • Stephen J. Senn • Kenneth J. Rothman • John B. Carlin • 5 6 7 Charles Poole • Steven N. Goodman • Douglas G. Altman Received: 9 April 2016 / Accepted: 9 April 2016 / Published online: 21 May 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Misinterpretation and abuse of statistical tests, literature. In light of this problem, we provide definitions confidence intervals, and statistical power have been and a discussion of basic statistics that are more general decried for decades, yet remain rampant. A key problem is and critical than typically found in traditional introductory that there are no interpretations of these concepts that are at expositions. Our goal is to provide a resource for instruc- once simple, intuitive, correct, and foolproof. Instead, tors, researchers, and consumers of statistics whose correct use and interpretation of these statistics requires an knowledge of statistical theory and technique may be attention to detail which seems to tax the patience of limited but who wish to avoid and spot misinterpretations. working scientists. This high cognitive demand has led to We emphasize how violation of often unstated analysis an epidemic of shortcut definitions and interpretations that protocols (such as selecting analyses for presentation based are simply wrong, sometimes disastrously so—and yet on the P values they produce) can lead to small P values these misinterpretations dominate much of the scientific even if the declared test hypothesis is correct, and can lead to large P values even if that hypothesis is incorrect. -
The P-Value Function and Statistical Inference
The American Statistician ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: https://www.tandfonline.com/loi/utas20 The p-value Function and Statistical Inference D. A. S. Fraser To cite this article: D. A. S. Fraser (2019) The p-value Function and Statistical Inference, The American Statistician, 73:sup1, 135-147, DOI: 10.1080/00031305.2018.1556735 To link to this article: https://doi.org/10.1080/00031305.2018.1556735 © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 20 Mar 2019. Submit your article to this journal Article views: 1983 View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=utas20 THE AMERICAN STATISTICIAN 2019, VOL. 73, NO. S1, 135–147: Statistical Inference in the 21st Century https://doi.org/10.1080/00031305.2019.1556735 The p-value Function and Statistical Inference D. A. S. Fraser Department of Statistical Sciences, University of Toronto, Toronto, Canada ABSTRACT ARTICLE HISTORY This article has two objectives. The first and narrower is to formalize the p-value function, which records Received March 2018 all possible p-values, each corresponding to a value for whatever the scalar parameter of interest is for the Revised November 2018 problem at hand, and to show how this p-value function directly provides full inference information for any corresponding user or scientist. The p-value function provides familiar inference objects: significance KEYWORDS Accept–Reject; Ancillarity; levels, confidence intervals, critical values for fixed-level tests, and the power function at all values ofthe Box–Cox; Conditioning; parameter of interest. -
Discussions on Professor Fraser's Article on “Is Bayes Posterior Just Quick and Dirty Confidence?”
Discussions on Professor Fraser’s article on “Is Bayes posterior just quick and dirty confidence?” Kesar Singh and Minge Xie Rutgers University We congratulate Professor Fraser for this very engaging article. It gives us an opportunity to gaze at the past and future of Bayes and confidence. It is well known that a Bayes posterior can only provide credible intervals and has no assurance of frequentist coverage (known as confidence). Professor Fraser’s article provides a detailed and insightful exploration into the root of this issue. It turns out that the Bayes posterior is exactly a confidence in the linear case (a mathematics coincidence), and Professor Fraser’s insightful and far-reaching examples demonstrate how the departure from linearity induces the departure of a posterior, in a proportionate way, from being a confidence. Of course, Bayesian inference is not bounded by frequestist criteria or geared to provide confidence statements, even though in some applications researchers have treated the Bayes credible intervals as confidence intervals on asymptotic grounds. It is debatable whether this departure of Bayesian inference from confidence should be a concern or not. But, nevertheless, the article provides us a powerful exploration and demonstration which can help us better comprehend the two statistical philosophies and the 250-year debate between Bayesians and frequentists. In the midst of the 250-year debate, Fisher’s “fiducial distribution” played a prominent role, which however is now referred to as the “biggest blunder” of the father of modern statistical inference [1]. Both developments of the confidence distribution and Fisher’s fiducial distribution share the common goal of providing distribution estimation for parameters without using priors, and their performances are often judged by the (asymptotic or exact) probability coverage of their corresponding intervals. -
Econometrics and Statistics (Ecosta 2018)
EcoSta2018 PROGRAMME AND ABSTRACTS 2nd International Conference on Econometrics and Statistics (EcoSta 2018) http://cmstatistics.org/EcoSta2018 City University of Hong Kong 19 – 21 June 2018 c ECOSTA ECONOMETRICS AND STATISTICS. All rights reserved. I EcoSta2018 ISBN: 978-9963-2227-3-5 c 2018 - ECOSTA Econometrics and Statistics All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any means without the prior permission from the publisher. II c ECOSTA ECONOMETRICS AND STATISTICS. All rights reserved. EcoSta2018 Co-chairs: Igor Pruenster, Alan Wan, Ping-Shou Zhong. EcoSta Editors: Ana Colubi, Erricos J. Kontoghiorghes, Manfred Deistler. Scientific Programme Committee: Tomohiro Ando, Jennifer Chan, Cathy W.S. Chen, Hao Chen, Ming Yen Cheng, Jeng-Min Chiou, Terence Chong, Fabrizio Durante, Yingying Fan, Richard Gerlach, Michele Guindani, Marc Hallin, Alain Hecq, Daniel Henderson, Robert Kohn, Sangyeol Lee, Degui Li, Wai-Keung Li, Yingying Li, Hua Liang, Tsung-I Lin, Shiqing Ling, Alessandra Luati, Hiroki Masuda, Geoffrey McLachlan, Samuel Mueller, Yasuhiro Omori, Marc Paolella, Sandra Paterlini, Heng Peng, Artem Prokhorov, Jeroen Rombouts, Matteo Ruggiero, Mike K.P. So, Xinyuan Song, John Stufken, Botond Szabo, Minh-Ngoc Tran, Andrey Vasnev, Judy Huixia Wang, Yong Wang, Yichao Wu and Jeff Yao. Local Organizing Committee: Guanhao Feng, Daniel Preve, Geoffrey Tso, Inez Zwetsloot, Catherine Liu, Zhen Pang. c ECOSTA ECONOMETRICS AND STATISTICS. All rights reserved. III EcoSta2018 Dear Colleagues, It is a great pleasure to welcome you to the 2nd International Conference on Econometrics and Statistics (EcoSta 2018). The conference is co-organized by the working group on Computational and Methodological Statistics (CMStatistics), the network of Computational and Financial Econometrics (CFEnetwork), the journal Economet- rics and Statistics (EcoSta) and the Department of Management Sciences of the City University of Hong Kong (CityU). -
Swedish Translation for the ISI Multilingual Glossary of Statistical Terms, Prepared by Jan Enger, Bernhard Huitfeldt, Ulf Jorner, and Jan Wretman
Swedish translation for the ISI Multilingual Glossary of Statistical Terms, prepared by Jan Enger, Bernhard Huitfeldt, Ulf Jorner, and Jan Wretman. Finally revised version, January 2008. For principles, see the appendix.