<<

Geologica Acta, Vol.9, N o s 3-4, September-December 2011, 329-350 DOI: 10.1344/105.000001695 Available online at www.geologica-acta.com

The Chuacús Metamorphic Complex, central : geochronological and geochemical constraints on its Paleozoic - Mesozoic evolution

1 * 1 2 2 L.A. SOLARI A GÓMEZ-TUENA F. ORTEGA-GUTIÉRREZ C. ORTEGA-OBREGÓN

1 Centro de Geociencias, Universidad Nacional Autónoma de México Campus Juriquilla, 76230 Querétaro, México. E-mail: [email protected]

2 Instituto de Geología, Universidad Nacional Autónoma de México Ciudad Universitaria, 04510, México D.F., México

* Corresponding author

ABS TRACT

The Chuacús Metamorphic Complex is located in Central Guatemala, between the Polochic and zones. It is made up of complexly intercalated, mafic and felsic high-grade gneisses, amphibolites, pelitic and quartzofeldsphatic metasediments and subordinate marbles. Mafic dikes and lenses metamorphosed to amphibolite and eclogite facies are tholeiitic and similar to mid-ocean ridge basalts. In contrast, metamorphosed intrusives (gabbro, diorite and granite) are calc-alkaline and have the geochemical signature of arc magmas. Laser Ablation Inductively Coupled Plasma Mass Spectrometry U-Pb zircon geochronology allows the recognition of three episodes of metamorphism. The first eclogite facies metamorphism (M1) is bracketed between magmatism in the northern Chuacús Metamorphic Complex and the neighboring Rabinal granitic suite; the second corresponds to an Upper period of arc magmatism and migmatization (M2); the third high-grade metamorphic event (M3) occurred during the Late . The tectonic evolution of the Chuacús Metamorphic Complex began during the Early Paleozoic as a basin in the Rheic Ocean that received detrital material from the Maya Block, Acatlán and southeastern México. The Chuacús Metamorphic Complex evolved to an active margin that subducted to HP conditions during the Mid- Late Paleozoic, and then was exhumed and involved in two tectonothermal events during the Upper Triassic and Late Cretaceous. The Chuacús Metamorphic Complex was accreted to the southern Maya Block during the Late Cretaceous, as a result of the convergent tectonics between the latter and either the Greater Antillean arc or the Chortís Block.

KEYWORDS Chuacús Complex. Guatemala. U-Pb geochronology. Maya Block. Caribbean. Basement Tectonics.

329 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

Introduction Chuacús Metamorphic Complex is made up of an intricate sequence of polydeformed, locally retrograded high-grade The tectonic limit between the North America and metamorphic rocks, both igneous and sedimentary in Caribbean plates is composed of a complex mosaic of origin. Previous works report ages with Grenvillian crustal blocks, which are juxtaposed and limited by faults protoliths in the northern sector of the Sierra de Chuacús (e.g., Ortega-Gutiérrez et al., 2007; Rogers et al., 2007; (Gomberg et al., 1968). The presence of a Brueckner et al., 2009; Ratschbacher et al., 2009) (Fig. 1). high-grade metamorphic event affecting a Grenvillian Those crustal blocks range in age from the Proterozoic (e.g. protolith was identified by Ortega-Gutiérrez et al. (2004) in Yoro area, central , Manton, 1996) to Early-Late El Chol, in the middle of the Sierra de Chuacús. Martens Paleozoic and Mesozoic (Altos Cuchumatanes, Guatemala, et al. (2005, 2007) questioned the precision of that age and Solari et al., 2009, 2010a; Maya Mountains, Belize, Martens reported a Triassic age for similar rocks. A recent work by et al., 2010; Rabinal suite, Guatemala, Ortega-Obregón et Ratschbacher et al. (2009) reported Proterozoic ages in the al., 2008; Chuacús Complex, Ortega-Gutiérrez et al., 2004; northern Sierra de Chuacús, with some discordant analyses Ratschbacher et al., 2009; Las Ovejas Complex, Ratschbacher yielding imprecise lower intercepts in the 638-477Ma et al., 2009), and were finally amalgamated during the Late range. Another sample they dated in the southern Sierra Mesozoic-Cenozoic (Harlow et al., 2004; Ortega-Gutiérrez de Chuacús yielded Proterozoic and inheritance, et al., 2004; Martens et al., 2007; Brueckner et al., 2009; as well as Triassic magmatic ages that postdate eclogite Ratschbacher et al., 2009). Recent works shed light on the metamorphism and were later affected by high-temperature tectonic evolution of the Motagua fault zone as the complex (HT) metamorphism during the Late Cretaceous. tectonic limit between the North America and Caribbean plates Petrological data suggest the existence of a HT eclogite (Harlow et al., 2004; Brueckner et al., 2009; Pindell et al., facies event (~680-750°C, ~22-24kbar, Ortega-Gutiérrez et 2006; Pindell and Kennan, 2009). The tectonic significance al., 2004; Martens et al., 2007; Ratschbacher et al., 2009), of the continental blocks involved in the suturing, however, is which cooled to about 580-600°C and 10-14kbar during still a matter of debate, especially on the southernmost edge of decompression (Ortega-Gutiérrez et al., 2004; Ratschbacher the North America plate (i.e., the Maya Block). The classical et al., 2009). While there is still debate about the existence of view on the tectonic limit is represented by a suture along the one or two eclogite facies from metamorphic pulses affecting Motagua fault, involving the Maya Block (North America the Chuacús Metamorphic Complex; pre-Carboniferous plate) to the north, and the Chortís Block () according to Ortega-Gutiérrez et al. (2004), pre-Triassic to the south (e.g., Dengo, 1969). More recently, several works according to Ratschbacher et al. (2009), or after the Triassic have added complexity to such a simple model, involving but before the Late Cretaceous according to Martens et al. the collision of the Greater Antilles to the south of the Maya (2007); these authors agree on Late Cretaceous cooling and Block during the Late Cretaceous, prior to docking of the exhumation (broad K-Ar, Ar and Rb-Sr age range of ~75 to Chortís Block (e.g., Pindell and Barret, 1990; Harlow et al., ~66Ma, see also Ortega-Obregón et al., 2008). 2004; Giunta et al., 2006; Brueckner et al., 2009; Pindell and Kennan, 2009; Ratschbacher et al., 2009). Further Metamorphic and igneous rocks of comparable age complications have arisen from the works of Ortega-Gutiérrez and metamorphic grade are present elsewhere in southern et al. (2007) and Ortega-Obregón et al. (2008), who suggested México and central-north Guatemala. In the Acatlán and argued for the existence of discrete crustal blocks or Complex of southern México, basement of the Mixteco suspect terranes in the southern Maya Block, extending from terrane, megacrystic granites have yielded ~480-440Ma central Guatemala across the Motagua suture zone to well magmatic ages, similar to the ages calculated for rift-related inside the Chortís Block of southern Guatemala and Honduras tholeiites in the same unit (Miller et al. 2007; Keppie et al. (e.g. Rogers et al., 2007). One of the key localities to test the 2008a, b). They are intimately associated with high pressure possible existence of those crustal entities, and one of the least metamorphism that occurred either during the Cambro- studied, is the Sierra de Chuacús in central Guatemala. This Ordovician (Vega-Granillo et al., 2007) or the Devonian- paper presents new geochronological and geochemical data Mississippian and was associated with the closure of of crustal rocks in the Sierra de Chuacús in order to provide the Rheic Ocean (e.g. Nance et al., 2006, and references further constraints to its tectonic evolution and the ongoing therein). In southeastern México, the Guichicovi complex discussions on its allochthonous vs. autochthonous nature and is characterized by Grenvillian granulites (Weber and tectonic evolution. Köhler, 1999) intruded by granites (La Mixtequita Massif, Torres et al., 1999). The Chiapas Massif crops out farther to the southeast, toward the Guatemala border. Previous works The massif is characterized by Ordovician S-type granites and amphibolites (Pompa-Mera et al., 2008), as well as The Sierra de Chuacús is located in central Guatemala, widespread Late Permian granites that intrude medium to between the Polochic and Motagua faults (Fig.1 and 2). The high-grade metasediments and orthogneisses, with Nd model

Geologica Acta, 9(3-4), 329-350 (2011) 330 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

ages between 1.0 and 1.4Ga (Schaaf et al., 2002; Weber et al., Geology of the Chuacús Metamorphic Complex 2006a, 2007, 2008). The metasediments of the Lower Santa Rosa Formation, which crop out in the Chiapas Massif, The Chuacús Metamorphic Complex is a were recently dated by Weber et al. (2009), establishing polymetamorphic, originally high-grade and essentially the maximum depositional ages as defined by youngest metasedimentary formation, which bears textural and zircons clustering around 315-325 and 331-341Ma. mineralogical evidence of at least one eclogite-facies event In Central Guatemala, just north of the Baja Verapaz following a P-T decompressional path that could have Fault Zone, Ortega-Obregón et al. (2008) dated several departed near the field of ultrahigh pressure metamorphism peraluminous granites between 453 and 462Ma (lower (UHPM) and, in any case, representing continental intercepts of discordant data, U-Pb by Isotope-Dilution subduction (e.g. Ortega-Gutiérrez et al., 2004; Martens, Thermal Ionization Mass Spectrometry (ID-TIMS)) and 2009). The Chuacús Metamorphic Complex is mainly placed them at the very edge of what they considered to be composed of quartzofeldspathic, garnet and mica bearing the tectonic southern limit of the Maya Block. In the Maya gneisses; two micas, garnet, kyanite, rutile schists; minor Mountains of Belize, Martens et al. (2010) reported an Early marbles and calcsilicates and abundant orthogneisses, Devonian Laser Ablation Inductively Coupled Plasma Mass which range from mafic (garnet, hornblende, rutile and Spectrometry (LA-ICPMS) age of 406Ma for rhyolites plagioclase) to granitic in composition. A large, Late interbedded with conglomerates, which confirms the Cretaceous shear zone, named Baja Verapaz Shear Zone ~405-420Ma ages previously published by Steiner and by Ortega-Obregón et al. (2008) limits the Chuacús Walker (1996). Metamorphic Complex in the north. The kinematics of the

Gulf of Mexico 93° 87° 90° 18 NorthAmerican Plate

Caribbean Fig 1B Sea l. S P IN Caribbean Tuxtla Gutiérrez n GUATEMALA A 16 Gulf of ea T Tehuantepec PMFZ b N Sea Cd. Belize ib U ar O Paci c Ocean C A M 14 AY TROUGHUtila Island BELIZECocos Plate M A 98 94 90 16° BELIZE YMAN Chicomuselo M AY A CA La Ceiba MEXICO Altos Cuchumatanes SSC BVP Lago de San Pedro Sula LCF PFZ Izabál Sacapulas SJP JChFZ Huehuetenango Salama Yoro BVSZ Progreso SIERRA DE CHU ACÚS Zacapa N MFZ NM HONDURAS SM Chiquimula L. Atitlán San Diego

Pacific Ocean Guatemala -Cretacic Peridotite/ophiolite units Figure 2 Permian granites & metamorphic rocks (Chiapas Bath.) C H O R T Í S Upper Paleozoic sediments (Santa Rosa Fm.) 14° Silurian-Ordovician granites (Rabinal, Altos Cuchumatanes, Maya Mountains) Lower Paleozoic (Precambrian?) Cocos Metasediments (San Gabriel Unit) Paleozoic-Mesozoic mid-high grade Plate metamorphic rocks (not differentiated) 0 50 100 km Precambrian granites and metamorphic rocks B (Yoro, not differentiated) Figure 1, Solari et al., 2010 FIGURE 1 A) Main tectonic subdivision of crustal blocks in southern Mexico and . N: Náhuatl-Guerrero terrane; TMVB: Trans-Mexican Volcanic Belt; M: Mixteco terrane; CH: Chatino terrane; Z: Zapoteco terrane; CU: Cuicateco terrane; MAYA: Maya Block; CHORTIS: Chortís block. Nomen- clature after Sedlock et al. (1993). PMFZ: main (simplified) trace of the Polochic-Motagua fault zone. B) Schematic geological map showing basement rocks of central Guatemala, southeasternmost Mexico, and northwestern Honduras. Geology is recompiled from Kesler et al. (1970); Anderson et al. (1973); Steiner and Walker (1996); Weber et al. (2005, 2006); and unpublished data by the authors. PFZ: Polochic Fault Zone; MFZ: Motagua Fault Zone; BVFZ: Baja Verapaz Fault Zone; JChFZ: Jocotán-Chamelecón Fault Zone; LCF: La Ceiba Fault. Main ophiolitic bodies are shown in black: SSC: Sierra de Santa Cruz; BVP: Baja Verapaz; SJP: S. Juán de Paz; NM: north Motagua unit, ophiolite and mélange; SM: south Motagua unit, ophiolite and mélange. Modified from Ortega-Obregón et al. (2008).

Geologica Acta, 9(3-4), 329-350 (2011) 331 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

Baja Verapaz Shear Zone indicates thrusting to the NNE Complex, ranging from decimetric bands to more than with a minor left-lateral component. It mainly affected a several hundreds of meters wide. Eclogite is the most sequence of low-grade pre-Ordovician slates and phyllites, important lithology recognized in several outcrops. These informally named the San Gabriel sequence, as well as some high-pressure rocks are mainly present as deformed lenses igneous units belonging to the Ordovician Rabinal Granite in leucocratic and deformed gneisses, indicating a remnant Suite (Ortega-Obregón et al., 2008). At the southern edge of an important metamorphic event (cf. Ortega-Gutiérrez of the Baja Verapaz Shear Zone the low metamorphic et al., 2004, for representative microprobe analyses). grade increases to amphibolite facies, where the Chuacús Metamorphic Complex actually begins. Chuacús The high-pressure metamorphism is widespread in Metamorphic Complex orthogneisses present a large age the southern Sierra de Chuacús between El Chol and the range and variable degrees of deformation. However, northern Motagua allochthonous units, which constitute the intrusive contacts are often visible in fresh outcrops. One tectonic southernmost limit of the Chuacús Metamorphic of the Chuacús Metamorphic Complex exposures which Complex. Eclogite-facies metamorphism is not recognized, deserves a more detailed description is the El Chol. At this however, in the western Chuacús (e.g. Kesler et al., 1970; location, banded mafic gneisses are intimately associated Ratschbacher et al., 2009) or in the easternmost known with metamorphosed granitic-trondhjemitic dikes. Local outcrops, which are located in the southern Sierra de Las pods of granitic melt, slightly discordant to concordant Minas (easternmost outcrops of Fig. 2). with the main foliation, strongly suggest that the mafic bands are migmatitic restites, whereas the granitic veins are neosomatic leucosomes. It is important to underline that Main Petrographic Features El Chol is the only locality in the Chuacús Metamorphic Complex where at least three deformation events are The following petrological data summarize and superposed and clearly distinguishable. Pegmatites are also complement previous work (Ortega-Gutiérrez et al., widespread throughout the entire Chuacús Metamorphic 2004) on some fundamental petrographic and textural

90°45’ 90°30’ 90°15’ Main90° fault zones 89°45’ To Cobán Mesozoic to Tertiary sediments and igneous rocks Polochic Fault Zone (undifferentiated)

Cretaceous ultramafics, mainly serpentinites 14 Carboniferous-Permian Santa Rosa Group Pre-Ordovician San Gabriel Unit: phyllite low-grade metasediments 15°15’ Paleozoic-Triassic Chuacús Metamorphic Complex (gneiss, amphibolite, migmatite, marble)15°15’

Ordovician Rabinal granite suite

Rabinal Salama 17 Baja Verapaz Shear Zone Gt03113 Gt0341 Caquil Gt0405 Gt0309 S IERR 15°00’ Gt0332A DE CHUACÚS 15°00’ El Oratorio Gt0321 Palibatz Gt0315 Gt0318 El Chol Pachalum Gt0319, Gt0320 10 km Motagua Fault Zone El Capulín El Progreso 5 To Guatemala City To Guatemala City 14°45’ 90°45’ 90°30’ 90°15’ 90°00’

FIGURE 2 Simplified geologic map of the Sierra de ChuacúsFigure area, 2, CentralSolari etGuatemala. al., 2010 Modified from Ortega-Gutiérrez et al. (2004). Sampled localities are indicated.

Geologica Acta, 9(3-4), 329-350 (2011) 332 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

TABLE 1 Chuacús Metamorphic Complex metapelite Wavelength Dis- characteristics of the Chuacús Metamorphic Complex persive X-Ray Spectrometry (WDS) mineral chemistry. Methodology as studied at its type-area, the Sierra Chuacús between described in Ortega-Gutiérrez et al., 2004 Granados and Salamá in central Guatemala. Based Table 1, Solari et al., 2010 on detailed petrographic studies of representative Oxide St St St St Ky Ky Grt Phe samples, actual and relict evidence for high-pressure SiO2 28.02 28.03 28.10 27.95 36.13 36.83 41.17 50.49 metamorphism may be found in most metapelitic, TiO2 0.46 0.43 0.42 0.37 0.00 0.00 0.00 0.12 Al2O3 52.31 52.44 52.82 52.83 61.96 62.97 24.15 26.61 quartzofeldspathic, calcareous, and mafic lithologies of Cr2O3 0.03 0.05 0.00 0.00 0.05 0.02 0.00 0.00 the Chuacús Complex in its type-area. The metapelites FeO 14.21 14.13 13.62 13.46 0.84 0.80 22.78 4.48 MnO 0.08 0.00 0.04 0.01 0.02 0.02 0.53 0.02 (see Table 1 for representative Wavelength Dispersive MgO 1.57 1.57 1.49 1.51 0.00 0.00 9.59 2.96 X-Ray Spectrometry (WDS) chemical analyses of the CaO 0.00 0.01 0.00 0.00 0.00 0.02 1.39 0.01 Na2O 0.15 0.00 0.00 0.13 0.00 0.00 0.00 0.21 main aluminous phases) include the characteristic high- K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.63 pressure assemblage kyanite - garnet - rutile - phengite - Total 96.83 96.66 96.49 96.26 99.00 100.66 99.61 96.53 quartz, with minor phases in the matrix or as inclusions Oxygens 46 46 46 46 5 5 12 11 Cations inside high-pyrope garnet (Alm54Pyr40.5Gr4.2Spes1.3) Si 7.88 7.88 7.89 7.86 0.99 0.92 3.08 3.39 Ti 0.10 0.09 0.09 0.08 - - - 0.01 and kinked kyanite (Fig. 3A) such as quartz, phengite, Al 17.33 17.37 17.48 17.52 2.00 2.00 2.13 2.10 ilmenite, titanomagnetite, zoisite, tourmaline, staurolite, Cr 0.02 0.03 - - 0.01 - - Fe 3.34 3.32 3.20 3.17 0.02 0.02 1.43 0.25 phlogopite/biotite, chloritoid and monazite. Rutile Mn 0.02 - 0.01 0.00 - - 0.03 - inclusions in kyanite and garnet are particularly abundant Mg 0.66 0.66 0.62 0.63 - - 1.07 0.30 Ca - 0.00 - - - 0.00 0.11 - and commonly show non-prismatic shapes (Fig. 3D). Na 0.08 ------0.03 The high-pressure assemblages in the calcareous rocks K ------0.99 Sum 29.42 29.35 29.29 29.26 3.02 2.94 7.85 7.07 include: a) high-Mg carbonate - rutile/titanite - quartz St: staurolite; Ky: kyanite; Grt: garnet; Phe: phengite - white mica, with zircon, pyrrhotite and apatite as minor phases (marbles), and b) amphibole (pargasite/ tremolite) - zoisite - quartz - clinopyroxene - white mica - clinochlore - serpentine - titanite (calcsilicates). Energy The polymetamorphic evolution of the Chuacús Dispersive X-R ay Spectrometry (EDS) analyses of high Metamorphic Complex is evident in the wide variety relief grains detected inclusions of corundum in some of reaction (prograde and retrograde) textures that reddish pleochroic titanites, and lamellar rutile needles characterize most rocks, particularly the eclogitic units. up to 32x0.25µm (Fig. 3B) that may be oriented in three Prograde coronas include garnet on omphacite (Fig. 3E), different crystallographic planes in the cores of some or on biotite, plagioclase, chlorite and apatite, as well zoisites. The composite association tremolite - zoisite - as occasional rims of clinopyroxene on garnet followed titanite/rutile (S1) overprinted by jadeite - lawsonite - albite by amphibole - plagioclase symplectites (Fig. 3C) that - quartz - carbonate (S2) (see Fig. 3F) locally refl ects two suggest alternating metamorphic episodes of hydration high-pressure events verified at contrasting higher and lower and dehydration. Retrograde or decompression coronitic temperatures. Lawsonite and jadeite were not verified by textures are characterized by symplectites of amphibole- chemical analyses, but both phases display their distinctive plagioclase and clinopyroxene - albite on omphacite, optical properties (Ortega-Gutiérrez et al., 2004). subcalcic amphibole and garnet, epidote on garnet, apatite on allanite, biotite on phengite, albite on white mica and Quartzo-feldspathic rocks are characterized by garnet, titanite on ilmenite and rutile, epidote on zoisite, assemblages with quartz - garnet - albite - phengite green on brown biotite, and chlorite on garnet. - biotite - zoisite - rutile - subcalcic amphibole, with accessory potassium feldspar, carbonates and rare green clinopyroxene (probably omphacite) included in Analytical Methods albite porphyroblasts, indicating relict high-pressure conditions. Common rounded zircons suggest an Geochemistry original sedimentary protolith. Mafic rocks contain hydrous and anhydrous eclogitic remnants with the Major and trace element analyses were performed typical assemblage omphacite - garnet - rutile - quartz at Actlabs (Ancaster, Canada). Major elements were accompanied by variable and comm only la rge amounts determined by X-ray fluorescence, whereas trace elements of amphibole (barroisite and taramite), phengite and were measured by ICP-MS employing lithium metaborate/ zoisite/epidote. The eclogitic lithologies sometimes tetraborate fusions. Sm-Nd isotopic ratios were measured preserved radial cracking of garnet around quartz by Thermal Ionization Mass Spectrometry (TIMS) at the inclusions, as well as lamellar inclusions of rutile along Laboratorio Universitario de Geoquímica Isotópica of the 3-4 crystallographic directions and polycrystalline Universidad Nacional Autónoma de México (UNAM), quartz - potassium feldspar inclusions. using a Finnigan MAT 262 system equipped with eight

Geologica Acta, 9(3-4), 329-350 (2011) 333 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

A B

Qz Zo

Ky Omp C Amp+Pl D Rt Ab Cpx

Ky Grt

E F

Grt

Jd Omp+Amp Ab

Ab

Figure 3, Solari et al., 2010 FIGURE 3 Some representative photomicrographs of petrographic features described in the text. A) Kink bands nucleated on an elongate quartz inclu- sion in kyanite. Plane polarized light, field of view is 560µm. B) Lamellar inclusions of rutile (bright needles) in zoisite in a high-pressure calc-silicate. Crossed polarized light, field of view is 220µm. C) Multiple coronas formed by retrogression of mafic eclogites; garnet appears rimmed by clinopyrox- ene, then by a symplectite of amphibole-plagioclase, and finally by an albite-rich matrix. Crossed polarized light, field of view is 2,240µm. D) Rutile inclusions in kyanite, many crystals show a peculiar “butterfly” shape and may be reddened by exsolution of hematite. Crossed polarized light, field of view is 220µm. E) Composite coronitic texture formed by a central zone of clinopyroxene-amphibole symplectite, rimmed by a wide band of albite followed by a band of garnet with rutile/titanite inclusions; this garnet forms a large inclusion in subcalcic amphibole. Plane polarized light, field of view is 2,240µm. F) Euhedral jadeite (optically determined by extinction angle, birefringence and relief) grown across an albite porphyroblast. Crossed polarized light, field of view is 220µm.

Geologica Acta, 9(3-4), 329-350 (2011) 334 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

Faraday cups. Sample preparation and measurement al. (2006). Precision on measured 207Pb/206Pb, 206Pb/238U and 208 232 procedures for isotopic analyses have been described by Pb/ Th ratios typically was ~0.7% 1σ relative standard Schaaf et al. (2005). 143Nd/144Nd ratios were normalized deviation. Replicate analyses of the Plešovice zircon to 146Nd/144Nd=0.72190 and corrected to a La Jolla indicate an external reproducibility of 0.8%, 0.7% and standard value of 143Nd/144Nd=0.511860. The long term 1.6% on the measured 207Pb/206Pb, 206Pb/238U and 208Pb/232Th reproducibility of La Jolla standard at Laboratorio ratios, respectively. These errors are quadratically included Universitario de Geoquímica Isotópica (143Nd/144Nd) in the quoted uncertainties for individual analyses of the is 0.511875±22 (2σ, n=152). Geochemical results are analyzed zircons. 204Pb is not monitored during these reported in Table 2. analyses, because its signal is swamped by the 204Hg contained in the carrier gases. Common Pb correction Geochronology was thus performed employing the algebraic method of Andersen (2002). A filter was then applied to ensure the The samples selected for geochronology, (3 to 5kg) quality of selected analyses, consisting in evaluation were crushed and the minerals separated following common of the concordance. For grains with ages of <1000Ma, techniques such as jaw crushing, milling, Wifley separation, the analysis was considered concordant if the 206Pb/238U Frantz magnetic separation, and heavy liquids (see also Solari and 207Pb/235U ages differed by less than 10%. For the et al., 2007). The zircon concentrates were carefully observed grains with ages >1000Ma, the same test was carried out under a binocular microscope. Between 500 and 150 crystals considering 206Pb/238U and 207Pb/206Pb ages. The concordia, were carefully selected from each sample, in order to obtain probability density distribution and histogram plots, as all the variations in morphology, shape and color. They were well as age-error calculations are performed using Isoplot mounted in epoxy resin, ground to expose roughly half of the v. 3.70 (Ludwig, 2008). The Tuff-Zirc algorithm (Ludwig crystal, and then imaged by cathodolominescence using an and Mundil, 2002) contained in the same software was ELM 3R luminoscope (Marshall, 1988). used to calculate the mean 206Pb/238U ages and their errors, as well as to filter for outliers, which are preferred for LA-ICPMS U-Pb analyses were performed at grains younger than 1000Ma. Details of analyzed zircons, Laboratorio de Estudios Isotópicos (LEI), Centro de for each samples, are reported in Table II of the Electronic Geociencias, UNAM, using a Resonetics “Resolution Appendix (www.geologica-acta.com). M50” 193nm excimer laser workstation coupled with Thermo Xii Series quadrupole mass spectrometry. Details of the analytical setup employed during this study are Results described in Solari et al. (2010b). 25s of gas background acquisition was followed by 30s of ablation, carried Geochemistry out in He atmosphere, employing 160mj laser energy, corresponding to an on-target fluence of 8J/cm2, 34μm Most of the samples studied here underwent high-grade diameter spot and a repetition rate of 5Hz, generating a drill metamorphism, and therefore geochemical classifications rate of ~0.7μm/s. The background average was subtracted and interpretations must be taken with caution. from net intensities measured for each isotope. Acquisition Nevertheless, comparisons of relatively immobile element involved an alternance of 2 analyses of Plešovice reference concentrations and ratios of the studied rocks with those zircon (~337Ma, Sláma et al., 2008), NIST 610 standard found in unaltered volcanic rocks can provide insights into glasses and 5 unknown zircons, using standard-unknown the sources and processes that lead to their formation. bracketing method (e.g. Solari et al., 2010b) to allow down- hole fractionation corrections to be performed using an in- In terms of geochemistry and petrography, rocks from house developed software (Tanner and Solari, 2009). NIST the Chuacús Metamorphic Complex can be divided in three 610 glass standard is used to recalculate the concentrations different groups: tholeiitic metabasalts (amphibolites), of interest, for instance U and Th, by normalizing such calc-alkaline orthogneisses and pelitic gneisses. Migmatitic elements with 29Si. Other isotopes are observed during gneisses are also present, but they will be described analysis; such as P, Ti, REE; to monitor the presence of separately for simplicity. inclusions (and in due case discard it) and to produce zircon REE patterns, which can be helpful to interpret Amphibolites are found as metamorphosed lenses, the calculated ages. REE zircon patterns were normalized or deformed dikes in orthogneisses and migmatites (e.g. to chondrite values of McDonough and Sun (1995). samples Gt0322, Gt0327, Gt0329, Gt0334 in Table 2). They Recalculated values are available in Table I (Electronic are fairly homogeneous in terms of their major elements,

Appendix in www.geologica-acta.com). An estimation of and show enrichment in Fe2O3 and TiO2 when compared to the zircon crystallization temperature is calculated by the the rest of the sequences (AFM diagram of Fig. 4A). Even Ti content, according to the Ti-in thermometer of Watson et though the MgO contents are not what would be expected

Geologica Acta, 9(3-4), 329-350 (2011) 335 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala - - - 5 42 18 48 75 38 2,2 2,5 5,6 251 325 225 113 118 183 2,50 8,15 2,23 22,2 2,12 3,38 1,28 3,99 0,78 4,34 0,87 2,58 2,27 0,42 0,12 10,7 0,10 0,11 0,23 0,21 5,64 14,2 BDL BDL BDL BDL BDL 0,129 10,90 0,372 0,329 12,68 47,56 14,29 1,322 100,11 MORB Gt03117 - - - 2 42 18 47 80 73 10 2,1 2,4 7,3 173 337 380 102 118 2,57 7,09 1,27 23,5 2,27 3,67 1,36 4,32 0,82 4,68 0,92 2,76 2,38 0,43 0,12 11,4 0,10 0,29 0,25 5,80 15,1 BDL BDL BDL BDL BDL BDL 0,178 99,60 10,49 0,388 0,358 14,12 48,13 13,91 1,470 MORB Gt0394 - - - 5 8 79 26 33 20 42 2,4 2,6 4,6 108 104 212 128 157 173 125 234 795 0,77 2,32 4,36 76,5 26,9 29,0 20,6 3,34 17,2 2,77 14,9 2,90 9,07 8,02 29,0 3,52 0,34 1,35 1,21 2,12 0,18 9,30 5,48 1,25 BDL BDL BDL 0,122 98,79 52,25 22,65 1,022 Gt0360 Metasediment - - - 1 2 47 19 44 38 95 57 1,5 3,2 4,1 0,5 209 423 105 141 103 3,29 7,03 0,65 50,9 3,38 18,4 5,62 1,83 7,43 1,40 8,99 1,93 5,94 5,53 0,26 0,10 0,07 0,17 0,15 0,12 8,71 17,6 BDL BDL BDL 0,263 10,35 99,07 0,884 0,811 13,24 48,44 13,55 1,931 EC01 MORB - - - 1 2 5 7 50 19 59 85 0,8 1,0 6,4 3,4 3,0 123 457 3,88 0,03 0,25 0,35 11,7 2,15 8,18 1,70 1,61 0,29 1,72 0,37 1,22 1,34 4,91 2,64 1,04 1,00 0,02 5,51 0,63 8,69 14,8 BDL BDL BDL BDL BDL 0,005 0,277 0,196 0,223 75,84 13,17 0,026 100,08 Rabinal Gt03113 3 5 2 18 16 13 1,2 0,6 1,5 5,5 176 124 180 600 3,45 0,34 0,83 0,58 27,9 28,1 8,85 29,4 5,16 3,79 0,76 4,56 0,92 2,94 3,40 20,8 4,68 0,87 1,87 0,07 4,97 2,99 48,2 86,3 BDL BDL BDL BDL BDL -7,67 0,062 98,95 0,819 0,549 0,533 73,45 13,05 0,271 0,104 Rabinal GT0340 0.512245 (18) 0.512245 2 9 11 65 53 43 16 66 12 0,7 1,0 8,3 641 321 119 198 623 5,20 1,27 3,86 2,74 15,5 14,5 21,6 72,2 10,6 2,11 7,09 0,74 3,60 0,57 1,37 1,10 23,1 2,56 0,28 4,05 0,26 2,04 0,40 BDL BDL BDL BDL -9,21 0,067 0,159 0,173 64,35 15,45 0,723 0,062 100,01 Gt0341 Rabinal 0.512166 (12) 0.512166 1 25 67 46 30 19 15 0,2 0,9 0,9 4,3 245 112 133 139 158 270 3,76 6,33 9,19 0,62 29,5 14,3 18,0 36,6 4,71 19,9 4,81 1,50 4,87 0,78 5,22 1,03 2,92 2,67 1,08 0,25 0,06 0,32 1,24 0,90 BDL BDL -0,23 0,199 0,448 0,389 13,81 46,55 15,47 2,507 0,139 100,00 Gt0334 Migmatite Migmatite Melanosome 0.512626 (19) 0.512626 2 1 2 13 10 16 22 75 10 0,5 1,1 4,6 2,5 774 -0,1 -0,1 5,38 0,32 2,08 0,82 4,63 9,07 1,10 4,17 0,71 0,43 0,04 0,21 0,04 0,10 0,11 0,34 0,15 0,09 1,13 0,04 1,50 BDL BDL BDL BDL BDL -8,43 0,012 99,78 0,239 0,014 0,022 73,02 15,34 0,132 0,092 1.030 Gt0333 Migmatite Migmatite Leucosome 0.512206 (18) 0.512206 2 36 38 64 17 61 65 83 0,6 1,2 8,8 2,8 270 189 124 134 696 3,26 6,82 1,71 40,6 2,97 8,60 1,47 7,88 3,10 1,03 4,48 0,90 6,52 1,46 4,26 4,38 0,28 0,20 0,21 0,26 0,14 2,80 2,75 BDL BDL BDL 0,237 10,09 0,708 0,676 10,89 49,60 13,19 1,560 0,221 MORB 100,30 Gt0329 0.512779 (19) 0.512779 2 4 42 39 85 18 25 0,6 1,7 8,2 5,0 370 122 100 559 112 160 -0,1 3,69 6,84 9,23 0,69 59,9 7,15 20,3 3,47 18,9 6,75 2,39 8,80 1,58 10,8 2,24 6,43 1,02 6,38 0,25 0,39 0,44 0,08 0,30 0,66 8,13 BDL BDL 0,354 0,951 14,54 47,65 13,76 2,594 0,202 MORB 100,31 Gt0327 0.513055 (19) 0.513055 2 41 40 85 70 19 24 76 0,2 0,6 1,4 4,6 381 213 174 156 189 4,05 6,76 9,61 0,82 49,6 10,8 6,51 17,7 2,96 15,2 5,34 1,92 7,12 1,25 8,53 1,79 5,20 5,28 0,26 0,38 0,31 0,13 0,26 1,14 8,88 BDL BDL 0,284 99,97 0,847 0,785 12,82 48,15 13,78 2,300 0,196 MORB Gt0322 Gt0322 0.513093 (16) 0.513093 5 2 4 8 28 42 16 66 0,5 1,2 5,9 Arc 224 230 750 4,67 0,76 1,88 1,01 25,2 17,8 44,6 77,9 8,69 30,4 5,45 1,35 4,62 0,69 4,31 0,87 2,51 2,72 0,96 6,15 1,35 0,29 2,82 0,19 3,66 BDL BDL BDL BDL BDL -4,53 0,060 99,87 0,414 0,432 69,43 14,90 0,483 0,107 Gt0321 orthogneiss 0.512406 (20) 0.512406 1 3 40 54 97 13 29 1,3 2,8 Arc 172 326 117 214 126 -0,1 2,86 1,96 21,8 12,0 14,5 30,4 3,93 16,3 3,91 1,33 3,78 0,62 3,74 0,78 2,08 1,96 0,48 1,31 0,38 9,47 0,25 0,62 1,37 BDL BDL BDL BDL 0,175 14,10 10,76 0,305 0,288 46,78 12,04 1,231 0,132 1.020 100,25 Gt0320 Chuacús Metamorphic Complex Metamorphic Chuacús orthogneiss 0.512708 (20) 0.512708 2 21 28 30 36 80 18 34 1,3 0,7 4,7 Arc 200 508 206 363 4,24 4,54 7,60 1,42 28,7 13,6 31,5 58,3 7,00 26,4 5,55 1,75 5,25 0,81 4,88 1,03 2,80 2,72 0,83 0,21 3,05 0,69 9,50 0,43 1,58 BDL BDL BDL BDL -0,68 0,155 0,428 0,410 52,90 16,24 1,622 0,115 100,23 Gt0319 orthogneiss 0.512603 (16) 0.512603 9 1 6 27 19 39 0,7 0,2 175 243 436 745 5,00 0,69 1,74 1,51 31,4 13,7 95,2 21,2 77,9 15,0 3,39 11,2 1,44 7,57 1,33 3,11 2,32 11,8 0,48 0,18 2,56 0,67 2,88 0,19 1,98 BDL BDL BDL BDL BDL BDL BDL 0,023 0,404 0,310 71,91 13,81 0,582 0,103 -12,74 100,32 Gt0314 0.511985 (18) 0.511985 Metasediment 2 2 3 13 34 21 98 1,0 6,3 0,2 6,6 103 210 379 5,12 0,29 0,76 0,80 17,1 40,3 65,3 7,40 26,6 5,59 1,40 4,74 0,68 3,85 0,73 1,81 1,48 0,10 0,47 2,81 1,35 2,46 0,08 2,19 BDL BDL BDL BDL BDL BDL 0,019 0,245 0,210 74,81 13,45 0,280 0,115 -11,80 100,26 Gt0309 0.512033 (19) 0.512033 Metasediment 2 9 20 33 91 15 18 24 1,8 8,6 0,3 5,5 0,8 Arc 134 111 107 628 237 548 5,34 6,71 5,80 1,86 36,3 31,3 64,3 8,51 35,1 8,02 2,60 7,38 1,09 6,48 1,33 3,52 3,46 0,56 0,14 3,08 0,73 9,84 0,63 1,42 BDL -2,32 0,159 0,532 0,513 50,72 16,05 1,828 0,125 100,36 Gt0303 Gt0303 orthogneiss 0.512519 (19) 0.512519 Representative analyses of serpentine from antigorite serpentinites (normslized to 10 O and 8 OH) Nd Nd 144 144 3 3 5 2 O 2 O 2 O 2 Sm/ Nd/ O O 2 2 2 SAMPLE Table 2, Geochemistry of selected samples of Southern Maya block and Chuacús Complex, Guatemala Complex, Chuacús and block Maya Southern of samples selected of Geochemistry 2, Table SiO Al Fe MnO MgO CaO Na K TiO P LOI TOTAL Sc Be V Cr Co Ni Cu Zn Ga Ge Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U eNd Major elements expressed as wt%. Trace elements expressed asppm expressed elements Trace wt%. as expressed elements Major determined not -: limits detection than below BLD: error absolute sigma 2 the to refer ratios 143Nd/144Nd the in parentheses in digits two last *: 147 143 TABLE 2 TABLE

Geologica Acta, 9(3-4), 329-350 (2011) 336 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

for pristine mantle-derived melts (Langmuir and Hanson, (N-MORB) and display small negative Eu anomalies, 1980), they have compositions that are typical of slightly whereas two samples have relatively flat LREE and differentiated tholeiitic basalts. Despite major element depleted HREE without Eu anomalies (Fig. 5A). homogeneity, the REE patterns of these rocks are variable. Extended incompatible trace element patterns are Three samples have the typically depleted LREE and also similar to MORB, although fluid mobile elements flat HREE pattern of normal mid-ocean ridge basalts (Cs, Rb, Ba, U) have been likely perturbed by weathering since they resemble the enrichments that are often observed in altered-oceanic crust (Staudigel et al., 1996; Fig 5A). In F Oceanic Tholeiites A 1000 Orthogneisses 100 A) Oceanic Tholeiites/N-MORB Pelitic Gneisses 1 Migmatites 100 tholeiitic Granites (Rabinal) Average 0.1 La Pr Sm Gd Dy Er Lu 10 EPR-MORB Ce Nd Eu Tb Ho Yb

1

Altered Oceanic Crust calc-alkaline 1000 B) Orthogneisses/N-MORB 1000 100 A M 100 3.0 10 1 B La Pr Sm Gd Dy Er Lu 10 Ce Nd Eu Tb Ho Yb 2.5

2.0 1

1.5 1000 1000 2 C) Pelitic Gneisses/ N-MORB 1.0 100

TiO (wt%) 100 10

1 0.5 La Pr Sm Gd Dy Er Lu 10 Ce Nd Eu Tb Ho Yb 0.0 12.0 1 C 10.0 1000 100 D) Migmatites/N-MORB m 10 8.0 100

1 l 6.0 10 0.1 La Pr Sm Gd Dy Er Lu Ce Nd Eu Tb Ho Yb

CaO (wt%) 1 4.0 Melanosome (m)

2.0 0.1 Leucosome (l) 0.01 0.0 CsRb Ba Th U Nb Ta K La Ce Pb Pr Sr Nd Zr Hf SmEu Ti Gd Tb Dy Ho Er Yb Y Lu 40 50 60 70 80 Figure 5, Solari et al, 2010 FIGURE 5 Trace element geochemical composition of rock suites from SiO2 (wt%) Chuacús Complex, normalized to the N-MORB values of Sun and Mc- Donough (1989). REE elements normalized to the chondrite values of FIGURE 4 Major element compositions of rock suites from Chuacús McDonough and Sun (1995). Also shown for comparison is the compo- Complex. A) AFM diagram after Irvine and Baragar (1971). B) TiO2 vs sition of an average EPR-MORB (Lehnert et al., 2000), and of a typically SiO . C) CaO vs SiO . 2 Figure2 4, Solari et al, 2010 altered oceanic crust (Staudigel et al., 1996).

Geologica Acta, 9(3-4), 329-350 (2011) 337 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

fluid immobile elemental ratios (Th/Nd, La/Nd, Sr/Nd, Nd/Yb), arc magmas, such as Large Ion Lithophile Elements (LILE) these rocks display end-member compositions with values that enrichment relative to the High Field Strength Elements overlap a typical Pacific MORB. Nonetheless, Nb/Ta ratios (up (HFSE). It is possible that fluid mobile elements like Cs, Rb, to 40) are much higher than in MORB, probably suggesting and Ba were perturbed by weathering and/or metamorphism; that an element like Ta did not remain completely immobile but high LILE/High Field Strength Elements ratios are also during high-grade metamorphism. coupled with relative enrichment in Th (i.e. high Th/Nb ratios), which are considered as fluid immobile. This suggests Orthogneisses (e.g., samples Gt0303, Gt0319, Gt0320, that the “arc-like” geochemical signatures of these magmas Gt0321 in Table 2) have variable compositions that range were likely acquired by crustal inputs, either in the form of from gabbroic to granitic and display a systematic decrease subducted sediments or by crustal contamination during in MgO, F2O3, and TiO2 with increasing SiO2, Na2O and ascent. Yet the Th/Nb ratios of the least evolved calc-alkaline K2O, characteristics that are typical of calc-alkaline magmas orthogneisses are higher than those of similarly evolved worldwide (Fig. 4A). Chondrite-normalized REE patterns tholeiitic metabasalts, strongly suggesting a primary origin in show enrichment in LREE and slightly depleted HREE that a magmatic arc environment. are in contrast to what is observed in the tholeiitic amphibolites (Fig. 5B). A small negative Eu anomaly is only observed in a Pelitic gneisses are silica and potassium-rich and relatively evolved granite. Extended N-MORB normalized have overall chemical characteristics that are typical of trace element patterns also display features that are typical of hemipelagic sedimentation (e.g. samples Gt0309, Gt0314, Gt0360 in Table 2). They are LREE enriched, with either flat or depleted HREE, and usually display negative Eu anomalies. 10.0 Incompatible trace element patterns also display mature A upper crustal features, with highly enriched LILE/High Field Strength Elements ratios that are coupled with negative Sr 5.0 and TiO2 anomalies (Fig. 5C). Interestingly, Nb/Ta ratios are also unusually high for upper crustal lithologies (up to 0.0 ~60), probably indicating a preferential mobilization of Ta during metamorphism.

Nd (t=225 Ma) -5.0 Distinct magmatic phases from El Chol migmatites have different compositions. A sample taken from the -10.0 melanosome (Gt0334, Table 2) has the chemical character of an enriched oceanic basalt, with relatively high Nb-Ta contents and fractionated REE patterns. In contrast, the -15.0 leucosome (Gt0333) is silica-rich and trondhjemitic 40 50 60 70 80 (K2O/Na2O=0.3). The incompatible trace element pattern of SiO2 (wt%) the leucosome displays strong positive anomalies in LILE,

K2O, Pb and Sr that are not accompanied by equivalent 10.0 enrichments in elements like Th and U. Y and the HREE B are strongly depleted when compared to the LREE, but the 5.0 trondhjemitic leucosome also displays a distinctive concave upward pattern in which elements like Ho and Er have the lowest relative concentrations (Fig. 5D). Also noteworthy is 0.0 that Zr and Hf are enriched when compared to their nearest neighbors, and form a distinctive positive anomaly. These -5.0 chemical characteristic are indicative of melting under Nd (t=225 Ma) garnet amphibolite facies conditions (Foley et al., 2002).

-10.0 Nd isotopic compositions were recalculated to 225Ma in accordance to the most important magmatic -15.0 and recrystallization event recorded by U-Th/Pb 0.0 0.5 1.0 1.5 2.0 geochronology (see below). All amphibolites have Th/Nb positive εNd (up to ~10) values that are close to those FIGURE 6 Initial Nd isotopic compositions calculated to 225Ma for the of the calculated depleted upper mantle for that age. In

Chuacús Metamorphic Complex correlate inversely with A) SiO2 con- contrast, orthogneisses are less radiogenic (εNd=3.23 tents and B) Th/NbFigure ratios. 6, Solari et al., 2010 to -1.95), with isotopic values that correlate negatively

Geologica Acta, 9(3-4), 329-350 (2011) 338 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

with SiO2 and Th/Nb ratios (Fig. 6A, B). As it is separated from this pegmatite are colorless to pale pink, commonly observed in ancient upper crustal lithologies, quite large (up to 280µm in length) and range in shape from pelitic gneisses have very negative εNd (εNd=-10), with large prismatic to stubby. Under cathodoluminescence values that are even less radiogenic than the Ordovician they are mostly unzoned and characterized by low Rabinal Granite. Interestingly, the melanosome at El luminescence, although some show a faint sector-zoned to Chol has a positive εNd whereas the trondhjemitic patchy-zoned cores, sometimes surrounded by moderately leucosome displays a very negative value, indicating luminescent, faintly oscillatory-zoned rims (examples in that both components are genetically unrelated and that Fig. 7). A total of 30 analyses were performed on 30 zircons additional crustal lithologies underwent partial melting. belonging to this sample. The cores have an average age of 982±12Ma (Fig. 8A), as well as high Th/U ratios and Geochronology typical REE anomalies indicative of igneous origin (e.g., Rubatto, 2002 and Fig. 9A). The overgrowths, as well as Gt 0315 those zircons which show a uniform cathodoluminescence, have very low Th/U ratios of less than 0.01, and show Sample Gt0315 is a pegmatite which intrudes a gabbroic LREE depletion compared to HREE (Fig. 9B). The mean boudin neck in the locality of Quebrada Honda. Zircons 206Pb/238U age of 74+3/-1Ma obtained on such overgrowths

Gt 0315 Gt 0320 70.2±0.4 219±1 230±2

75±2

74±1 225±1 231±1 997±28 Gt 0319 Gt 0321 215±15

218±2 221±2 225±2 1073±36

217±2 235±2 221±2 359±3 215±2 Gt 0405 Gt 0332 443±2

249±1 838±4

237±1 243±1

218±1

451±3 451±2 Gt 0318 265±1

504±4 222±2 253±2 182±2 246±2

FIGURE 7 Cathodoluminescence image of some representative zircons analyzed in this work. The circles represent the 34µm LA-ICPMS analyzed spot. Figure 7, Solari et al., 2010

Geologica Acta, 9(3-4), 329-350 (2011) 339 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

data-point error ellipses are 2s data-point error ellipses are 2s

0.16 A) Gt0315 900 0.16 B) Gt0318 Intercepts at 62.9±3.6 & 982.0±12.0 [±13] Ma MSWD = 1.5 0.12 0.12 Age (Ma) box heights are 2s

Pb/ U 500 10 0.08 Mean: 74.0 +3.0 -1.0 Ma 0.08 206 238 (96.9% conf. from coherent 8 80 group of 6) 6 0.04 0.04 4 72 100 2

Age (Ma) 0 300 700 1100 0.00 0.00 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 2.0 0.16 0.048 300 C) Gt0319 D) Gt0320 Intercepts at 900 206.0± 5 .6 [±5.7] & 1056±30 [±31] Ma 0.12 MSWD=3.3 Mean: 226.0 +1.0 -2.0 Ma 260 (97.3% conf. from coherent 0.040 group of 21)

Pb/ U 0.08 235 206 238 500 Mean: 226.0 +1.0 -1.0 Ma (95.9% 245 conf. from coherent group of 20) 225 0.04 225 0.032

Age (Ma) 100 215

Age (Ma) 205 0.0 0.4 0.8 1.2 1.6 0.22 0.26 0.30 0.34 0.38 1000 0.20 0.16 E) Gt0321 F) Gt0332 Intercepts at 1000 Intercepts at 305.0± 33.0 & 1061.0±24.0 [±25] Ma 205.0± 17.0 & 1106.0±44.0 Ma 0.16 MSWD=13 MSWD=2.0 0.12 600 0.12 Age (Ma)

Pb/ U 600 0.08 250 box heights are 2s 206 238 0.08 6 230 4 0.04 200 210 0.04 2 Mean: 213.5 +2.5 -3.5 Ma (97.9% 200 Age (Ma) 190 conf. from coherent group of 10) 0 1200 0.00 0.00 400 800 0.0 0.4 0.8 1.2 1.6 2.0 0.4 0.8 1.2 1.6 2.0 2.4 1400 G) Gt0309 0.24 0.20 Intercepts at H) Gt0341 220± 5 & 954 ± 17 [ ±18] Ma Intercepts at 1200 MSWD= 7.3 1000 0.20 435± 20 & 1398 ± 77 Ma 0.16 MSWD= 20 1000 0.16 Figure 8, Solari et al., 2010 0.12 800 600

Pb/ U 0.12 600 600 520

206 238

0.08 0.08 440 Mean: 449.0 +1.0 -3.0 Ma (96.5%

0.04 Age (Ma) 360 conf. from coherent group of 15) 0.04 200 400 280 0.0 0.4 0.8 1.2 1.6 2.0 0 1 2 3 0.16 0.20 I) Gt03113 J) Gt0405 900 Intercepts at Intercepts at 271 38 & 742 86 Ma 466± 27 & 1096 ± 17 [ ±19] Ma 0.12 MSWD= 1.3 MSWD =5.4 0.16

Pb/ U 500 800 0.08 800

206 238 Mean: 450.0 +2.0 -4.0 Ma (96.1% conf. 0.12 600 from coherent group of 9)

0.04 400

Age (Ma) 200 0.08 Mean: 243.0 +3.0 -3.0 Ma (96.9% conf. from coherent group of 6)

0.6 1.0 1.4 1.8 2.2 0.4 0.8 1.2 1.6 207Pb/ 235 U 207Pb/ 235 U

FIGURE 8 U-Pb concordia diagrams of the samples dated by LA-ICPMS. Concordia, ages and errors are calculated using Isoplot 3.7 (Ludwig, 2008). The mean 206Pb/238U ages in the insets, 2-sigma errors and outlier filtering are calculated with the TuffZirc algorithm of Ludwig and Mundil (2002). For those samples containing abundant detrital zircons, i.e. A, C, G, and I, the inset diagrams are combined histograms and probability density plots. Preferred ages are common-Pb corrected using the algebraic method of Andersen (2002). 206Pb/238U ages are used if <1000Ma, whereas 207Pb/206Pb are used if >1000Ma. See text for further explanations.

Geologica Acta, 9(3-4), 329-350 (2011) 340 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

is interpreted as indicating the recrystallization under high- Gt 0321 grade metamorphic conditions (concordia of Fig. 8A). This is a granodioritic orthogneiss, intensely foliated, Gt 0318 cropping out in the Barranca Agua Caliente. Leucocratic bands, such as the one dated, contain mafic pods up to 30cm This sample is a high-grade metasedimentary rock in size, which were recognized as retrogressed eclogites cropping out in Los Altos, northeast of Pachalum (Fig. 2). It (cf. Ortega-Gutiérrez et al., 2004). Zircons separated from is made up of garnet, relic omphacite, white mica, hornblende this sample are up to 350µm in size and pale yellow to and interstitial plagioclase. Rutile is present as an accessory dark red in color. Under cathodoluminescence, they show mineral, often surrounded by titanite rims. We performed a frequent presence of oscillatory-zoned cores, surrounded 45 U-Pb analyses on 45 zircons separated from this sample, by variably developed zones of oscillatory overgrowths. 9 of which were discarded due to their large discordance. Of the 50 analyses which were performed on 50 zircons Zircons are in general elongated to ovoidal in shape, with belonging to this sample, 17 were discarded because polished terminations typical of sedimentary transport. they were highly (17-42%) discordant, probably as a Under cathodoluminescence they show complex zoning, consequence of partial Pb loss. The other analyses yield a with presence of inherited cores surrounded by variably poorly defined Grenvillian upper intercept (1106±44Ma) luminescent overgrowths (examples in Fig. 7). The dated and a cluster of concordant to slightly discordant analyses zircons yield a main cluster at 245Ma followed by other corresponding to the lower intercept (Fig. 8E). Such analyses, minor ones at 182, 895, 930, and concordant zircons at showing an igneous Th/U ratio well above 0.05, yield a 125, 505, and several others between 606 and 1007Ma 206Pb/238U weighed mean age of 213.5+2.5/-3.5Ma, which is (concordia of Fig. 8B). Although the main provenance regarded as the best approximation of the crystallization is thus Triassic, the few Jurassic to Cretaceous zircons age of this granodiorite. indicate a young episode of sedimentation in the southern Sierra de Chuacús, postdated by high-grade Gt 0332 metamorphism. This sample belongs to a leucosome migmatitic Gt 0319 orthogneiss of El Chol (Fig. 2). The poly-deformed leu- cocratic bands are interlayered, and some still preserve This is a foliated gabbro cropping out in Los Limones relict eclogitic assemblages. Previous U-Pb TIMS locality, principally composed of clinopyroxene, garnet, dating of zircons belonging to this sample yielded plagioclase, minor biotite, titanite and opaque minerals. discordant results, with a lower intercept of 302±52Ma We dated 60 crystals by LA-ICPMS, 6 of which were and an upper intercept of 1024±78Ma (Ortega-Gutiérrez discarded because their discordance was more than 10%. et al., 2004). The lower intercept was interpreted as the Under cathodoluminescence, the imaged zircons show a age of migmatization. predominance of oscillatory (i.e., igneous) growth, with only minor bright overgrowths developed on some of the The zircons selected for LA-ICPMS are of variable crystals (Fig. 7). Both oscillatory-zoned cores, as well size, between 80 and 350µm. They are stubby to as overgrowths, show an almost indistinguishable age multifaceted and prismatic, and show a light pink to red pattern with a mean 206Pb/238U age of 226±1Ma. This age is color. Under cathodoluminescence they generally present interpreted as indicating the crystallization of the gabbroic one or two episodes of variably luminescent overgrowths, protolith (concordia of Fig. 8C). developed around more or less preserved relict cores. The cores often show oscillatory zoning (Fig. 7). U-Pb dating Gt 0320 stresses the extreme complexity of such samples, and the record of several distinct events. The inherited cores are Gt 0320 is an intermediate igneous rock composed of generally concordant, and broadly Grenvillian in age, plagioclase, clinopyroxene, hornblende, opaque minerals, ranging between ~900 to ~1100Ma (Fig. 8F). Their Th/U biotite, titanite, cropping out nearby sample Gt 0319. ratios (>>0.01) as well as the REE pattern, with marked Cathodoluminscence shows the ubiquitous presence of positive Ce and negative Eu anomalies, strongly confirm oscillatory zoning, with eventual thin, high-luminescent the igneous nature of the protolith (Fig. 9C and Table I rims developed around cores (Fig. 7). We dated 41 (electronic appendix in www.geologica-acta.com), (e.g. crystals belonging to this sample. Five analyses were Hoskin and Schaltegger, 2003). The data obtained on the omitted because of having >10% discordance. There is no overgrowth analyses indicate the presence of at least two inheritance in any of the dated crystals and therefore the different events. A first recrystallization event occurred mean 206Pb/238U age of 226+1/-2Ma is interpreted as an during the Mississippian (324-348Ma). The second indication the crystallization of this sample (Fig. 8D). overgrowth developed during the Triassic - Latest Permian

Geologica Acta, 9(3-4), 329-350 (2011) 341 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

(218-253Ma), generating thin oscillatory bands under CL Th/U ratios are lower than igneous cores, and their REE (Fig. 7). In all the overgrowth episodes the corresponding patterns indicate an overall depletion in LREE (La to Eu) with respect to HREE (Gd to Lu), indicating the possible interaction with high-grade metamorphic fluids (Fig. 9D). 10000 A) Gt0315 / CI chondrite Gt 0309 1000 (ca. 982 Ma igneous cores)

100 This sample is a pelitic metasedimentary rock made up of garnet, kyanite, phengite, quartz, biotite, 10 plagioclase and abundant rutile. It crops out in the southern Sierra de Chuacús (Fig. 2), north of the unpaved 1 road which connects Pachalúm with Caquíl. Separated zircons range between 40 and 320µm in size. They show 0.1 different colors, varying between dark to pale red, and colorless to amber. They also show a different degree 10000 of roundness. One hundred crystals were analyzed, B) Gt0315 / CI chondrite one analysis each, and 6 of them were discarded due (ca. 74 Ma) 1000 to >10% discordance. Of the remaining grains, several yield Proterozoic frequency maximums at 915, 941, 961, 100 and 1106Ma (Fig. 8G). Some younger grains are also 10 concordant (e.g. between ~690 to ~702Ma), however the vast majority are slightly discordant. The lower 1 intercept of such discordant grains is 220±5Ma. We interpret this lower intercept as indicative of the thermal 0.1 event responsible for metamorphism and deformation of the sedimentary protholith, as well as for Pb loss in the variably discordant zircons. C) Gt 0332 / CI chondrite 10000 (Grenvillian, igneous) Gt 0341 1000 This orthogneiss crops out along the paved road which 100 connects El Rancho with Cobán, near the turn off to Salamá 10 (Fig. 2). It is made up of quartz, plagioclase, k-feldspar augens mantled by biotite and minor white mica. Pyrite 1 is quite abundant as an opaque mineral. The concentrated 0.1 zircons are colorless to pale colored, with yellow to orange tonalities. A total of 50 analyses were performed 0.01 on 50 crystals and only one was discarded because of D) Gt0332 / CI chondrite having >10% discordance. The remaining crystals define 10000 (Recryst. ca. 220-348 Ma) a principal cluster around 440Ma (concordia of Fig. 8H), 206 238 1000 with a weighted Pb/ U mean of 449+1/-3Ma, which is interpreted as the crystallization age of this sample (Fig. 8H 100 inset). Few zircons are inherited from the source, and only two 10 yield younger discordant ages, probably as a result of Pb loss.

1 Gt 03113

0.1 Sample Gt03113 is a granitic dike that cuts across 0.01 high-grade metamorphic rocks (garnet+amphibole) in La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu the northern Chuacús Complex (Fig. 2). Few zircons FIGURE 9 ircon REE elements patterns normalized to the chondrite were concentrated from this sample. They are dark red, values of McDonoughFigure and 9, SunSolari (1995), et al., obtained 2010 by LA-ICPMS on the short prismatic, and in general show abundant cracks same spot analyzed for U-Pb geochronology. A) ~982Ma igneous cores, pegmatite sample Gt0315; B) ~74Ma metamorphic zircons, pegmatite and inclusions. Only 30 analyses were performed on sample Gt0315; C) Grenvillian igneous zircons, sample Gt0332; D) 30 selected crystals, 3 of which were discarded because 220-348Ma recrystallized metamorphic rims, sample Gt0332. of >10% discordance. The remaining analyses define a

Geologica Acta, 9(3-4), 329-350 (2011) 342 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

well constrained upper intercept at 1096±17Ma, several tectonothermal events that affected it, as well as its possible variably discordant grains younger than 1100Ma and paleogeographic settings. Three main events are discussed: also a well constrained lower intercept at 466±27Ma, 1) Ordovician magmatism, 2) Triassic magmatism underlined by two analyses of crystal rims (Fig. 8I). Two and metamorphism and its tectonic implications, and interpretations are possible: either the upper intercept 3) Late Cretaceous magmatism and metamorphism. The defines the crystallization age of the pegmatite, and the autochthonous vs. allochthonous nature of the Chuacús lower is coincident with a tectonothermal disturbance, Metamorphic Complex with respect to the Maya Block or the upper intercept represents the inheritance from the will be discussed at the end of this chapter. protolith, and the lower intercept is the true crystallization age. Several features suggest that the last interpretation is Ordovician magmatism correct: 1) all the analyzed grains have a high Th/U ratio, indicative of igneous crystallization; 2) the pegmatite is Although Grenvillian and other Mesoproterozoic undeformed and does not show any metamorphism; inherited ages are present in most rocks, they are in general and 3) its outcrop is in close vicinity with sample Gt0341, overprinted, or reworked by Ordovician magmatism at the which has a similar age, and with the Rabinal granite suite, southern edge of the Maya Block, as previously reported which also yielded Ordovician crystallization ages (e.g. for the Rabinal-Salamá area of central Guatemala by Ortega-Obregón et al., 2008). Ortega-Obregón et al. (2008) who dated S-type granites between 455-462Ma. Ordovician bodies are also present Gt 0405 nearby the Chiapas Massif of SE México, where Pompa- Mera et al. (2008) dated an S-type granite at 482±3Ma This is a migmatitic gneiss which crops out in the and an amphibolite at 456±14Ma (U-Pb, single-grain southern Sierra de Las Minas, which has been considered zircons), as well as in the Altos Cuchumatanes, where as the eastern continuation of the Chuacús Metamorphic Solari et al. (2010a) reported an undeformed granite whose Complex. It is exposed along the Pasabien River, 5km crystallization age was dated at 461+6/-3Ma. In Belize the northwest of Río Hondo. The gneiss is made up of up to magmatism is mainly Silurian, dated at ~410Ma (Martens 20cm thick leucocratic bands (quartz - plagioclase feldspar et al., 2010). In the northern Sierra de Chuacús Ordovician - biotite ± muscovite) alternated with garnet - amphibole magmatism is represented by orthogneisses and pegmatitic - biotite pla gioclase horizons. Abundant zircons were dikes (samples Gt0341 and Gt03113, respectively), which separated from this sample. They range from 40 to 350µm intrude greenschist facies metasediments belonging either in size, and are colorless to intensely red-amber colored. to the San Gabriel unit or the Chuacús Metamorphic A total of 55 LA-ICPMS analyses were performed on 55 Complex (cf. Solari et al., 2009). Bimodal magmatism is selected grains, 14 of which were rejected because of more widespread in the Acatlán Complex of southern México than 10% discordance (Table I, electronic appendix in and associated to rifting of the Rheic Ocean (e.g. Miller www.geologica-acta.com). The remaining analyses define et al., 2007; Ortega-Obregón et al., 2009). In northwestern a bimodal distribution in the concordia diagram of Fig. 8L, México the Río Fuerte Formation (Late Ordovician) with two principal peaks at 450+2/-4Ma and 243±3Ma. contains magmatic zircons of both Ordovician and Whereas the older age group corresponding to igneous age (Vega-Granillo et al., 2008). Ordovician cores (see cathodoluminescence images of Fig. 7) is readily magmatism has been documented as well all around the interpreted as indicating an Ordovician magmatic event, the Rheic Ocean realm, generally represented by continental, younger age group is more complex, being characterized within-plate tholeiites and as felsic magmas originated by by a series of 17 analyses straddling concordia between crustal melting of Neoproterozoic and Mesoproterozoic 255 and 220Ma. Moreover, those analyses are probably a basement (Murphy et al., 2009, 2010, and references mix of different zircons: igneous zircons characterized by therein). Thus, the presence of some Ordovician rocks in Th/U ratios >0.1 and a mean 206Pb/238U age of 249.5±2Ma the northernmost Chuacús Metamorphic Complex (sample and dark red, high-U, metamict zircons with a Th/U ratio Gt0341), as well as in the nearby Sierra de Las Minas <0.02 and 206Pb/238U ages comprised between 243 and (sample Gt0405) cannot be used as conclusive evidence to 220Ma. These last ages reflect a high-grade event maybe establish its autochthony relative to the Maya Block sensu coincident with migmatization, which is responsible for strictu (cf. Ortega-Gutiérrez et al., 2007; Ortega-Obregón the variable Pb loss in some of the analyzed zircons. et al., 2008).

Upper Triassic magmatism and metamorphism Discussion Ordovician magmatism was not recognized in the The new data presented in this paper on the Chuacús higher grade central and southern Sierra de Chuacús, Metamorphic Complex allow a better definition of the where the main magmatic event is Upper Triassic (218-

Geologica Acta, 9(3-4), 329-350 (2011) 343 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

226Ma, samples Gt0319, Gt0320, Gt0321) and has an arc- no similar rocks occur beyond those faults. Although the like geochemical signature. This magmatic event is also Chuacús Metamorphic Complex occurs next to typical coincident with the tectonothermal event responsible for Maya cover and basement units of pre-Jurassic age, its migmatization in El Chol (sample Gt0332) and Sierra de youngest cover is of Neogene age, and thus, in principle, Las Minas (sample Gt0405). Because remnants of eclogite- it should be considered a suspect tectonostratigraphic unit facies mafic rocks are present within these deformed presently located between the Maya and Chortís blocks. At migmatites, and are also recognized as deformed lenses least three points must be considered to further evaluate the nearby the felsic orthogneisses (sample Gt0321, 218Ma) allochthonous versus autochthonous nature of the Chuacús of Agua Caliente River (cf. Ortega-Gutiérrez et al., 2004), Metamorphic Complex with respect to the Maya Block. we interpret such Upper Triassic ages to be younger than the eclogite-facies metamorphism of the Chuacús The Maya Block north of the Baja Verapaz Shear Metamorphic Complex. It is interesting to note that none Zone and, furthermore, north of the Polochic fault, does of the S-type Ordovician granites cropping out north not record many of the tectonothermal events that have of the Sierra de Chuacús (Rabinal-Salamá area), along been recognized in the Chuacús Metamorphic Complex. the Baja Verapaz shear zone of Ortega-Obregón et al. These include HP metamorphism (e.g. Ortega-Gutiérrez (2008) contain xenoliths of eclogite-facies mafic rocks. et al., 2004; Ratschbacher et al., 2009, and this paper), This suggests that the eclogite facies metamorphism Triassic magmatism and deformation/migmatization is constrained between the age of emplacement of the (Ratschbacher et al., 2009, and this paper), and widespread Ordovician granites and the Triassic arc magmas. presence of Late Cretaceous, amphibolite facies reworking and magmatism (McBirney, 1963; Ortega-Gutiérrez et al., Late Cretaceous magmatism and metamorphism 2004; Martens et al., 2007; Martens, 2009; Ratschbacher et al., 2009, and this paper). Late Cretaceous metamorphic overprint is present in many of the Chuacús Metamorphic Complex rocks No other basement outcrop within the Maya Block (e.g., Ortega-Gutiérrez et al., 2004, and references (Guichicovi, Chiapas Massif, Maya Mountains) shares therein; Martens et al., 2007; Raschbacher et al., 2009). geological similarities with the Chuacús Metamorphic Some pegmatites were also generated by high-grade Complex. For instance the Guichicovi Complex is metamorphism during the Late Cretaceous, and sample composed of Grenvillian (1000-1300Ma, Weber and Gt0315 is a clear example of this. Late Cretaceous Kohler, 1999) granulites, only affected by Permian metamorphism was also reported in the San Gabriel intrusions; whereas the Chiapas Massif is made up of unit (Ortega-Obregón et al., 2008), along the Baja high temperature gneisses, intruded by Late Permian Verapaz Shear Zone, during overthrusting of the Chuacús granites metamorphosed at 250-254Ma (Weber et Metamorphic Complex on top of the southern Maya Block al., 2005), and later covered by Jurassic red beds edge. High-pressure metamorphism is also evidenced in (Blair, 1988). The Maya Mountains are constituted by several Ar-Ar ages calculated in phengites belonging Silurian plutons, Devonian (and older) strata, covered to the Motagua mélange, which yielded 77-65Ma by Early Devonian volcanics and sedimentary rocks (Harlow et al., 2004) and were interpreted as the result of late Paleozoic age (Martens et al., 2010). None of of the Late Cretaceous collision of the Rise the aforementioned units contain high pressure rocks. with the southern edge of the Maya Block. Tectonic Furthermore the Chuacús Metamorphic Complex is convergence between the northern Caribbean and the characterized by the absence of Devonian and Permian southern North American plates caused subduction of the ages, as well as by the absence of any sedimentary Chuacús Metamorphic Complex and HP-HT conditions cover older than the Cenozoic. followed by its exhumation, as well as by the northward obduction of El Tambor ophiolites and closure of the The voluminous Late Permian granitic magmatism, Proto-Caribbean Ocean along the paleo Motagua Suture recently dated by Schaaf et al. (2002) and Weber et al. Zone (e.g. Brueckner et al., 2009; see also García-Casco (2005) in the Chiapas Massif, as well as by Solari et al. et al., 2008 for correlation with the Antilles). (2010a) in the Altos Cuchumatanes, is not represented by detrital zircon ages in any of the more than 500 Allochthony vs. autochthony of the Chuacús Meta- zircons dated in this work. Furthermore, volcanic units morphic Complex with respect to the Maya Block in the Jurassic Todos Santos Formation, cropping out in Chiapas state, and farther to west, in the Cuicateco The Chuacús Metamorphic Complex constitutes terrane of southern México, were recently dated by the highest-grade metamorphic complex of all Central Godínez-Urban et al. (2011) and Pérez-Gutiérrez et al. America. Major faults bound the complex to the north (2009), respectively, and yet none of the dated samples (Baja Verapaz) and south (Motagua fault system), and show the presence of Middle-Upper Triassic zircons,

Geologica Acta, 9(3-4), 329-350 (2011) 344 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

A B

BALTICA Marathon-Ouachitathrust front FLORIDA CCT FLORIDA MAYA

MAYA PROTO- PACIFIC SM

LAURENTIA SM OCEAN

AVALONIA MIX OAXAQUIA MIX OAXAQUIA

AFRICA

CHORTIS

CHORTIS

Permo-Triassic Andean front Pan-African-Brasiliano Pre-Andean GONDWANA Sediments transport shape of Permian arc South America Arequipa Triassic arc Ordovician CMC (possible positions)

FIGURE 10 Paleogeographic models for the Ordovician A) and the Permo-Triassic B) Modified from Dickinson and Lawton (2001), Ortega-Obregón et al. (2008), Nance and Linnemann (2008), Weber et al. (2008), and Solari et al. (in press). MIX: Mixteco terrane; SM: Sierra Madre terrane; CCT: California-Coahuila Transform. such as those dated (213-226Ma) in this work. Although Dickinson and Lawton, 2001; Keppie et al., 2006, 2008a; these features may not be considered as conclusive and Weber et al., 2008) (Fig. 10A). These interpretations also further studies will be needed, they strongly support the agree with the Permian paleomagnetic data of Steiner allochthony of the Chuacús Metamorphic Complex with (2005). respect to the Maya Block. In these models, Paleozoic rocks of the Rabinal-Salamá On the other hand, correlation of the Chuacús area, just north of our studied area, would have lain close Metamorphic Complex with the Chortís Block to the south to NE México, north of Oaxaquia and near the Mixteco of the major Guatemalan faults may be also discarded terrane, where megacrystic granites intruded a passive- because the Chortís Black lies in on a different plate (the margin sedimentary sequence older than ~460Ma (e.g., Caribbean plate, which is considered a far traveled unit Nance et al., 2006). Those terranes would have been originated in the Pacific). Moreover basement units in this located close to northwestern Gondwana until the closure block that are most proximal to the Chuacús Metamorphic of the Rheic Ocean accompanying the amalgamation of Complex radically differ in fundamental geologicFigure aspects, 10, Solari Pangeaet al., 2010 in the late Carboniferous-Permian (e.g., Nance such as protoliths and contrasting metamorphic conditions and Linnemann, 2008). The S-type granites cropping out (HP/HT in the Chuacús Metamorphic Complex, versus to the north of the studied area could have been produced HT/LP in Las Ovejas Complex, or very low grade by partial crustal melting during the Cambro-Ordovician metamorphism of the pre-Mesozoic San Diego phyllite, rifting episode coincident with the initial stages of the Solari et al., 2009; Ratschbacher et al., 2009, and references opening of the Rheic Ocean and the separation of Avalonia therein). from Gondwana (e.g., Murphy et al., 2004).

Paleozoic-Triassic paleogeographic reconstructions This suggestion is in agreement with the zipper tectonics model invoked by Martens et al. (2010), which would Paleogeographic reconstructions for the Late explain the Silurian-Devonian shifting of magmatism Ordovician–Early Silurian and Permo-Carboniferous to the Maya Mountains of Belize during subsequent suggest that the present southern edge of the Maya extension related to the opening of the Rheic Ocean. Block was located adjacent to northeastern México (e.g., From the Early to Permian, the oblique

Geologica Acta, 9(3-4), 329-350 (2011) 345 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

convergence between Laurentia and Gondwana apparently remained largely unexplored: Among those we can suggest caused the development of an E-dipping subduction zone the following: with the onset of a new phase of magmatism in the Altos Cuchumatanes (312-317Ma, Solari et al., 2009), and the- The existence of ultrahigh pressure metamorphism reafter in northwestern and eastern México (e.g. Torres (UHP) once suggested by (Ortega-Guitérrez et al., 2004) for et al., 1999), the Mixteco terrane (~288Ma, Yañez et al., the Chuacús Metamorphic Complex has yet to be confirmed. 1991), the Oaxacan Complex (~275Ma, Solari et al., 2001), Nevertheless, intriguing minerals and peculiar textural and in the Chiapas Massif (~272Ma, Weber et al., 2007). features, coupled with thermobarometric calculations that approach such conditions, keep this possibility open for In this scenario, the Chuacús Metamorphic Complex future petrologic work in the eclogitic domains that resisted protoliths could have been deposited in a marginal basin retrogression inside the high-pressure gneisses. receiving minor input of Ordovician zircons during the Silurian, as demonstrated by their presence in one It is still uncertain if the Chuacús Metamorphic Complex metasedimentary sample dated by Solari et al. (2009) in experienced only one eclogite-facies metamorphic event. the northernmost Sierra de Chuacús (Fig. 10A). Although there is clear evidence for a mid-late Paleozoic tectonothermal event, a pervasive Late Triassic magmatism The proposed time constraint on HP metamorphism and metamorphism as well as an intense Cretaceous in the Chuacús Metamorphic Complex (Mid Ordovician tectonothermal overprint throughout most of the sequence; to Upper Triassic) is roughly coincident with HP further and more detailed studies are needed to elucidate metamorphism reported in the Acatlán Complex of southern the kinematic history of its protracted tectonic evolution. México, which was dated as Devonian and was exhumed In particular, the structural and kinematic history of the during the Mississippian (e.g., Keppie et al., 2008). In this Chuacús Metamorphic Complex has remained almost view, the Chuacús Metamorphic Complex would have unattended, despite its basic importance. been subducted during the Devonian and metamorphosed at high-grade conditions during the closure of the Rheic Finally, the lithotectonic nature of Chuacús Metamorphic Ocean in the late Paleozoic. Exhumation would have taken Complex protoliths, as preliminary described in this work, place causing decompression melting, magmatism and should in the near future be an attractive target to unravel migmatization in the Late Triassic (218-226Ma, Fig. 10B). what is, perhaps, the most important question that has not The Triassic ages in the Chuacús Metamorphic Complex been satisfactorily answered: Where does the Chuacús are only slightly younger than those of the Permo-Triassic Metamorphic Complex come from, and which were its arc of Chiapas (e.g. Weber et al., 2007), and this can be connections to the now adjacent Maya and Chortís blocks? explained by an easternmost position for the Chuacús Metamorphic Complex in the evolving E-directed, proto-Pacific magmatic arc active since the Permo- ACKNOWLEDGMENTS Triassic (Fig. 10B). We want to acknowledge several people who contributed to this work: U. Martens and S. Morán-Ical who introduced CONCLUDING REMARKS us to the Sierra de Chuacús and its fascinating rocks; O. Pérez- Arvizu, G. Solís-Pichardo, J.J. Morales, M.S. Hernández-Bernal, The discovery of high-grade metamorphic conditions P. Schaaf who helped with some of the lab work; B. Martiny who in the Chuacús Metamorphic Complex of central Guatemala kindly revised the English; and in general, the organizers and (Ortega-Gutiérrez et al., 2004) has awoken interest and participants of the 2007 IGCP 546 excursion in central Guatemala, appreciation as a key element for the geologic evolution whose field discussions and suggestions helped to refine some of the Caribbean region. This contribution presents new of the models. CONACyT grant 54559 and PAPIIT-DGAPA geochronologic and geochemical data of some of the most grant 101407 to LAS covered some of the analytical costs. distinctive lithologies of the complex, and provide important We also want to acknowledge the thoughtful reviews by U. constraints to understand this formerly neglected piece of Martens, V. Valencia and an anonymous reviewer, which the Caribbean-North America tectonic realm. Indeed, the greatly helped to improve the manuscript, as well as the new results appear to be inconsistent with previous tectonic editorial handling and suggestions of A. García-Casco. interpretations that considered the Chuacús Metamorphic Complex to be related to the Chortís-Maya collision, and instead support an independent evolution and an REFERENCES allochthonous provenance. Nevertheless we recognize that further research must be dedicated to address some other Andersen, T., 2002, Correction of common lead in U–Pb analyses important questions that are still poorly understood, or that that do not report 204Pb. Chemical Geology, 192, 59-79.

Geologica Acta, 9(3-4), 329-350 (2011) 346 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

Brueckner, H.K., Avé Lallemant, H.G., Sisson, V.B., Harlow, Triassic clastic wedge adjacent to Oaxaquia. International G.E., Hemming, S.R., Martens, U., Tsujimori, T., Sorensen, Geology Review, 48, 97-111. S.S., 2009. Metamorphic reworking of a high pressure–low Keppie, J.D., Dostal, J., Murphy, J.B., Nance, R.D., 2008a. temperature mélange along the Motagua fault, Guatemala: Synthesis and tectonic interpretation of the westernmost A record of Neocomian and Maastrichtian transpressional Paleozoic Variscan orogen in southern México: From rifted tectonics. Earth and Planetary Sciences Letters, 284(1-2), Rheic margin to active Pacific margin. Tectonophysics, 228-235. doi:10.1016/j.epsl.2009.04.032 461(1-4), 277-290. Carswell, D.A., Wilson, R.N., Zhai, M., 1996. Ultra-high Keppie, J.D., Dostal, J., Miller, B.V., Ramos-Arias, M., Morales- pressure aluminous titanites in carbonate-bearing eclogites Gámez, M., Nance, R.D., Murphy, J.B., Ortega-Rivera, A., at Shuanghe in Dabieshan, central China. Mineralogical Lee, J.K.W., Housh, T., 2008b. Ordovician–earliest Silurian Magazine, 60, 461-471. rift tholeiites in the Acatlán Complex, southern México: Dengo, G., 1969. Problems of tectonic relations between Central Evidence of rifting on the southern margin of the Rheic America and the Caribbean. Transactions Gulf Coast Ocean. Tectonophysics, 461(1-4), 130-156. Association Geological Society, 19, 311-320. Kesler, S.E., Josey, W.L., Collins, E.M., 1970. Basement rocks Dickinson, W.R., Lawton, T.F., 2001. Carboniferous to Cretaceous of western nuclear Central America: the western Chuacús assembly and fragmentation of México. Geological Society Group, Guatemala. Geological Society of America Bulletin, of America Bulletin, 113(9), 1142-1160. 81, 3307-3322. Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early Langmuir, C., Hanson, G., 1980. An evaluation of major element continental crust controlled by melting of amphibolite in heterogeneity in the mantle sources of basalts. Philosophical subduction zones. Nature, 417, 837-840. Transactions of the Royal Society London, A297, 383-407. García-Casco, A., Iturralde-Vinent, M.A., Pindell, J., 2008. Latest Lehnert, K., Su, Y., Langmuir, C., Sarbas, B., Nohl, U., Cretaceous collision/accretion between the Caribbean Plate 2000. A global geochemical database structure for and Caribeana: Origin of metamorphic terranes in the Greater rocks. Geochemistry Geophysics Geosystems, 1, 1012. Antilles. International Geology Review, 50, 781-809. doi:10.1029/1999GC000026, www.petdb.org. Giunta, G., Beccaluva, L., Siena, F., 2006. Caribbean plate margin Lenze, A., Stöckhert, B., Wirth, R., 2005. Grain scale deformation evolution: constraints and current problems. Geologica Acta, in ultra-high-pressure metamorphic rocks—an indicator 4(1-2), 265-277. of rapid phase transformation. Earth and Planetary Science Godinez-Urbán, A., Lawton, T.F., Molina-Garza, R.S., Iriondo, Letters, 229, 217-230. A., Weber, B., López-Martínez, M., 2011. Jurassic volcanic Ludwig, K.L., 2008. Isoplot 3.70. A geochronological toolkit for and sedimentary rocks of the La Silla and Todos Santos Microsoft Excel. Berkeley Geochronology Center, 4 (Special Formations, Chiapas: Record of Nazas arc magmatism and Publications), August 26, 1-77. rift-basin formation prior to opening of the Gulf of México. Ludwig, K.L., Mundil, R., 2002. Extracting reliable U-Pb Geosphere, 7(1), 1-24. ages and errors from complex populations of zircons from Gomberg, D.M., Banks, P.O., McBirney, A.R., 1968. Guatemala: Phanerozoic tuffs. Davos (Switzerland), 12th Goldschmidt preliminary zircon ages from Central cordillera. Science, Conference, Journal of Conference Abstracts, A-463. 162, 121-122. Manton, W.I., 1996. The Grenville of Honduras. Geological Harlow, G.E., Hemming, S.R., Avé-Lallemant, H.G., Sisson, V.B., Society of America, Denver, Abstracts with Programs, A-493. Sorensen, S.S., 2004. Two high-pressure-low temperature Marshall, D.J., 1988. Cathodoluminescence of geological serpentinite-matrix mélange belts, Motagua fault zone, materials. Boston, Sydney, Wellington, Unwin Hyman, Guatemala: A record of Aptian and Maastrichtian collisions. 146pp. Geology, 32, 17-20. Martens, U., 2009. Geologic evolution of the Maya Block Hoskin, P.W.O, Schaltegger, U, 2003. The composition of zircon (southern edge of the ): an example and igneous and metamorphic petrogenesis. Reviews in of terrane transferral and crustal recycling. Doctoral Thesis. Mineralogy and Geochemistry, 53(1), 27-62. United States of America, Stanford University, 166pp. Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., 2000. Nanometer- Martens, U., Ratschbacher, L., McWilliams, M., 2005. U-Pb

Size-PbO2-Type TiO2 in Garnet: A Thermobarometer for geochronology of the Maya Block, Guatemala. American Ultrahigh-Pressure Metamorphism. Science, 288(5464), 321- Geophysical Union (AGU), Eos Transactions, Fall Meeting 324. Supplement, 86(52), T51D-1387. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical Martens, U., Mattinson, C.G., Wooden, J., Liou, J.G., 2007. classification of the common volcanic rocks. Canadian Protolith and metamorphic ages of gneiss hosting eclogite Journal of Earth Sciences, 8, 523-548. in the Chuacús complex, Central Guatemala. American Keppie, J.D., Nance, R.D., Fernández-Suárez, J., Storey, C.D., Geophysical Union (AGU), EOS Transactions, 88(23), Joint Jeffries, T.E., Murphy, J.B., 2006. Detrital zircon data from Assembly Supplement, Abstract, U53A-08. the eastern Mixteca Terrane, southern México: evidence for Martens, U., Weber, B., Valencia, V.A., 2010. U/Pb an Ordovician-Mississippian continental rise and a Permo- geochronology of Devonian and older Paleozoic beds in the

Geologica Acta, 9(3-4), 329-350 (2011) 347 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

southwestern Maya Block, Central America: its affinity with magmatism and Late Cretaceous collision in the southern Peri-Gondwanan terranes. Geological Society of America Maya block, Rabinal - Salamá area, central Guatemala: Bulletin, 122, 815-829. implications for North America-Caribbean plate tectonics. Massonne, H-J., Nasdala, L., 2003. Characterization of an Geological Society of America Bulletin, 120, 556-570. early metamorphic stage through inclusions in zircon of a Ortega-Obregón, C., Keppie, J.D., Murphy, J.B., Lee, J.K.W., diamondiferous quartzofeldspathic rock from the Erzgebirge, Ortega-Rivera, A., 2009. Geology and geochronology of Germany. American Mineralogist, 88, 883-889. Paleozoic rocks in western Acatlán Complex, southern McBirney, A.R., 1963. Geology of a part of the central Guatemalan México: Evidence for contiguity across an extruded high- cordillera. California University Publications in Geological pressure belt and constraints on Paleozoic reconstructions. Sciences, 38, 177-242. Geological Society of America Bulletin, 121, 1678-1694. McDonough, W.F., Sun, S.S., 1995. Composition of the Earth. Pérez-Gutiérrez, R., Solari, L.A., Gómez-Tuena, A., Valencia, Chemical Geology, 120, 223-253. doi: 10.1016/0009- V.A., 2009. El terreno Cuicateco: ¿una cuenca oceánica 2541(94)00140-4. con influencia de subducción del Cretácico Superior enel Miller, B.V., Dostal, J., Keppie, J.D., Nance, R.D., Ortega-Rivera, sur de México? Nuevos datos estructurales, geoquímicos y A., Lee, J.W.K., 2007. Ordovician calc-alkaline granitoids in geocronológicos. Revista Mexicana de Ciencias Geológicas, the Acatlán Complex, southern México: geochemical and 26, 222-242. geochronologic data and implications for tectonics of the Pindell, J., Kennan, L., Stanek, K.P., Maresch, W.V., Draper, Gondwanan margin of the Rheic Ocean. In: Linnemann, G., 2006. Foundations of Gulf of México and Caribbean U., Nance, R.D., Zulaf, G., Kraft, P. (eds.). The Geology of evolution: eight controversies resolved. Geologica Acta, 4(1- Peri-Gondwana: The Avalonian-Cadomian Belt, Adjoining 2), 303-341. Cratons and the Rheic Ocean. Geological Society of America, Pindell, J.L., Barret, S.F., 1990. Geological evolution of the 423 (Special Paper), 465-475. doi: 10.1130/2007.2423(23). Caribbean region; a plate-tectonic perspective. In: Dengo, Murphy, J.B., Fernández-Suárez, J., Keppie, J.D., Jeffries, T.E., G., Case, J.E. (eds.). The Geology of North America, The 2004. Contiguous rather than discrete Paleozoic histories for Caribbean Region. Boulder (Colorado), Geological Society the Avalon and Meguma terranes based on detrital zircon of America, II, 405-432. data. Geology, 32, 585-588. Pindell, J., Kennan, L., 2009. Tectonic evolution of the Gulf Murphy, J.B., Gutiérrez-Alonso, G., Nance, R.D., Fernández- of México, Caribbean and northern South America in the Suárez, J., Keppie, J.D., Quesada, C., Dostal, J., Braid, J.A., mantle reference frame: an update. In: James, K., Lorente, 2009. Rheic ocean mafic complexes: overview and synthesis. M.A., Pindell, J. (eds.). The geology and evolution of the In: Murphy, J.B., Keppie, J.D., Hynes, A.J. (eds.). Ancient Caribbean Plate. Geological Society of London, 328 (Special orogens and modern analogues. Geological Society, London, Publications), 1-55. 327 (Special Publications), 343-369. Pompa-Mera, V., Schaaf, P., Weber, B., Solís-Pichardo, G., Hernández- Murphy, J.B., Keppie, J.D., Nance, R.D., Dostal, J., 2010, Treviño, T., Ortega-Gutiérrez, F., 2008. Devonian-Ordovician Comparative evolution of the Iapetus and Rheic Oceans: A Magmatism in Chiapas Massif, Southern Maya Block, México. North America perspective. Gondwana Research, 17, 482- American Geophysical Union (AGU), Eos Transactions, 89(53), 499. doi:10.1016/j.gr.2009.08.009 Fall Meeting Supplement, Abstract, V31B-2138. Nance, R.D., Miller, B.V., Keppie, J.D., Murphy, J.B., Dostal, J., Ratschbacher, L., Franz, L., Min, M., Bachmenn, R., Martens, 2006. Acatlán Complex, southern México: Record spanning U., Stanek, K., Stubner, K., Nelson, B.K., Herrmann, U., the assembly and breakup of Pangea. Geology, 34(10), 857- Weber, B., López-Martínez, M., Jonckheere, R., Sperner, B., 860. Tichomirowa, M., McWilliams, M.O., Gordon, M., Meschede, Nance, R.D., Linnemann, U., 2008. The Rheic Ocean: Origin, M., Bock, P., 2009. The North American–Caribbean plate evolution, and significance. GSA Today, 18(12), 4-12. boundary in México–Guatemala–Honduras. In: James, K.H., Ortega-Gutiérrez, F., Solari, L.A., Solé, J., Martens, U., Gómez- Lorente, M.A., Pindell, J.L. (eds.). The origin and Evolution Tuena, A., Morán-Ical, S., Reyes-Salas, M., Ortega-Obregón, of the Caribbean Plate. Geological Society of London, 328 C., 2004. High Pressure eclogite facies Metamorphism in the (Special Publications), 219-293. Chuacús Complex, Sierra de Chuacús, Central Guatemala: Rogers, R.D., Mann, P., Emmet, P.A., 2007. Tectonic terranes of Petrology, Geochronology, and Tectonic implications. the Chortis block based on integration of regional aeromagnetic International Geology Review, 46, 445-470. and geologic data. In: Mann, P. (ed.). Geologic and tectonic Ortega-Gutiérrez, F., Solari, L.A., Ortega-Obregón, C., Elías- development of the Caribbean plate in northern Central America. Herrera, M., Morán-Ical, S., Chiquín, M., Keppie, J.D., Torres Geological Society of America, 428 (Special Paper), 65-88. de León, R., Schaaf, P., 2007. The Maya-Chortís boundary: a Rubatto, D., 2002. Zircon trace element geochemistry: tectonostratigraphic approach. International Geology Review, partitioning with garnet and the link between U - Pb ages and 449, 996-1024. metamorphism. Chemical Geology, 184, 123-138. Ortega-Obregón, C., Solari L.A., Keppie, J.D., Ortega-Gutiérrez, Schaaf, P., Weber, B., Weis, P., Gross, A., Ortega-Gutiérrez, F., F., Solé, J., Morán-Ical, S., 2008. Middle – Late Ordovician Kohler, H, 2002. The Chiapas Massif (México) revised: new

Geologica Acta, 9(3-4), 329-350 (2011) 348 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

geologic and isotopic data and basement characteristics. Neues Steiner, M.B., 2005. Pangean reconstruction of the Yucatan Jahrbuch fur Geologie und Palaontologie Abhandlungen, Block: Its Permian, Triassic, and Jurassic geologic and 225, 1-23. tectonic history. In: Anderson, T.H., Nourse, J.A., McKee, Schaaf, P., Stimac, J., Siebe, C., Macías, J.L., 2005. Geochemical J.W., Steiner, M.B. (eds.). The Mojave-Sonora megashear Evidence for Mantle Origin and Crustal Processes in Volcanic hypothesis: Development, assessment, and alternatives. Rocks from Popocatépetl and Surrounding Monogenetic Geological Society of America, 393 (Special Paper), 457- Volcanoes, Central México. Journal of Petrology, 46(6), 480. doi: 10.1130/2005.2393(17). 1243-1282. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic Sedlock, R., Ortega-Gutiérrez, F., Speed, R., 1993. Tectonostratigraphic systematics of oceanic basalts: implications for mantle terranes and tectonic evolution of México. Geological Society of composition and processes. In: Saunders, A.D., Norry, M.J. America, 278 (Special Paper), 153. (eds.). Magmatism in the ocean basins. Geological Society of Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., London, 42 (Special Publications), 313-345. Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, Tanner, M., Solari, L.A., 2009. Fast reduction of U-Pb data using L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., R. Geochimica et Cosmochimica Acta, 1 (Supplement), 73- Whitehouse, M.J., 2008. Plešovice zircon - A new natural 13, A1313. reference material for U-Pb and Hf isotopic microanalysis. Torres, R., Ruíz, J., Patchett, P.J., Grajales-Nishimura, J.M., Chemical Geology, 249, 1-35. 1999. Permo-Triassic continental arc in eastern México; Solari, L.A., Dostal, J., Ortega-Gutiérrez, F., Keppie, J.D., 2001. tectonic implications for reconstructions of southern North The 275 Ma arc-related La Carbonera stock in the northern America. In: Bartolini, C., Wilson, J.L., Lawton, T.F. (eds.). Oaxacan Complex of southern México: U-Pb geochronology Mesozoic sedimentary and tectonic history of north-central and geochemistry. Revista Mexicana de Ciencias Geológicas, México. Geological Society of America, 340 (Special Paper), 18(2), 149-161. 191-196. Solari, L.A., Torres de León, R., Hernández-Pineda, G., Solé, J., Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D., Henández-Treviño, T., Solis, G., 2007. Tectonic significance Ruiz, J., Gehrels, G.E., López-Martínez, M., De La Cruz- of Cretaceous Tertiary magmatic and structural evolution of Vargas, J.C., 2007. Pressure-temperature-time evolution the northern margin of the Xolapa Complex, Tierra Colorada of Paleozoic high-pressure rocks of the Acatlán Complex area, southern México. Geological Society of America (southern México): Implications for the evolution of the Bulletin, 119, 1265-1279. Iapetus and Rheic Oceans. Geological Society of America Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Schaaf, Bulletin, 119(9), 1249-1264. P., Norman, M., Torres De León, R., Ortega-Obregon, C., Vega-Granillo, R., Salgado-Souto, S., Herrera-Urbina, S., Chiquin, M., Morán-Ical, S., 2009. U-Pb zircon geochronology Valencia, V., Ruiz, J., Meza-Figueroa, D., Talavera-Mendoza, of Paleozoic units in Western and Central Guatemala: insights O., 2008. U-Pb detrital zircon data of the Rio Fuerte into the tectonic evolution of Middle America. In: James, K., Formation (NW México): Its peri-Gondwanan provenance Lorente, M.A., Pindell, J. (eds.). Origin and evolution of the and exotic nature in relation to southwestern North Caribbean Plate. Geological Society of London, 328 (Special America. Journal of South American Earth Sciences, 26, Publications), 293-311. 343-354. Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Gómez- Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Tuena, A., Schaaf, P., 2010a. Refining the age of magmatism thermometers for zircon and rutile. Contributions to in the Altos Cuchumatanes, western Guatemala, by LA- Mineralogy and Petrology, 151, 413-433. ICPMS, and tectonic implications. International Geology Weber, B., Köhler, H., 1999. Sm-Nd, Rb-Sr and U-Pb Review. geochronology of a Grenville terrane in southern México: Solari, L.A., Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, origin and geologic history of the Guichicovi Complex. O., Tanner, M., 2010b. U-Pb zircon geochronology by Precambrian Research, 96, 245-262. an integrated LA-ICPMS microanalytical workstation: Weber, B., Cameron, K., Osorio, M., Schaaf, P., 2005. A Late achievements in precision and accuracy. Geostandards and Permian Tectonothermal Event in Grenville Crust of the Geoanalytical Research, 34(1), 5-18. Southern Maya Terrane: U-Pb Zircon Ages from the Chiapas Staudigel, H., Plank, T., White, B., Schmincke, H.-U., 1996. Massif, Southeastern México. International Geology Review, Geochemical fluxes during seafloor alteration of the basaltic 47, 509-529. upper oceanic crust: DSDP Sites 417-417. In: Bebout, G., Weber, B., Valencia, V.A., Iriondo, A., Ortega-Gutiérrez, F., 2006. Scholl, D., Kirby, S., Platt, J. (eds.). Subduction Top to Provenance ages of Late Peleozoic sandstones (Santa Rosa Bottom. American Geophysical Union, Washington DC, Formation) from the Maya block, SE México - implications Geophysical Monograph Series, 19-38. on the tectonic evolution of western Pangea. Revista Steiner, M.B., Walker, J.D., 1996. Late Silurian plutons in Mexicana de Ciencias Geológicas, 23, 262-276. Yucatan. Journal of Geophysical Research, 101, 17,727- Weber, B., Iriondo, A., Premo, W.R., Hecht, L., Schaaf, P., 2007. 17,735. New insights into the history and origin of the southern Maya

Geologica Acta, 9(3-4), 329-350 (2011) 349 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

block, SE México: U-Pb-SHRIMP zircon geochronology Formation, Chiapas: implications on regional Paleozoic from metamorphic rocks of the Chiapas massif. International stratigraphy. Revista Mexicana de Ciencias Geológicas, Journal of Earth Sciences, 96(2), 253-269. 26(1), 260-276. Weber, B., Valencia, V.A., Schaaf, P., Pompa-Mera, V., Ruiz, Yañez, P., Ruíz, J., Patchett, P.J., Ortega-Gutiérrez, F., Gehrels, J., 2008. Significance of provenance ages from the Chiapas G., 1991. Isotopic studies of the Acatlan Complex, southern massif Complex (Southeastern México): redefining the México: Implications for Paleozoic North American tectonics. Paleozoic basement of the Maya Block and its evolution Geological Society of America Bulletin, 103, 817-828. in a Peri-Gondwanan Realm. The Journal of Geology, 116, Zhang, L.S., Ellis, D.J., Williams, S., Jiang, W., 2003. Ultrahigh- 619-639. pressure metamorphism in eclogites from the western Tianshan, Weber, B., Valencia, V.A., Schaaf, P., Ortega-Gutiérrez, F., China-Reply. American Mineralogist, 88(7), 1157-1160. 2009. Detrital zircon ages from the Lower Santa Rosa Manuscript received November 2010; revision accepted May 2011; published Online June 2011.

Geologica Acta, 9(3-4), 329-350 (2011) 350 DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala

ELECTRONIC APPENDIX 706 839 730 765 762 632 695 603 793 653 799 738 743 641 820 773 623 804 802 830 824 824 783 805 731 738 676 652 693 792 711 853 583 827 710 T°C bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl Log(Ti) 0.84829666 0.951763132 1.151753091 0.982921036 0.819354015 1.440732925 1.199154779 0.945369276 0.763894393 1.010989262 1.114091374 1.498371018 1.103199066 0.077303038 0.515478469 1.360248977 1.291892951 1.286472869 1.405922792 1.381290362 1.389978264 1.271995867 0.984846748 1.295550897 0.752050631 0.521366919 0.656560103 0.454141414 0.211118804 0.843004284 1.379728486 0.396018219 1.243679001 0.339636339 1.240889137 54 76 57 99 69 90 88 87 82 39 59 33 30 43 52 45 238 191 184 232 186 169 169 203 549 259 168 469 103 397 706 901 234 945 121 100 204 113 204 390 247 280 688 901 293 189 294 1009 U 3 86 71 36 79 72 13 60 21 95 29 34 31 15 71 165 316 128 115 131 184 991 344 199 119 257 151 392 285 282 221 193 250 470 302 506 247 0.07 0.06 0.02 0.01 0.14 0.02 0.01 3.05 0.11 0.05 0.02 Th 6812 7752 8463 8495 8458 8655 7199 9578 8269 7812 8004 9560 15449 11723 12442 10957 15998 10947 10977 11737 18434 10035 13892 13086 20941 18943 13579 13842 16572 15266 14119 14421 14055 13917 10755 17691 13735 13904 15183 11627 10338 18351 16040 17363 14155 11556 10077 13183 Hf 8 8 43 67 93 61 65 47 39 33 68 83 55 51 58 59 89 89 37 24 47 35 47 46 29 45 16 51 44 21 32 54 10 17 55 73 11 42 146 192 128 171 103 111 112 149 131 133 Lu 47 49 82 96 57 36 85 709 924 229 284 429 651 243 206 355 202 167 568 304 371 226 229 778 538 295 566 310 431 389 710 113 189 111 232 182 233 228 205 594 259 235 134 252 690 338 277 211 Yb 8 31 90 33 80 74 78 88 35 38 83 46 98 79 96 95 31 83 43 32 37 94 322 397 119 108 171 334 213 103 271 124 147 290 259 133 259 157 163 141 318 213 116 112 111 362 140 118 Er 7 8 6 7 8 5 7 7 6 64 76 25 19 32 68 16 48 15 22 52 23 27 46 12 54 27 52 32 13 16 24 24 62 33 17 23 18 23 16 19 18 15 21 72 25 23 19 1.14 Ho 21 69 47 82 37 23 35 61 58 68 88 23 72 85 30 42 36 58 13 61 13 45 61 19 48 62 43 49 48 11 37 54 15 21 64 12 60 49 176 206 182 149 139 151 144 171 196 2.03 Dy 3 6 3 3 4 5 3 4 3 4 4 14 16 14 10 13 15 1.6 5.4 1.7 4.6 4.2 0.9 5.4 6.5 1.4 2.8 0.6 3.4 4.6 1.1 3.3 4.6 3.2 3.7 3.6 0.7 1.5 0.7 4.5 3.7 12.9 11.9 11.0 2.16 0.85 0.98 0.12 Tb 9 7 7 8 2 47 49 19 40 45 30 12 16 36 33 10 11 42 12 44 12 3.78 16.8 4.10 13.9 6.43 1.21 15.3 19.4 5.87 1.57 2.49 4.43 1.00 10.0 13.9 1.98 9.50 14.2 9.18 10.2 9.58 1.77 3.42 1.42 12.8 0.34 10.8 Gd 6.06 0.22 6.19 0.61 0.77 2.32 3.13 0.70 0.28 1.79 0.76 0.39 2.45 1.18 2.13 0.41 0.07 0.53 0.24 0.48 0.28 0.62 1.13 0.08 1.42 4.89 0.26 0.24 0.05 0.16 0.25 0.11 0.16 0.25 0.16 0.17 0.15 0.05 0.69 1.08 0.22 3.52 0.21 0.97 0.10 0.16 0.03 0.23 Eu 0.38 3.65 1.55 4.67 7.70 1.38 0.37 10.3 1.47 2.82 6.05 2.69 4.32 0.48 0.30 6.98 3.01 6.40 3.04 1.31 2.63 0.19 2.83 0.63 0.27 0.21 2.11 2.48 0.24 2.00 2.86 1.95 2.19 1.97 0.41 1.50 2.35 0.54 8.38 0.27 2.24 0.28 2.33 0.24 2.20 12.52 11.16 11.09 Sm 0.52 7.77 1.02 8.84 4.36 5.39 1.23 0.51 6.82 1.13 1.80 4.05 2.02 3.47 0.45 0.40 3.71 2.00 3.03 1.80 1.34 2.65 0.39 2.33 8.63 0.82 0.49 0.36 1.48 1.81 0.47 1.24 1.91 1.40 1.44 1.37 0.44 1.15 1.57 0.64 5.26 0.52 1.85 0.46 1.63 0.49 1.48 10.39 Nd 0.01 1.87 0.06 0.72 0.74 0.35 0.40 0.06 0.04 0.43 0.05 0.09 0.32 0.17 0.33 0.02 0.02 0.23 0.12 0.15 0.12 0.09 0.24 0.03 0.23 0.64 0.05 0.04 0.04 0.07 0.15 0.03 0.08 0.10 0.08 0.11 0.08 0.06 0.06 0.09 0.03 0.38 0.06 0.14 0.03 0.10 0.04 0.10 Pr 14 50 31 30 25 20 30 12 18 40 59 0.49 8.97 0.54 15.9 9.01 13.8 1.08 0.13 13.9 12.8 13.9 15.3 9.38 9.71 0.11 19.6 4.06 0.49 0.14 8.95 9.18 0.41 12.5 8.78 8.61 9.68 12.0 1.74 10.4 11.7 6.56 0.44 14.8 0.18 11.4 1.54 10.6 Ce bld bdl bdl 0.03 0.02 0.02 0.03 0.04 0.05 0.01 0.19 0.19 0.06 0.04 0.04 0.04 7.98 0.03 0.03 0.02 0.03 0.10 0.04 0.04 0.08 0.01 0.02 0.03 0.03 0.02 0.03 0.06 0.03 0.04 0.03 0.02 0.03 0.05 0.01 0.06 0.00 0.03 0.13 0.03 0.02 0.01 0.07 0.02 La 1.44 1.14 1.56 2.22 1.07 2.54 1.19 5.77 3.63 13.6 2.93 6.39 8.00 2.56 6.39 5.16 1.02 1.00 2.67 3.03 7.94 2.18 0.62 4.53 1.32 4.52 4.16 1.74 5.80 3.78 4.14 5.46 5.65 3.43 2.06 1.29 2.00 1.13 1.08 1.08 4.27 1.57 2.09 0.46 1.08 5.75 3.61 4.12 Nb 41 250 526 268 470 639 649 798 732 966 456 542 423 829 831 190 235 502 690 275 565 657 462 575 562 162 724 896 491 663 239 245 817 215 706 562 1390 2516 2039 1462 1600 1618 1053 2044 1078 1651 1996 2233 Y 6 3 2 3 7 2 2 13 28 16 10 10 10 14 25 13 32 25 19 23 20 19 24 20 17 24 18 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 6.60 8.95 1.19 3.28 8.82 5.65 4.53 7.05 Ti 6 4 4 6 24 99 34 93 32 48 70 93 47 80 13 62 67 93 72 48 73 88 58 64 64 62 69 19 16 42 18 72 30 73 bdl bdl 127 185 119 114 107 123 100 104 161 173 148 124 P Trace and REE concentrations of the selected zircons Figure 9 Trace Gt0315, pegmatite Gt0315, 14°58'15.49" 90°43'29.88" 002 Gt0315 Gt0319 019 Gt0319 Gt0315 030 Gt0315 Gt0319 018 Gt0319 Gt0315 003 Gt0315 029 Gt0315 021 Gt0319 Gt0319 004 Gt0319 007 Gt0319 009 Gt0319 Table I, Zircon geochemical data, Chuacús Metamorphic Complex, Central Guatemala. Central Complex, Metamorphic Chuacús data, geochemical Zircon I, Table 2010 al., et Solari Samplenumber 004 Gt0315 007 Gt0315 008 Gt0315 009 Gt0315 011 Gt0315 014 Gt0315 015 Gt0315 016 Gt0315 017 Gt0315 018 Gt0315 019 Gt0315 020 Gt0315 022 Gt0315 023 Gt0315 024 Gt0315 025 Gt0315 026 Gt0315 028 Gt0315 diorite deformed Gt0319, 14°57'56.9" 90°32'49" 001 Gt0319 003 Gt0319 005 Gt0319 008 Gt0319 011 Gt0319 012 Gt0319 015 Gt0319 017 Gt0319 024 Gt0319 Gt0315 013 Gt0315 Gt0319 006 Gt0319 Gt0315 005 Gt0315 014 Gt0319 016 Gt0319 Gt0315 021 Gt0315 027 Gt0315 022 Gt0319 Gt0319 010 Gt0319 Gt0315 010 Gt0315 Gt0319 023 Gt0319 TABLE I TABLE

Geologica Acta, 9(3-4), 329-350 (2011) I DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 587 718 731 695 693 730 594 699 658 664 745 736 690 755 593 700 685 721 740 745 720 546 720 563 715 755 624 652 695 533 773 668 741 699 718 741 1187 T°C bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl Log(Ti) -0.0659347 0.55558113 1.02155217 -0.19603029 0.763214558 1.021189916 0.153732124 0.588209591 0.752565659 0.785504443 0.707723998 0.901251809 0.517857267 0.950930639 0.947703735 0.734849388 0.105606177 0.868745364 1.066725496 0.761329923 1.153810115 0.610500573 0.892123547 0.883559191 0.896249179 0.346833695 1.001905299 0.789745011 0.995998407 0.782565847 0.976713284 2.530947298 0.886218314 1.000299154 1.069009689 0.147002165 -0.293224655 63 72 81 82 44 97 70 58 60 88 66 86 68 93 207 198 404 292 322 180 135 228 185 174 248 144 410 281 178 292 170 294 228 199 140 181 155 289 194 185 150 131 295 175 110 305 204 191 214 140 135 126 268 170 U 80 66 51 85 86 91 28 56 53 31 44 41 53 95 86 63 201 270 322 323 166 123 145 188 225 279 110 560 193 463 164 407 263 256 167 224 100 378 209 130 192 121 398 188 119 497 249 119 273 151 103 349 217 124 Th 7712 9270 9216 9949 7580 8719 8855 8902 9058 7112 8024 8523 7963 7454 7901 7519 9388 9447 8907 8700 9554 9652 7860 7164 6935 8042 8386 7633 9607 7897 7353 9413 9583 7640 7581 8476 6633 9933 7068 7433 9237 7801 7612 11740 10451 11243 10617 10293 11704 12343 10468 12253 10373 10434 Hf 18 90 45 74 83 87 41 91 89 90 66 74 55 50 79 90 75 66 61 59 23 48 88 37 49 59 15 66 74 24 50 67 19 37 71 47 126 103 153 147 106 182 109 139 108 100 121 133 117 124 135 100 107 132 Lu 71 93 82 93 78 591 517 428 762 233 686 535 907 362 384 448 172 682 395 509 436 560 502 562 697 308 774 622 399 282 287 432 680 401 350 645 217 468 295 322 267 274 186 235 468 314 344 595 186 215 311 328 669 207 Yb 23 96 60 90 32 68 75 35 71 32 78 23 78 241 192 186 350 284 265 435 172 145 228 298 166 221 209 289 248 295 358 114 382 246 171 111 131 187 336 162 140 271 212 108 144 103 110 196 116 154 271 127 131 358 Er 4 5 7 5 4 43 34 33 68 20 54 53 82 33 27 45 10 57 31 43 42 58 53 62 76 20 82 47 35 21 28 37 71 29 26 52 17 45 20 26 18 20 13 13 37 21 30 58 13 13 23 25 72 14 Ho 8 8 75 82 49 88 69 25 78 45 90 50 78 93 75 69 41 46 65 41 54 13 31 31 19 98 47 80 33 11 32 62 63 33 103 184 144 140 200 123 155 115 108 159 143 173 205 214 108 197 141 121 158 198 Dy 7 6 7 5 9 6 9 8 4 3 7 6 5 5 14 11 10 14 12 12 11 15 4.88 0.49 3.73 1.74 3.16 7.13 6.91 3.55 6.40 6.85 5.33 5.29 2.96 9.47 3.15 4.08 0.95 2.21 1.99 1.45 3.07 2.29 0.70 2.13 0.53 2.31 11.59 13.33 16.17 16.43 15.72 12.09 Tb 5 9 7 3 6 6 18 14 43 35 30 37 19 16 28 37 17 26 23 36 16 16 35 12 13 22 19 15 14 44 1.27 8.43 8.79 6.66 6.28 4.54 8.11 6.33 1.74 1.62 12.64 11.99 36.95 43.31 50.07 47.82 19.37 22.08 10.33 20.44 19.84 49.97 30.80 39.02 Gd 1.68 0.10 1.17 4.46 3.91 2.42 2.55 1.07 1.84 2.40 0.55 3.83 1.69 2.66 2.10 2.83 1.12 0.73 1.85 1.70 4.12 1.10 0.79 0.81 0.90 0.48 1.43 0.28 0.55 0.51 0.44 2.70 3.68 3.40 3.81 0.73 3.82 1.13 2.13 0.86 2.26 1.57 4.47 2.01 2.84 0.63 0.18 0.63 1.95 0.12 1.51 3.56 3.38 0.63 Eu 3.28 0.24 2.55 8.28 7.14 5.26 6.79 3.30 3.42 5.82 1.07 8.35 3.59 5.38 4.49 7.75 1.92 1.69 3.34 3.44 8.40 2.27 1.43 1.75 2.07 1.27 3.43 0.71 1.30 1.55 1.05 5.24 8.41 8.62 9.35 1.86 8.63 2.90 4.52 2.17 4.89 3.85 3.82 5.79 1.19 0.40 1.25 3.81 0.62 2.92 9.02 7.50 1.58 10.23 Sm 2.47 0.58 1.72 6.19 5.12 3.78 3.94 2.72 2.43 3.72 1.31 6.65 3.31 3.89 3.12 5.41 1.81 1.57 2.45 3.67 6.35 2.10 0.86 1.70 1.30 0.90 3.30 0.76 1.63 1.79 1.32 4.23 6.08 7.05 6.18 7.74 1.48 6.10 1.67 3.47 1.90 4.55 2.58 2.91 4.41 1.21 0.67 1.14 3.79 1.29 2.73 6.03 4.92 1.64 Nd 0.17 0.05 0.12 0.56 0.49 0.25 0.28 0.19 0.21 0.23 0.09 0.55 0.30 0.35 0.20 0.33 0.14 0.10 0.20 0.29 0.49 0.13 0.06 0.13 0.08 0.05 0.29 0.06 0.10 0.15 0.08 0.37 0.43 0.57 0.39 0.46 0.12 0.44 0.08 0.22 0.15 0.38 0.19 0.26 0.37 0.13 0.05 0.07 0.37 0.07 0.21 0.43 0.36 0.14 Pr 6 30 26 39 23 16 38 16 16 15 34 17 13 22 18 16 31 13 7.1 9.70 11.3 11.4 4.27 9.51 5.69 4.98 8.23 4.52 8.64 12.2 4.02 8.93 16.44 23.12 11.49 11.28 10.94 21.17 24.07 35.60 24.32 28.89 11.42 29.20 27.02 13.79 13.08 16.75 17.81 16.54 10.72 12.89 17.49 19.27 Ce bdl bdl 0.05 0.03 0.05 0.07 0.03 0.03 0.06 0.10 0.03 0.05 0.00 0.15 0.00 0.08 0.02 0.05 0.08 0.04 0.06 0.10 0.13 0.05 0.08 0.10 0.01 0.13 0.11 0.08 0.02 0.06 0.02 0.00 0.05 0.07 0.11 0.07 0.07 0.02 0.07 0.07 0.15 0.14 0.08 0.07 0.02 0.07 0.05 0.10 0.03 0.07 0.06 0.03 La 6.45 2.66 2.24 3.88 1.03 2.92 1.14 2.32 1.09 4.47 2.13 2.27 0.87 4.17 1.85 2.45 0.84 3.77 1.53 3.09 9.27 2.01 1.87 2.43 3.47 0.75 1.76 1.68 1.30 2.63 4.46 2.97 3.96 2.58 7.11 2.04 0.88 2.11 2.71 1.65 1.43 1.46 1.45 3.91 2.28 1.24 0.70 1.73 0.94 1.42 0.58 2.90 2.98 1.27 Nb 664 125 637 610 525 839 899 351 402 654 216 572 180 689 414 852 951 956 431 873 675 180 805 437 766 130 462 1117 1766 1407 1077 2173 2478 1784 1616 2536 1014 1379 1212 1861 1010 1366 1276 1639 2218 1924 2326 1477 1061 1164 1707 1391 2148 1756 Y 11 10 12 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 340 7.39 5.80 1.42 7.97 6.06 0.51 7.65 8.93 5.66 8.87 6.10 3.87 9.48 5.43 5.10 0.64 7.80 0.86 1.28 2.22 3.30 5.77 4.08 3.59 6.16 9.91 7.87 1.40 7.70 10.50 14.25 10.04 11.66 Ti 23 20 16 72 63 87 99 42 49 10 68 48 47 36 81 68 80 41 37 88 68 247 146 134 356 250 192 150 115 103 187 100 120 203 412 564 849 554 664 460 158 967 244 196 480 378 818 149 123 578 315 770 172 524 P Continued Gt0319 058 Gt0319 Gt0319 053 Gt0319 013 Gt0320 Gt0319 028 Gt0319 033 Gt0319 038 Gt0319 059 Gt0319 023 Gt0320 025 Gt0320 Samplenumber 025 Gt0319 026 Gt0319 027 Gt0319 029 Gt0319 030 Gt0319 031 Gt0319 034 Gt0319 037 Gt0319 040 Gt0319 041 Gt0319 042 Gt0319 044 Gt0319 045 Gt0319 047 Gt0319 049 Gt0319 051 Gt0319 055 Gt0319 056 Gt0319 060 Gt0319 003 Gt0320 006 Gt0320 009 Gt0320 010 Gt0320 011 Gt0320 012 Gt0320 014 Gt0320 018 Gt0320 020 Gt0320 021 Gt0320 022 Gt0320 026 Gt0320 027 Gt0320 029 Gt0320 Gt0319 046 Gt0319 057 Gt0319 028 Gt0320 Gt0319 039 Gt0319 Gt0319 043 Gt0319 054 Gt0319 002 Gt0320 008 Gt0320 Gt0320 016 Gt0320 Gt0319 050 Gt0319 gabbro deformed Gt0320, 14°57'56.9" 90°32'49" 001 Gt0320 Gt0319 048 Gt0319 TABLE I TABLE

Geologica Acta, 9(3-4), 329-350 (2011) II DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 668 718 691 723 740 709 620 671 711 709 702 718 652 634 620 694 692 562 692 742 689 577 715 765 713 721 669 658 711 637 695 749 705 731 771 678 814 698 729 609 T°C bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl Log(Ti) 0.5559389 0.74612956 1.00441451 0.25242783 0.62597851 0.761619418 0.611383906 1.143553907 0.857475871 0.882269836 0.617962445 0.951678187 0.741255368 0.670117775 0.801597915 0.517786085 0.837443497 0.886220897 0.743273313 0.729411984 0.033785807 1.116793241 0.900545554 0.849242039 0.910885653 0.817890144 0.775688502 0.941255496 1.337857028 0.320630029 0.318707321 0.757695036 0.411205829 0.867115224 0.994758068 0.429099049 1.038444237 0.844869035 0.839158302 -0.072605499 75 92 99 79 460 955 460 189 182 386 229 238 187 132 323 464 359 392 382 450 440 197 168 266 649 220 474 208 777 499 725 660 382 133 195 117 371 122 204 216 774 221 206 505 298 139 148 160 1339 1181 U 47 98 53 55 77 20 20 88 51 74 1.6 5.2 7.3 378 753 135 120 156 159 105 534 539 234 330 464 226 159 176 189 594 172 307 986 206 764 330 799 517 103 328 119 293 694 183 204 522 221 162 103 1619 Th 8457 8407 7938 7530 9694 7954 7961 8130 9303 8373 13930 15203 13121 12170 14300 14194 12656 13687 14191 13504 14964 15921 16311 12329 12069 17048 10503 13112 12389 12472 10133 12884 14318 10969 15678 15017 11192 13765 13721 13885 14579 15460 13974 11779 10944 13353 12918 12360 12309 11944 Hf 90 67 76 87 52 96 99 81 54 63 55 63 53 86 97 73 42 50 21 64 35 47 49 124 187 210 178 111 199 175 146 159 139 155 185 118 215 197 189 187 146 165 141 106 140 269 105 101 148 168 Lu ------499 604 657 225 311 282 295 697 413 526 421 552 210 277 350 113 177 227 246 1047 1005 Yb ------72 93 48 64 80 88 258 531 403 271 323 112 110 129 318 160 233 186 213 133 149 Er ------54 72 55 69 12 20 21 27 64 30 47 39 41 19 28 30 10 12 15 16 116 Ho 93 95 71 74 82 45 60 24 44 54 72 73 98 50 73 84 25 31 36 38 136 134 326 147 145 183 202 203 135 152 217 108 120 106 260 138 110 120 101 176 102 182 158 118 107 356 112 119 126 151 Dy ------10 15 11 7.8 1.6 4.1 5.4 2.96 4.22 5.55 5.33 8.70 8.27 6.89 6.42 1.83 2.15 2.42 2.44 25.90 10.66 Tb ------4 27 14 44 29 13 15 8.09 5.54 6.50 6.46 7.15 83.92 31.32 12.38 16.81 14.34 25.42 27.54 17.83 20.47 Gd 3.6 1.0 1.8 0.65 0.56 0.32 0.57 0.70 1.46 1.33 0.91 1.79 1.84 1.02 0.89 8.12 0.36 0.42 0.77 0.71 3.48 0.92 1.05 2.96 0.43 6.65 0.63 0.69 0.97 0.21 6.87 0.72 2.86 2.67 1.65 1.07 2.47 0.29 0.48 0.63 1.39 0.65 0.74 1.58 0.56 1.58 1.86 2.61 1.49 2.23 Eu 26 11 11 16 12 2.4 2.5 4.2 2.4 2.5 5.8 7.2 5.5 3.0 7.1 7.4 3.9 3.8 3.1 1.2 3.2 4.3 2.6 3.9 5.2 3.7 3.2 1.4 3.9 4.6 5.5 4.2 6.9 3.1 2.7 0.64 1.52 5.84 1.11 2.85 1.64 1.31 3.51 1.44 2.89 3.92 5.22 3.44 4.89 15.94 Sm ------3.0 3.6 1.6 1.0 2.4 2.1 0.89 1.23 3.26 1.10 2.50 1.59 1.26 2.84 1.31 3.02 2.36 4.11 2.18 3.83 11.28 Nd ------0.24 0.21 0.06 0.09 0.09 0.08 0.21 0.82 0.10 0.21 0.11 0.10 0.23 0.10 0.21 0.18 0.31 0.15 0.14 0.15 0.31 Pr 46 49 13 32 38 93 10 58 37 61 59 51 62 57 21 38 32 60 59 81 95 92 34 58 11 69 63 61 84 81 11 11 1.3 3.7 153 113 5.94 9.26 6.34 8.24 9.71 16.22 24.84 57.42 11.16 14.36 24.79 16.41 20.40 15.65 Ce 39 19 16 bdl 7.2 8.3 1.3 1.7 3.7 3.0 0.03 0.05 0.20 0.01 0.04 0.00 0.04 0.22 0.11 0.06 0.03 0.06 0.07 0.02 0.02 0.01 0.09 0.00 0.04 0.07 0.44 0.06 0.10 0.11 0.06 0.05 0.11 0.54 0.24 0.05 0.30 0.08 0.14 12.9 0.05 0.03 0.10 0.09 0.05 0.02 La ------2 3 3 5 13 4.6 1.4 3.20 3.36 7.64 0.76 1.16 2.13 1.32 2.37 1.22 2.73 3.03 3.66 1.50 2.18 Nb 881 928 639 412 296 676 517 378 947 472 811 580 657 962 573 807 1334 1609 2190 1620 1673 2666 1594 1720 1279 3483 2081 1409 1199 1260 1914 2297 2375 1082 2491 2500 1800 1967 4358 1416 1392 1464 1478 1816 1734 3083 2001 2022 1180 2346 Y 6 9 13 22 10 11 bdl bld bdl bdl bdl bdl bdl bdl bdl bdl 5.8 4.1 8.9 5.5 7.6 5.6 5.4 1.1 7.4 9.9 7.2 8.0 4.1 3.6 7.1 2.7 8.1 6.6 5.5 4.7 0.85 13.9 3.29 6.33 2.09 4.23 7.00 6.88 1.79 7.70 2.58 2.08 5.72 6.90 Ti ------4 83 49 86 20 bdl 116 383 130 327 441 187 388 547 543 443 430 748 471 369 1052 P Continued Gt0321 051 Gt0321 Gt0321 010 Gt0321 Gt0321 009 Gt0321 062 Gt0321 Gt0321 049 Gt0321 Gt0332 008 Gt0332 Gt0320 041 Gt0320 007 Gt0332 Gt0321 027 Gt0321 057 Gt0321 058 Gt0321 060 Gt0321 Gt0320 038 Gt0320 002 Gt0332 Samplenumber 030 Gt0320 033 Gt0320 034 Gt0320 035 Gt0320 036 Gt0320 037 Gt0320 039 Gt0320 040 Gt0320 042 Gt0320 043 Gt0320 044 Gt0320 orthogneiss felsic River Caliente Agua Gt0321, 14°56'07.8" 90°30'10.9" 006 Gt0321 007 Gt0321 013 Gt0321 016 Gt0321 019 Gt0321 020 Gt0321 021 Gt0321 022 Gt0321 030 Gt0321 033 Gt0321 034 Gt0321 037 Gt0321 044 Gt0321 045 Gt0321 048 Gt0321 052 Gt0321 055 Gt0321 056 Gt0321 061 Gt0321 064 Gt0321 migmatiteEl Chol leucosome Gt0332, 14°57'53.6" 90°29'12.5" 001 Gt0332 004 Gt0332 005 Gt0332 006 Gt0332 Gt0320 032 Gt0320 TABLE I TABLE

Geologica Acta, 9(3-4), 329-350 (2011) III DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 799 575 774 753 616 801 764 698 718 780 788 648 705 722 611 750 733 795 700 689 877 790 683 631 752 797 689 814 761 935 650 814 693 711 711 820 713 802 718 1053 1072 T°C bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl Log(Ti) 1.04310827 0.86014947 1.59212312 0.81329298 1.36165927 0.39315191 0.845070784 1.232525512 1.223226465 1.111469047 1.269906469 1.184900596 0.903888331 0.726617297 0.694706402 0.845419222 0.776792954 2.232300797 0.265789719 1.095834104 0.016169753 0.959636191 0.789716169 1.157080809 1.052586702 1.058710446 1.804898427 0.506379204 0.885497713 0.496733833 2.178634801 1.284174333 0.298330495 0.728288268 0.749366097 1.261846578 1.338619267 1.334855881 1.280145715 0.882341149 1.253629001 10 67 96 80 38 65 68 72 77 96 18 63 13 7.1 282 438 440 108 370 369 107 462 361 467 279 176 125 453 696 111 290 406 218 698 464 101 237 132 655 250 171 264 181 141 307 136 135 168 247 305 174 562 1465 4137 U 80 25 10 37 25 11 95 21 17 47 17 44 50 44 77 38 54 54 13 62 16 24 24 17 19 16 69 37 5.1 1.6 1.9 1.3 2.3 2.6 1.6 1.8 1.7 2.9 2.0 5.2 195 106 117 182 244 115 108 193 114 247 195 315 106 0.50 Th 15701 13870 15350 23711 16861 10248 13272 14652 15647 16816 11846 13412 18907 13858 10533 14217 14869 19682 33329 13655 18353 18142 14014 19179 13144 15717 14381 12659 12165 15475 15351 14114 13618 14819 14402 15180 18693 18171 19842 17884 14261 16780 17270 13460 11363 14927 15096 14811 12896 19846 17636 12113 16607 12003 Hf 8 49 95 77 45 23 40 61 32 45 27 58 79 38 69 58 45 56 93 47 54 37 40 88 99 77 81 89 56 50 12 39 56 51 71 57 40 17 59 28 10 63 18 54 16 7.3 314 131 171 696 106 131 156 166 Lu 72 47 65 96 52 83 271 533 347 667 199 822 124 238 332 167 259 154 326 451 209 603 386 211 247 218 652 524 251 372 199 219 494 563 428 414 487 316 264 218 741 210 187 896 263 208 230 103 324 152 222 202 1536 3611 Yb 70 62 87 93 68 64 52 74 63 33 86 72 58 48 75 46 75 73 39 69 132 624 306 132 262 342 146 165 145 184 254 119 324 211 123 261 270 132 266 106 124 273 327 251 187 245 171 125 116 280 438 129 164 1266 Er 27 67 24 46 12 62 14 34 34 19 35 23 43 59 26 71 47 10 26 10 48 64 29 76 24 28 59 14 74 58 37 51 37 27 26 44 11 10 95 14 11 17 30 11 20 14 35 17 13 11 9.1 8.3 109 223 Ho 68 54 95 22 40 97 85 53 74 72 21 69 19 81 67 79 49 89 67 72 85 24 21 31 27 22 65 84 31 68 51 88 45 25 23 22 210 177 126 493 109 168 119 188 127 103 165 193 271 154 202 128 101 255 Dy 10 14 30 11 14 10 14 10 14 16 25 12 16 20 5.1 3.4 5.4 1.2 7.1 3.4 8.0 6.4 4.2 7.8 5.5 1.2 5.9 5.4 1.0 6.6 5.5 6.8 5.4 6.3 9.2 7.9 5.1 5.8 4.1 1.5 1.3 2.9 1.6 1.5 6.8 6.8 2.7 6.6 5.3 6.6 3.7 1.4 2.1 1.3 Tb 8 2 2 3 7 13 15 50 10 13 12 24 17 13 63 41 46 38 30 16 42 30 12 46 15 44 21 71 20 22 36 22 51 17 26 24 14 18 60 10 28 21 10 23 20 19 13 2.5 6.5 2.9 3.1 3.7 2.5 2.9 Gd 1.9 0.4 0.2 4.2 3.2 0.9 5.0 0.5 1.5 1.8 0.4 2.7 0.8 0.5 0.4 0.7 1.2 0.2 0.3 3.5 0.7 1.0 0.7 0.7 0.3 0.4 0.4 0.5 0.6 0.17 0.60 0.44 0.46 0.13 0.41 0.82 0.52 0.50 0.26 0.37 0.36 0.15 0.25 0.10 0.47 0.21 0.25 0.34 0.14 0.15 0.22 0.17 0.20 0.18 Eu 14 11 14 10 17 2.4 1.0 1.3 4.6 2.7 1.1 0.5 1.5 3.2 3.1 1.2 9.4 6.6 5.7 4.6 7.9 4.6 4.7 6.1 5.5 9.4 3.1 4.4 2.9 7.5 6.2 8.2 2.9 2.6 4.2 7.0 2.5 4.0 3.2 5.5 4.7 3.0 1.8 2.9 3.5 0.56 0.33 0.69 0.52 0.53 0.58 0.57 0.54 0.52 Sm 23 15 13 28 1.7 1.2 1.2 2.8 1.7 1.4 2.8 2.6 1.0 1.0 5.4 4.0 2.2 3.2 6.7 2.6 3.2 3.1 3.9 3.4 6.2 2.0 2.4 1.8 4.3 4.1 1.1 3.3 1.9 2.1 2.7 4.5 1.8 2.4 2.8 3.3 3.3 1.9 1.8 2.1 2.4 0.93 0.91 0.85 0.74 0.71 0.88 0.63 0.79 0.79 Nd 2.9 2.2 1.0 2.3 0.09 0.09 0.06 0.15 0.11 0.07 0.05 0.08 0.20 0.14 0.04 0.07 0.33 0.29 0.06 0.10 0.23 0.39 0.13 0.23 0.18 0.20 0.20 0.39 0.14 0.14 0.12 0.26 0.29 0.06 0.06 0.07 0.16 0.13 0.13 0.15 0.02 0.06 0.25 0.11 0.12 0.20 0.23 0.19 0.12 0.15 0.14 0.13 0.08 0.05 Pr 9 8 14 39 31 16 21 24 34 12 18 33 13 28 45 30 22 24 15 18 19 44 12 40 25 33 17 12 22 10 11 21 22 18 12 20 27 19 1.8 4.9 4.6 5.0 1.4 1.7 6.0 0.7 1.2 1.4 1.6 8.8 1.5 1.5 1.3 1.5 Ce bdl bdl 3.8 4.6 0.04 0.06 0.06 0.02 0.07 0.08 0.06 0.04 0.04 0.07 0.03 0.14 0.04 0.03 0.07 0.03 0.06 0.01 0.08 0.15 0.20 0.06 0.09 0.03 0.08 0.06 0.14 0.17 0.01 0.53 0.05 0.05 0.04 0.04 0.03 0.08 0.06 0.02 0.04 0.07 0.09 0.03 0.05 0.09 0.04 0.05 0.06 0.05 0.04 0.07 La 55 11 20 24 13 11 30 11 16 8.4 3.6 4.5 9.5 1.9 1.3 3.1 3.7 1.4 3.8 1.9 5.5 3.9 7.1 8.5 2.0 8.8 5.8 5.2 3.5 8.8 2.1 5.3 3.1 1.2 1.6 1.2 1.1 8.6 6.2 4.2 4.6 3.2 1.5 3.0 1.2 6.8 5.4 5.8 1.3 2.7 8.6 1.3 1.5 1.3 Nb 779 760 891 972 358 379 537 336 323 814 686 778 374 956 708 635 375 326 362 761 461 756 256 819 302 537 366 976 239 454 715 437 413 365 3548 1878 1918 1390 1204 1488 1609 2157 7108 1658 2081 1592 1089 1474 1996 1303 1381 1802 2772 1041 Y 6 7 8 2 6 13 17 17 19 15 11 39 14 11 11 12 64 23 18 18 22 22 19 19 bdl bld bdl bdl bdl bdl bdl bld bdl bdl bdl bdl bdl 7.0 8.0 5.3 6.5 1.8 9.1 6.2 3.2 7.0 1.0 5.0 3.1 5.3 2.5 7.7 171 151 Ti 21 50 73 62 77 80 64 31 54 83 88 20 65 42 73 91 56 95 50 33 92 87 74 88 93 41 bdl bdl bdl bdl 9.1 109 144 125 117 176 123 153 156 106 967 118 145 194 153 192 130 129 147 196 101 125 2929 4754 P Continued Gt0332 055 Gt0332 Gt0332 020 Gt0332 Gt0332 009 Gt0332 Gt0332 018 Gt0332 053 Gt0332 Gt0332 015 Gt0332 026 Gt0332 036 Gt0332 044 Gt0332 Gt0332 014 Gt0332 017 Gt0332 Gt0332 063 Gt0332 064 Gt0332 065 Gt0332 Gt0332 067 Gt0332 migmatite Pasabien Rio Gt0405 15°02'21.4" 89°41'02.4" Samplenumber 011 Gt0332 012 Gt0332 013 Gt0332 016 Gt0332 021 Gt0332 022 Gt0332 023 Gt0332 027 Gt0332 028 Gt0332 029 Gt0332 030 Gt0332 031 Gt0332 033 Gt0332 034 Gt0332 035 Gt0332 037 Gt0332 039 Gt0332 040 Gt0332 041 Gt0332 042 Gt0332 043 Gt0332 045 Gt0332 046 Gt0332 047 Gt0332 048 Gt0332 049 Gt0332 051 Gt0332 052 Gt0332 056 Gt0332 057 Gt0332 058 Gt0332 059 Gt0332 060 Gt0332 061 Gt0332 066 Gt0332 Gt0332 024 Gt0332 025 Gt0332 038 Gt0332 062 Gt0332 TABLE I TABLE

Geologica Acta, 9(3-4), 329-350 (2011) IV DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 578 724 777 698 742 765 785 811 770 696 762 722 934 760 755 660 689 626 744 577 632 652 712 703 596 673 678 659 673 T°C bdl bdl bdl bdl bdl bdl bdl bdl bdl Log(Ti) 0.3939897 0.03361381 1.17033651 1.066278244 0.777501147 0.767977955 0.162698655 0.901998803 0.727853861 1.006260193 1.116968356 1.207314235 1.325347534 1.139556347 1.802549922 0.043410358 0.359597789 1.017094093 0.805750805 0.914636804 1.100910944 1.092074453 0.563937352 0.520450964 0.851755007 0.558921999 0.637967392 0.638377542 0.669399534 174 460 670 637 359 650 437 112 171 201 193 531 222 250 794 481 608 215 150 674 870 492 211 1632 1802 5585 3509 1681 5406 8019 6488 4382 3765 8981 2792 6442 2762 2862 U 9 86 38 98 78 78 80 62 56 56 41 87 88 84 60 41 33 160 464 224 147 334 207 204 115 221 130 344 112 133 327 585 127 243 386 165 157 117 Th 9735 10494 12295 12054 13094 11693 11760 10135 23831 12666 11596 11986 10483 13022 11798 12019 12309 15684 11647 17651 12576 30804 11412 11634 12264 14260 18771 17361 18246 13640 13447 19038 16700 19009 10592 18507 17076 19232 Hf 61 61 89 76 60 63 65 71 99 96 54 56 49 68 67 50 63 76 79 61 41 79 83 59 294 306 114 366 294 226 132 200 132 170 124 225 104 139 Lu 319 315 382 395 312 326 282 369 524 611 476 280 275 245 354 348 258 676 333 375 412 954 692 801 277 210 417 386 650 278 528 642 1257 1321 1906 1407 1114 1090 Yb 87 166 157 135 203 158 174 427 193 298 463 350 198 972 156 135 126 190 177 129 310 172 174 235 381 487 475 373 325 108 102 225 133 361 112 442 247 227 Er 37 34 25 43 34 39 82 15 44 69 84 39 35 29 26 43 37 28 64 38 36 54 69 90 90 76 61 21 21 50 23 81 22 82 48 40 102 227 Ho 98 87 56 88 32 91 93 74 69 94 70 93 49 54 51 53 85 113 103 200 120 190 318 248 636 153 151 214 199 165 115 165 100 136 218 141 178 104 Dy 13 16 31 22 47 14 13 12 12 17 12 10 7.6 6.8 3.8 8.6 6.5 8.3 9.6 5.9 8.6 9.5 7.1 5.7 4.9 8.9 7.0 5.1 7.5 7.2 8.1 3.2 3.9 3.0 3.6 5.7 4.8 1.66 Tb 3 9 24 19 11 24 19 26 27 32 49 89 14 44 16 23 22 17 21 17 13 26 19 14 29 21 21 15 51 11 38 10 17 9.4 7.1 9.1 126 125 Gd 2 12 1.4 3.3 1.6 1.8 1.2 0.51 0.78 0.45 0.27 0.15 0.63 0.90 0.98 0.05 0.15 0.48 0.53 0.65 0.12 0.16 0.50 0.18 0.31 0.15 0.24 0.57 0.25 0.60 0.42 0.22 0.15 0.12 0.26 0.12 0.08 0.24 Eu 79 24 38 10 5.6 3.4 1.8 5.0 3.1 9.5 7.3 3.5 6.1 2.7 8.7 2.0 2.4 2.7 1.4 3.4 3.3 2.3 5.3 3.1 2.2 7.6 5.0 3.8 3.6 2.2 1.2 1.6 1.3 0.34 0.95 1.72 0.84 1.12 Sm 30 1.5 4.0 1.5 3.3 1.6 1.7 1.4 2.7 1.9 1.3 4.7 3.4 1.9 1.7 2.7 1.0 239 120 10.0 1.09 5.00 0.48 3.14 0.82 5.41 7.95 4.61 1.49 1.67 1.96 0.60 1.05 0.65 0.56 1.10 0.93 15.41 Nd 56 24 1.8 5.4 0.07 0.09 0.34 0.11 0.30 0.04 0.42 0.18 0.09 0.12 0.08 0.18 0.18 0.08 0.41 0.38 0.12 0.10 0.08 1.01 0.89 2.75 0.28 0.17 0.19 0.23 0.05 0.34 0.07 0.04 0.05 0.05 0.10 0.06 Pr 24 16 42 15 15 12 24 71 14 18 14 13 16 11 25 27 25 12 3.2 3.2 9.4 5.9 3.9 9.3 2.8 2.2 1.7 3.6 1.7 2.3 4.4 9.4 470 194 0.21 2.01 1.67 1.22 Ce 61 18 5.7 225 0.02 0.03 0.02 0.34 0.01 0.02 0.04 0.95 0.00 0.02 0.03 0.05 0.26 0.03 0.34 0.70 0.05 0.03 0.14 2.87 1.91 6.87 0.07 0.36 0.32 0.54 0.03 0.05 0.02 0.59 0.21 0.02 0.01 0.03 La 27 11 20 2.1 6.4 5.8 5.7 3.7 2.5 4.7 1.5 1.5 1.8 1.6 4.3 2.4 3.1 9.3 3.9 4.0 5.1 5.1 2.7 2.0 2.9 8.8 7.2 6.3 6.5 3.3 1.7 2.2 1.87 10.9 12.6 10.8 4.56 10.13 Nb 833 464 996 812 870 781 727 618 625 673 1067 1026 1260 1858 1277 2648 3148 1032 1236 1095 1507 1890 1091 2435 1090 1198 1610 1108 2237 2141 2866 2775 2250 2526 1458 1907 6890 1255 Y 12 10 13 16 21 14 63 12 10 bdl bdl bdl bdl bdl bdl bdl bdl bdl 5.99 1.08 1.45 5.86 5.34 7.98 6.39 14.8 12.6 1.11 3.66 2.29 8.22 2.48 3.31 7.11 4.35 4.67 3.62 4.34 Ti ------P Continued Gt0405 023 Gt0405 Gt0405 002 Gt0405 Gt0405 021 Gt0405 Gt0405 034 Gt0405 046 Gt0405 Gt0405 012 Gt0405 Gt0405 028 Gt0405 Gt0405 011 Gt0405 Gt0405 017 Gt0405 026 Gt0405 042 Gt0405 045 Gt0405 Samplenumber 003 Gt0405 004 Gt0405 005 Gt0405 006 Gt0405 007 Gt0405 008 Gt0405 014 Gt0405 015 Gt0405 018 Gt0405 019 Gt0405 020 Gt0405 024 Gt0405 025 Gt0405 029 Gt0405 030 Gt0405 031 Gt0405 035 Gt0405 036 Gt0405 038 Gt0405 039 Gt0405 044 Gt0405 048 Gt0405 050 Gt0405 051 Gt0405 052 Gt0405 053 Gt0405 Trace and REE elemental concentrations in ppm in REE concentrations elemental and Trace glass standard element trace 610 NIST of analysis the to relative calibrated are Elementalconcetrations Watson of formulas (2006) and al. method et the to according calculated temperature crystallization Zircon limits detection below bdl: determined not -: TABLE I TABLE

Geologica Acta, 9(3-4), 329-350 (2011) V DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 3.3 4.1 4.1 3.7 2.4 2.1 0.5 1.4 5.4 3.0 2.8 1.9 8.2 1.0 1.0 1.3 0.2 2.8 4.5 1.5 2.0 7.0 7.8 5.5 0.8 9.3 2.7 8.7 2.3 8.7 1.1 6.6 2.0 4.2 9.9 0.4 0.3 5.0 4.9 5.4 8.4 5.5 5.2 9.9 3.8 6.8 4.5 4.4 1.6 3.7 0.4 3.9 -0.9 -0.3 10.9 10.4 10.2 10.9 11.7 10.5 % disc % σ 4 2 2 3 5 5 4 9 5 5 9 4 5 5 6 4 7 6 5 5 4 4 4 4 2 4 3 3 4 5 3 4 3 4 4 3 4 4 3 4 4 5 4 3 2 4 3 5 4 2 3 5 4 21 27 22 10 12 24 13 ±1 710 459 591 482 439 843 833 702 725 960 752 861 923 913 751 574 871 953 539 945 987 863 844 940 917 749 541 617 903 573 621 534 803 549 918 751 771 760 318 980 960 766 833 753 412 738 589 471 605 739 821 807 317 632 911 724 1094 1049 1114 1017 Best age (Ma) age Best σ 21 34 19 17 19 21 22 18 27 24 26 41 19 21 26 32 32 23 24 40 30 32 49 48 35 19 17 20 21 19 20 19 20 18 25 20 25 20 22 17 20 19 27 18 18 18 18 19 22 17 21 21 25 17 20 19 29 23 26 26 ±1 Pb Pb 206 947 771 741 756 892 797 774 974 918 956 972 603 903 995 544 919 979 951 988 988 979 962 769 782 929 847 697 787 871 805 951 954 832 887 595 995 973 921 984 919 648 904 737 757 715 950 959 941 355 741 925 840 1094 1051 1114 1049 1007 1012 1007 1017 Pb/ 207 σ 8 4 5 5 7 8 6 7 7 7 8 8 7 6 5 7 5 7 7 9 5 8 7 5 7 7 5 6 6 6 7 7 7 6 6 5 7 6 7 6 4 6 9 8 10 10 11 14 18 10 10 11 13 11 10 11 11 11 17 13 ±1 CORRECTEDAGES(Ma) U 235 797 512 658 541 497 879 865 719 729 974 888 884 795 888 950 954 936 805 587 653 910 632 638 585 822 931 601 928 818 804 787 793 580 353 984 963 806 876 796 450 781 621 523 880 629 793 860 844 966 322 540 656 937 915 753 984 Pb/ 1033 1020 1069 1003 207 σ 4 2 2 3 5 7 5 6 6 4 5 5 9 5 5 4 4 4 4 2 4 3 3 4 5 9 3 4 4 7 3 4 4 5 3 4 4 3 4 4 5 4 3 2 5 4 3 5 4 6 2 4 3 7 5 4 6 10 12 13 ±1 U 238 710 459 591 482 439 997 843 960 863 844 752 861 833 923 940 917 749 541 617 903 573 621 534 803 913 549 918 751 702 996 751 771 760 574 318 980 960 766 833 753 412 738 589 471 871 605 739 821 807 953 317 539 632 945 911 725 724 987 Pb/ 1006 1058 206 0.3 0.5 0.5 0.6 0.8 0.6 0.6 0.4 0.6 0.6 0.5 0.8 0.5 0.7 0.3 0.5 0.4 0.5 0.7 0.5 0.4 0.5 0.4 0.7 0.5 0.6 0.5 0.4 0.4 0.9 0.6 0.4 0.5 0.6 0.6 0.6 0.4 0.4 0.4 0.5 0.6 0.8 0.5 0.5 0.4 0.4 0.6 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.4 0.5 0.9 0.5 0.5 0.5 Rho 3 σ ±1 0.0008 0.0002 0.0001 0.0002 0.0003 0.0008 0.0006 0.0004 0.0006 0.0003 0.0006 0.0003 0.0005 0.0003 0.0005 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0005 0.0002 0.0002 0.0007 0.0006 0.0004 0.0002 0.0002 0.0002 0.0003 0.0002 0.0006 0.0006 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0001 0.0002 0.0002 0.0005 0.0003 0.0002 0.0003 0.0002 0.0002 0.0004 0.0003 0.0006 0.0002 0.0003 0.0008 Th 0.027 232 0.0485 0.0433 0.05555 0.02264 0.02926 0.02377 0.02163 0.05818 0.04277 0.04344 0.04342 0.05092 0.03759 0.04183 0.04652 0.04747 0.04627 0.03738 0.02683 0.03074 0.04561 0.02837 0.03111 0.02644 0.04041 0.04607 0.02718 0.04639 0.05038 0.03521 0.05047 0.03749 0.03876 0.03806 0.02876 0.01565 0.04907 0.04891 0.03831 0.04177 0.03765 0.02037 0.03689 0.02936 0.02324 0.04395 0.03022 0.03703 0.04119 0.04046 0.04819 0.01578 0.03159 0.04791 0.04608 0.03651 0.03625 0.05005 0.05643 Pb/ 208 3 σ 2 0.001 0.001 ±1 0.0007 0.0004 0.0004 0.0005 0.0008 0.0012 0.0008 0.0007 0.0009 0.0009 0.0015 0.0009 0.0017 0.0008 0.0008 0.0007 0.0008 0.0007 0.0004 0.0007 0.0004 0.0005 0.0008 0.0008 0.0015 0.0005 0.0008 0.0007 0.0021 0.0014 0.0005 0.0006 0.0008 0.0008 0.0005 0.0007 0.0006 0.0005 0.0007 0.0008 0.0009 0.0007 0.0005 0.0003 0.0008 0.0006 0.0006 0.0009 0.0007 0.0003 0.0008 0.0005 0.0012 0.0008 0.0022 0.0006 0.0012 0.0011 U 238 0.0705 0.1503 0.1012 0.0505 0.0957 0.0504 0.1784 0.11649 0.07377 0.09609 0.07762 0.16728 0.13963 0.14329 0.12374 0.14286 0.13793 0.15397 0.15693 0.12329 0.10044 0.09296 0.08635 0.13273 0.15217 0.08885 0.11502 0.16713 0.12362 0.12703 0.12507 0.09312 0.12612 0.13799 0.12395 0.06603 0.12133 0.07574 0.09839 0.13591 0.13338 0.15937 0.08715 0.10302 0.15781 0.15182 0.11908 0.11884 0.16541 0.16054 0.13987 0.16889 0.15287 0.08754 0.15304 0.12352 0.16423 0.16056 0.14462 0.12146 Pb/ 206 3 σ 0.016 0.025 0.012 ±1 0.0215 0.0073 0.0092 0.0085 0.0106 0.0231 0.0147 0.0176 0.0211 0.0228 0.0255 0.0288 0.0191 0.0146 0.0096 0.0169 0.0093 0.0125 0.0115 0.0197 0.0332 0.0095 0.0283 0.0289 0.0117 0.0144 0.0143 0.0183 0.0071 0.0129 0.0152 0.0147 0.0109 0.0124 0.0103 0.0076 0.0134 0.0162 0.0147 0.0289 0.0057 0.0184 0.0115 0.0415 0.0219 0.0355 0.0164 0.0343 0.0169 0.0156 0.0279 0.0187 0.0109 0.0189 0.0163 0.0237 0.0167 CORRECTEDRATIOS U 1.73 235 1.193 1.376 1.237 1.183 1.6085 1.3886 1.5127 0.7824 1.4934 1.8654 1.6352 1.5825 1.7662 1.39806 1.18858 1.39745 1.34313 1.54793 1.55972 1.20944 0.90328 1.45129 0.86275 0.87439 0.77848 1.24584 1.50035 0.80816 1.02931 1.68506 1.20841 1.17028 1.18335 0.77025 0.41601 1.21279 1.36868 1.19079 0.55771 1.15717 0.84272 0.67321 1.37892 0.85747 1.33183 1.29521 1.58898 0.37253 0.70152 0.90895 1.51657 1.46318 1.05048 1.09909 1.63614 0.65529 0.91113 0.70301 0.63163 Pb/ 207 3 σ 0.001 ±1 0.0007 0.0007 0.0007 0.0007 0.0009 0.0008 0.0012 0.0008 0.0008 0.0007 0.0007 0.0006 0.0007 0.0006 0.0008 0.0007 0.0009 0.0012 0.0007 0.0008 0.0009 0.0009 0.0009 0.0006 0.0007 0.0007 0.0012 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0006 0.0007 0.0006 0.0011 0.0008 0.0006 0.0007 0.0007 0.0011 0.0007 0.0013 0.0007 0.0017 0.0009 0.0012 0.0008 0.0012 0.0013 0.0006 0.0006 0.0007 0.0007 0.0008 0.0006 Pb 206 0.0709 0.0632 0.0697 0.0699 0.07275 0.07076 0.07209 0.07429 0.06966 0.07094 0.07062 0.07292 0.07208 0.07177 0.07115 0.06482 0.06523 0.07003 0.06731 0.06266 0.06539 0.06807 0.07151 0.06597 0.07077 0.07276 0.06491 0.07313 0.06682 0.06862 0.05999 0.05975 0.07596 0.07233 0.07154 0.06974 0.07194 0.06968 0.06126 0.06917 0.06386 0.06447 0.06915 0.07074 0.07107 0.07043 0.07231 0.05361 0.05838 0.06399 0.06398 0.06707 0.07174 0.07434 0.06442 0.06877 0.06569 0.06498 0.07673 0.07157 Pb/ 207 0.33 0.19 0.12 0.33 0.13 0.36 0.16 0.40 0.23 0.29 0.12 0.12 0.11 0.19 0.12 0.23 0.18 0.32 0.41 0.10 0.16 0.38 0.23 0.46 0.08 0.28 0.17 0.22 0.06 0.61 0.22 0.19 0.16 0.23 0.21 0.15 0.11 0.17 0.09 0.56 0.29 0.10 0.15 0.20 0.34 0.08 0.20 0.16 0.56 0.28 0.31 0.32 0.52 0.42 0.07 0.13 0.09 0.06 0.50 0.18 Th/U 84 68 46 87 95 86 53 85 73 44 43 67 63 81 98 169 114 132 220 131 152 131 240 267 232 441 526 110 230 244 174 174 611 194 262 102 173 127 160 256 266 447 249 442 166 132 344 164 137 340 165 228 118 244 363 195 149 294 118 194 (ppm) 1 Th 149 195 513 608 711 206 612 836 116 374 528 500 344 211 324 223 377 168 770 665 239 901 128 219 120 421 781 371 2026 2333 1449 1062 1050 1052 1935 2338 1989 1373 1911 2845 2263 1059 2175 2165 1163 1192 1298 1000 1099 1284 3076 2338 2621 1821 1195 1619 1721 1976 1391 1140 (ppm) 1 U U-Pb data, Chuacús Complex, Central Guatemala Gt0309 Metapelite. 15°01'18.3" 90°42'53.9" 15°01'18.3" Metapelite. Gt0309 Table 4, U-Pb data, Chuacús Complex, Central Guatemala. Central Complex, Chuacús data, U-Pb 4, Table 2010 al., et Solari number Sample 001 Gt0309 002 Gt0309 003 Gt0309 004 Gt0309 005 Gt0309 006 Gt0309 007 Gt0309 008 Gt0309 010 Gt0309 011 Gt0309 012 Gt0309 013 Gt0309 014 Gt0309 015 Gt0309 016 Gt0309 017 Gt0309 018 Gt0309 019 Gt0309 020 Gt0309 021 Gt0309 022 Gt0309 023 Gt0309 024 Gt0309 025 Gt0309 026 Gt0309 027 Gt0309 028 Gt0309 029 Gt0309 030 Gt0309 031 Gt0309 032 Gt0309 033 Gt0309 034 Gt0309 035 Gt0309 036 Gt0309 037 Gt0309 038 Gt0309 039 Gt0309 040 Gt0309 041 Gt0309 042 Gt0309 043 Gt0309 044 Gt0309 045 Gt0309 046 Gt0309 047 Gt0309 048 Gt0309 049 Gt0309 050 Gt0309 051 Gt0309 052 Gt0309 053 Gt0309 054 Gt0309 055 Gt0309 056 Gt0309 057 Gt0309 058 Gt0309 059 Gt0309 060 Gt0309 061 Gt0309 TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) VI DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 2.3 4.0 6.1 0.4 2.4 2.5 3.9 5.1 5.1 9.9 1.3 9.3 3.8 1.9 1.2 7.4 7.5 1.2 4.4 1.7 1.6 1.5 5.1 6.0 4.1 4.1 1.7 1.3 1.6 8.1 7.0 6.9 6.1 5.7 7.1 7.7 6.6 3.5 8.2 4.7 9.0 0.3 4.7 1.4 1.0 3.9 0.5 0.1 4.2 0.9 0.5 0.3 -1.2 -0.1 -0.5 -3.4 15.8 15.7 12.6 13.0 19.4 16.3 -10.2 % disc % σ 1 1 3 1 1 2 4 5 2 5 1 8 4 6 4 4 5 6 5 5 3 4 4 4 4 4 3 2 3 3 6 4 3 3 5 5 5 4 5 3 5 4 5 5 5 6 5 5 5 24 48 28 34 20 10 28 11 28 46 0.4 0.4 0.6 0.8 ±1 73 74 77 73 74 75 75 77 638 208 909 787 997 958 845 688 925 967 864 962 965 947 760 710 790 802 865 679 889 593 519 671 696 627 549 639 696 823 479 715 513 912 789 932 938 822 978 994 848 965 976 967 70.3 70.2 67.6 70.4 1114 1133 1087 1041 1122 1102 1060 Best age (Ma) age Best σ 24 44 50 48 28 25 28 34 19 30 20 20 38 33 41 83 20 20 28 24 32 30 46 19 19 19 19 19 29 20 19 26 18 19 26 23 20 21 22 32 26 24 24 18 19 19 19 26 26 20 24 22 20 188 173 255 233 179 226 ±1 266 185 133 116 Pb Pb 206 139 139 907 464 431 954 299 997 999 747 583 552 624 524 967 808 681 962 276 414 996 917 890 916 926 918 718 938 831 722 881 879 797 755 872 897 931 716 854 779 923 936 978 973 946 993 999 976 996 991 978 1114 1024 1122 1133 1087 1041 1008 1006 1102 1017 1014 1060 Pb/ 207 σ 1 2 8 7 9 9 9 9 8 8 6 7 3 4 7 6 6 6 7 8 7 5 6 5 5 9 6 6 6 8 8 8 7 7 7 8 6 7 6 7 8 9 9 7 8 8 7 29 18 11 11 14 10 12 10 10 14 10 15 12 11 10 15 ±1 CORRECTEDAGES(Ma) U 235 93 92 72 72 86 86 81 98 90 73 81 730 239 927 819 109 971 801 755 824 836 880 688 903 645 558 721 741 835 665 591 692 745 687 853 522 936 750 564 979 904 915 828 945 947 855 979 983 981 995 961 885 974 990 981 970 Pb/ 1194 1103 1042 1008 1037 1095 1125 207 σ 4 7 5 1 5 2 6 5 1 1 3 1 7 8 6 1 2 5 3 4 4 4 4 4 3 2 3 3 8 6 4 3 3 4 5 5 6 5 4 4 4 5 3 5 4 5 5 5 6 5 5 6 5 7 5 5 10 11 10 0.4 0.4 0.6 0.8 ±1 U 238 77 75 73 74 77 73 74 75 638 208 909 760 710 790 802 865 679 889 593 519 671 696 845 627 549 787 639 696 688 823 479 925 715 513 958 967 864 912 789 932 938 822 962 978 965 994 947 848 965 961 976 967 70.3 70.2 67.6 70.4 Pb/ 1237 1088 1021 1013 1037 1088 1139 206 0.4 0.6 0.4 0.2 0.3 0.5 0.3 0.3 0.6 0.5 0.5 0.3 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.4 0.6 0.7 0.6 0.7 0.5 0.5 0.5 0.5 0.6 0.4 0.5 0.6 0.3 0.2 0.2 0.3 0.2 0.2 0.5 0.5 0.8 0.4 0.4 0.5 0.5 0.5 0.5 0.4 0.6 0.5 0.3 0.4 0.4 0.4 0.4 0.4 0.6 0.4 0.3 0.2 0.5 0.5 Rho 3 σ 0.001 0.001 0.001 ±1 0.0163 0.0287 0.0008 0.0008 0.0032 0.2166 0.1456 0.0008 0.0003 0.0002 0.0002 0.0003 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0004 0.0004 0.0002 0.0005 0.0002 0.0002 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.0068 0.0057 0.2608 2.0564 0.4684 0.1502 0.0009 0.0008 0.0006 0.0007 0.0003 0.0005 0.0007 0.0008 0.0006 0.0005 0.0033 0.0008 0.0011 0.0009 0.0009 0.0008 0.0008 0.0018 0.3364 0.0008 0.0008 Th 232 0.0396 4.2841 0.9008 0.0036 0.0518 0.0535 0.0491 0.0474 1.0194 0.03316 0.06517 0.05376 0.06238 0.01016 0.34938 0.17545 0.04452 0.03801 0.03541 0.05516 0.04025 0.04362 0.03411 0.04484 0.05163 0.02943 0.02576 0.03338 0.03469 0.04275 0.03124 0.02724 0.03949 0.03173 0.03467 0.03465 0.04135 0.02371 0.04676 0.03578 0.02535 0.00355 0.00359 0.65195 0.05002 0.05463 0.04612 0.04004 0.04779 0.05619 0.04723 0.05936 0.04188 0.00352 0.04788 0.04699 0.04731 0.04811 0.04595 0.04331 0.04808 0.04831 0.04673 Pb/ 208 3 σ 2 0.001 0.001 0.001 7E-05 6E-05 ±1 0.0008 0.0014 0.0008 0.0003 0.0002 0.0008 0.0008 0.0006 0.0007 0.0012 0.0006 0.0008 0.0008 0.0007 0.0009 0.0005 0.0004 0.0005 0.0005 0.0014 0.0006 0.0017 0.0006 0.0006 0.0008 0.0008 0.0009 0.0008 0.0007 0.0002 0.0002 0.0001 0.0004 0.0001 0.0002 0.0013 0.0015 0.0019 0.0008 0.0007 0.0009 0.0006 0.0008 0.0012 0.0007 0.0019 0.0008 0.0002 0.0009 0.0009 0.0012 0.0009 0.0011 0.0009 0.0013 0.0003 0.0009 0.0009 U 238 0.2115 0.0328 0.1515 0.1933 0.10411 0.01166 0.01201 0.12511 0.11636 0.13035 0.18382 0.13256 0.14366 0.11112 0.14782 0.17161 0.09636 0.08385 0.10963 0.11393 0.13998 0.10214 0.08884 0.12992 0.10413 0.11395 0.11269 0.13624 0.07715 0.15438 0.11737 0.08275 0.01142 0.01153 0.01097 0.01054 0.01095 0.01198 0.01098 0.01146 0.17012 0.17459 0.16024 0.16179 0.14339 0.15192 0.13027 0.15557 0.18392 0.15665 0.13598 0.01147 0.16095 0.16385 0.16157 0.16667 0.15818 0.14059 0.16143 0.16075 0.01167 0.16345 0.16177 Pb/ 206 3 σ 0.03 0.009 0.006 0.011 0.007 0.003 ±1 0.0176 0.0269 0.0366 0.0166 0.0142 0.0123 0.0134 0.0532 0.0137 0.0157 0.0161 0.0165 0.0097 0.0103 0.0101 0.0109 0.0307 0.0165 0.0241 0.0116 0.0129 0.0186 0.0172 0.0135 0.0361 0.0175 0.0114 0.0083 0.0015 0.0018 0.0154 0.0045 0.0095 0.0272 0.0339 0.0247 0.0179 0.0156 0.0206 0.0124 0.0164 0.0263 0.0158 0.0349 0.0155 0.0095 0.0213 0.0232 0.0286 0.0234 0.0255 0.0173 0.0215 0.0401 0.0105 0.0202 0.0181 CORRECTEDRATIOS U 1.39 235 1.622 0.265 1.6983 1.7762 1.6023 1.6214 1.4359 1.4622 1.2602 1.5355 1.9414 1.5424 2.0268 1.3206 0.1015 1.6325 1.6273 1.6642 1.5771 1.6101 1.6513 0.0925 1.6278 1.6004 1.0519 2.2426 1.4909 1.20089 1.10261 1.25083 1.96302 1.27777 1.37946 0.96965 1.43331 1.79123 0.88747 0.73323 1.03396 1.07376 1.27482 0.92525 0.78902 1.24087 0.97778 1.08311 0.96661 1.31643 0.67264 1.51462 1.09296 0.74321 0.08862 0.08815 0.07367 0.07489 0.07382 0.11384 0.08345 0.08262 0.09603 0.09493 Pb/ 207 3 σ 0.001 0.001 0.001 0.002 0.001 ±1 0.0007 0.0007 0.0013 0.0007 0.0007 0.0006 0.0019 0.0006 0.0007 0.0007 0.0008 0.0009 0.0007 0.0011 0.0006 0.0008 0.0006 0.0006 0.0006 0.0012 0.0008 0.0007 0.0009 0.0007 0.0007 0.0007 0.0009 0.0008 0.0007 0.0015 0.0009 0.0011 0.0008 0.0007 0.0051 0.0043 0.0058 0.0011 0.0092 0.0009 0.0009 0.0029 0.0012 0.0009 0.0011 0.0059 0.0007 0.0009 0.0017 0.0065 0.0008 0.0007 0.0011 0.0008 0.0075 0.0055 0.0035 0.0007 Pb 206 0.0728 0.0698 0.0757 0.0668 0.0684 0.0657 0.0681 0.0724 0.0586 0.06962 0.06872 0.07397 0.07246 0.06959 0.07745 0.06991 0.06964 0.07272 0.06329 0.07032 0.06342 0.07026 0.06836 0.06605 0.06441 0.06927 0.07171 0.06894 0.06221 0.07674 0.07008 0.07153 0.06324 0.07116 0.06754 0.07628 0.06514 0.07061 0.05629 0.05546 0.04882 0.06416 0.05178 0.04882 0.07087 0.07311 0.07225 0.05505 0.07299 0.07247 0.07235 0.05231 0.07165 0.07237 0.07468 0.05942 0.07219 0.07171 0.06058 0.05784 0.07335 0.07702 0.07135 Pb/ 207 0.14 0.21 0.39 0.22 0.25 0.08 0.54 0.18 0.19 0.32 0.25 0.16 0.20 0.59 0.12 0.10 0.24 0.07 0.08 0.35 0.12 0.15 0.12 0.22 0.20 0.11 0.30 0.65 0.17 0.20 0.07 0.57 0.30 0.51 0.10 0.20 0.39 0.45 0.32 Th/U 0.0014 0.0012 0.0002 0.0010 0.0001 0.0002 0.0003 0.3811 0.1132 0.0001 0.3392 0.6071 0.4708 0.0004 0.2568 0.4565 0.1044 0.0004 0.2397 0.3857 0.5622 0.0167 0.0009 0.0010 27 99 38 70 48 72 66 89 78 19 69 73 57 93 301 610 184 103 305 199 177 117 207 181 272 172 585 132 125 208 204 366 143 115 170 316 163 510 239 0.06 0.05 0.12 0.04 0.01 0.09 0.01 0.01 0.02 2.57 0.02 0.67 0.04 0.04 60.15 11.39 24.81 50.34 30.13 72.51 17.69 (ppm) 215.91 127.26 329.42 1 Th 69 70 145 206 746 834 418 557 460 438 305 138 620 539 929 296 121 658 861 268 122 144 45.3 45.9 43.0 20.9 68.5 73.1 82.9 64.0 49.3 24.6 37.8 73.8 40.4 37.2 36.4 2150 2891 1303 1704 1061 1024 2298 1642 2406 1966 1469 1435 1791 1353 1067 1683 2512 787.4 139.0 577.3 157.8 100.6 840.8 158.8 329.9 585.9 (ppm) 1 U Continued Sample number Sample 062 Gt0309 063 Gt0309 064 Gt0309 065 Gt0309 066 Gt0309 067 Gt0309 068 Gt0309 069 Gt0309 070 Gt0309 072 Gt0309 073 Gt0309 074 Gt0309 075 Gt0309 076 Gt0309 077 Gt0309 078 Gt0309 079 Gt0309 080 Gt0309 081 Gt0309 082 Gt0309 083 Gt0309 084 Gt0309 085 Gt0309 086 Gt0309 087 Gt0309 088 Gt0309 089 Gt0309 090 Gt0309 091 Gt0309 092 Gt0309 093 Gt0309 094 Gt0309 095 Gt0309 096 Gt0309 097 Gt0309 098 Gt0309 099 Gt0309 100 Gt0309 90°43'29.88" 14°58'15.49" pegmatite. Gt0315, 001 Gt0315 002 Gt0315 003 Gt0315 004 Gt0315 005 Gt0315 006 Gt0315 007 Gt0315 008 Gt0315 009 Gt0315 010 Gt0315 011 Gt0315 012 Gt0315 013 Gt0315 014 Gt0315 015 Gt0315 016 Gt0315 017 Gt0315 018 Gt0315 019 Gt0315 020 Gt0315 021 Gt0315 022 Gt0315 023 Gt0315 024 Gt0315 025 Gt0315 TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) VII DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 2.0 1.9 3.0 0.5 2.7 5.8 3.7 3.4 1.8 0.0 2.4 1.6 0.3 2.6 2.9 1.4 3.2 2.6 2.3 0.9 1.1 0.8 0.8 1.2 1.3 2.8 0.3 2.4 6.7 7.0 7.1 0.0 0.7 2.5 0.0 3.1 4.1 4.6 1.4 6.4 9.9 4.2 -1.7 -0.9 -0.1 -0.5 -0.8 -0.4 -2.0 -2.2 19.7 14.2 22.4 94.5 94.5 11.7 13.4 23.4 12.5 10.9 % disc % σ 7 2 3 1 2 3 7 1 5 2 1 1 1 6 6 4 7 3 2 7 6 4 4 5 5 1 4 2 1 2 4 2 2 5 5 3 1 1 3 2 2 1 5 1 1 1 1 1 1 2 3 25 27 21 10 13 15 10 ±1 134 227 122 524 125 166 451 147 537 179 217 932 764 694 245 754 227 238 206 926 931 917 653 237 138 850 806 876 897 962 996 126 504 182 244 257 893 222 246 946 973 246 182 120 234 278 253 265 897 243 246 212 230 219 219 218 229 1023 1003 1062 3947 3241 Best age (Ma) age Best σ 25 45 41 26 52 27 45 59 62 78 28 52 51 48 73 62 33 31 29 42 82 47 21 19 20 24 21 70 29 39 40 66 21 49 73 18 27 73 75 48 78 46 52 43 27 47 35 52 41 33 47 53 92 ±1 134 227 182 124 126 121 107 Pb Pb 206 781 986 774 868 640 965 769 469 841 796 919 457 267 244 266 981 941 998 627 316 393 849 319 908 957 966 991 980 104 498 211 270 280 932 266 328 959 914 331 364 296 447 155 235 260 283 977 239 331 324 353 258 391 494 340 1023 3947 3241 1024 1062 Pb/ 207 σ 9 4 6 9 5 5 7 6 8 7 7 8 8 4 6 4 4 7 7 5 8 7 9 8 6 3 9 7 5 6 5 9 5 4 5 4 3 5 6 9 25 67 78 16 13 11 16 17 10 19 10 17 11 10 10 12 10 14 16 13 ±1 CORRECTEDAGES(Ma) U 235 152 611 161 702 188 521 192 614 201 221 238 211 961 768 996 713 783 833 899 918 971 991 941 934 125 941 502 184 246 259 904 225 253 647 949 954 252 244 195 129 252 140 272 260 253 267 920 849 243 254 221 235 241 222 234 242 239 Pb/ 1050 1048 1009 207 σ 1 2 9 3 7 1 2 1 5 1 1 7 5 5 6 4 4 5 6 1 4 4 2 1 2 4 2 7 5 5 3 1 1 3 2 2 2 2 1 5 7 1 1 1 3 1 1 1 2 3 5 6 2 3 21 11 10 13 15 10 ±1 U 238 122 524 125 218 177 166 451 147 537 179 217 238 206 806 876 897 996 932 931 126 917 764 504 182 244 257 893 222 694 653 946 973 246 182 120 234 138 278 245 253 265 897 754 850 243 246 212 227 230 219 219 218 229 962 926 246 237 Pb/ 1003 1042 1003 206 0.3 0.8 0.4 0.5 0.3 0.4 0.8 0.3 0.4 0.2 0.3 0.3 0.3 0.6 0.5 0.5 0.4 0.5 0.4 0.3 0.4 0.8 0.5 0.5 0.5 0.3 0.3 0.4 0.4 0.7 0.5 0.5 0.4 0.3 0.2 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.6 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.2 0.4 0.4 Rho 3 σ 7E-05 6E-05 ±1 0.0016 0.0039 0.0693 0.2686 0.0004 0.0002 0.0004 0.0003 0.0008 0.0002 0.0001 0.0003 0.0007 0.0007 0.0009 0.0009 0.0007 0.0012 0.0002 0.0006 0.0005 0.0002 0.0008 0.0002 0.0002 0.0006 0.0001 0.0008 0.0004 0.0006 0.0007 0.0002 0.0002 0.0001 0.0002 0.0052 0.0007 0.0002 0.0001 0.0002 0.0002 0.0007 0.0005 0.0004 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0001 0.0002 0.0004 0.0008 0.0008 0.0002 0.0001 0.0008 Th 0.011 0.049 232 2.4419 0.0475 0.0102 0.03933 0.05066 0.27703 0.00742 0.00813 0.02209 0.01522 0.03859 0.00956 0.01052 0.04045 0.04186 0.04353 0.04836 0.04884 0.04687 0.00624 0.04621 0.03847 0.02457 0.01172 0.05035 0.01244 0.01267 0.04746 0.03478 0.03286 0.04752 0.01167 0.00908 0.00856 0.01233 0.02083 0.01325 0.01212 0.01249 0.01342 0.04616 0.03778 0.04293 0.01186 0.01214 0.01182 0.01064 0.01123 0.01145 0.01056 0.01079 0.01086 0.01115 0.04586 0.04742 0.01186 0.01173 0.04997 Pb/ 208 3 σ 2 0.001 0.001 0.001 ±1 0.0002 0.0036 0.0003 0.0018 0.0014 0.0004 0.0011 0.0002 0.0009 0.0003 0.0002 0.0011 0.0008 0.0008 0.0009 0.0019 0.0002 0.0008 0.0022 0.0007 0.0003 0.0014 0.0002 0.0004 0.0007 0.0004 0.0026 0.0011 0.0008 0.0009 0.0004 0.0002 0.0002 0.0004 0.0004 0.0009 0.0003 0.0004 0.0003 0.0002 0.0008 0.0018 0.0013 0.0002 0.0002 0.0002 0.0002 0.0004 0.0002 0.0002 0.0002 0.0002 0.0003 0.0004 0.0009 0.0003 0.0004 U 238 0.161 0.0196 0.0343 0.1544 0.0389 0.0374 0.1684 0.01912 0.08463 0.03441 0.02789 0.02614 0.07244 0.02308 0.08693 0.02816 0.13316 0.14563 0.14923 0.16699 0.15558 0.15541 0.01968 0.15286 0.12575 0.08127 0.02862 0.16831 0.03865 0.04074 0.14864 0.03498 0.11367 0.10654 0.15803 0.16289 0.03892 0.02858 0.01883 0.03699 0.02165 0.17543 0.04399 0.03881 0.04001 0.04198 0.14927 0.12408 0.14087 0.03845 0.03892 0.03755 0.03347 0.03583 0.03245 0.03628 0.03455 0.03454 0.03432 0.03623 Pb/ 206 3 σ 0.005 0.011 0.027 0.036 0.009 ±1 0.0441 0.0073 0.1524 0.0186 0.0142 0.0057 0.0128 0.0056 0.0172 0.0156 0.0164 0.0212 0.0202 0.0278 0.0395 0.0247 0.0041 0.0238 0.0365 0.0098 0.0042 0.0269 0.0055 0.0094 0.0172 0.0065 0.0099 0.0379 0.0224 0.0165 0.0235 0.0101 0.0119 0.0076 0.0032 0.0079 0.0241 0.0068 0.0183 0.0072 0.0063 0.0222 0.0361 0.0056 0.0045 0.0061 0.0158 0.0071 0.0053 0.0039 0.0059 0.0071 0.0116 0.1846 0.0232 CORRECTEDRATIOS U 235 1.576 1.4249 1.4685 1.6024 1.6533 1.5254 1.5083 1.6672 1.4349 1.5468 1.5598 1.8076 1.7008 1.4735 0.2644 1.8124 0.9964 1.27239 0.13049 1.52632 1.13073 0.63994 0.19844 0.27432 0.28999 0.24863 0.28298 1.01867 0.89087 0.28224 0.27174 0.21146 0.13492 0.28161 0.14797 0.30734 0.29172 0.28315 0.30048 1.16322 1.30853 0.26984 0.28424 0.24357 0.26072 0.23067 0.26817 0.24465 0.25889 0.26964 0.26483 0.16126 0.82519 0.17144 0.20335 0.67012 0.20833 0.83151 0.21867 0.24375 Pb/ 207 3 σ 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 ±1 0.0007 0.0007 0.0007 0.0009 0.0008 0.0012 0.0016 0.0011 0.0015 0.0012 0.0007 0.0009 0.0016 0.0008 0.0012 0.0018 0.0016 0.0013 0.0007 0.0018 0.0019 0.0012 0.0021 0.0025 0.0011 0.0011 0.0032 0.0012 0.0016 0.0016 0.0008 0.0016 0.0013 0.0029 0.0014 0.0008 0.0012 0.0014 0.0022 0.0018 0.0024 0.0026 0.0357 0.0382 0.0049 0.0017 0.0018 0.0033 0.0011 Pb 0.072 0.065 206 0.0693 0.0481 0.07097 0.07131 0.07219 0.07179 0.07184 0.07337 0.07043 0.07242 0.06521 0.05717 0.05035 0.05165 0.05187 0.07012 0.05155 0.05298 0.06064 0.07107 0.06952 0.05304 0.05269 0.05384 0.05225 0.05586 0.04914 0.07475 0.07333 0.05088 0.05452 0.05143 0.05194 0.07168 0.06799 0.06737 0.05096 0.05306 0.05107 0.05289 0.05278 0.05156 0.05357 0.05139 0.05448 0.05705 0.05327 0.06103 0.07127 0.06483 0.41014 0.25912 0.05641 0.06709 0.06567 0.06969 0.05611 0.05158 Pb/ 207 0.38 0.34 0.28 0.02 0.34 0.33 0.17 0.32 0.47 0.67 1.11 0.43 0.17 0.97 0.14 0.21 0.21 0.32 1.07 0.77 0.83 0.38 0.81 0.11 0.30 0.21 0.80 0.82 0.96 0.62 0.69 0.37 0.40 1.13 0.65 0.74 1.10 0.85 0.71 1.22 1.84 1.72 0.84 0.37 0.03 0.19 0.02 0.01 0.02 0.22 0.04 0.31 0.36 0.70 1.68 Th/U 0.0888 0.3396 0.4297 0.6196 0.4283 3 8 7 3 9 2 0 0 6 17 13 19 29 30 45 73 31 86 67 79 19 42 13 22 36 38 45 74 25 24 16 66 40 69 81 32 13 10 96 74 12 20 41 11 80 102 127 139 190 130 137 236 836 266 396 28.94 95.55 59.93 (ppm) 255.40 169.07 1 Th 3 45 20 89 29 44 38 67 84 91 67 61 43 59 64 69 34 50 54 31 59 79 75 82 48 71 47 35 25 88 33 118 108 178 135 115 235 153 258 228 127 183 113 474 196 131 112 214 130 174 152 193 193 454 155 325.9 752.0 393.4 154.2 139.9 (ppm) 1 U Continued Sample number Sample 026 Gt0315 027 Gt0315 028 Gt0315 029 Gt0315 030 Gt0315 90°37'54.62" 14°54'56.01" arkose. pressure High Gt0318, 002 Gt0318 003 Gt0318 004 Gt0318 005 Gt0318 006 Gt0318 007 Gt0318 008 Gt0318 009 Gt0318 010 Gt0318 011 Gt0318 012 Gt0318 013 Gt0318 014 Gt0318 015 Gt0318 016 Gt0318 017 Gt0318 018 Gt0318 019 Gt0318 020 Gt0318 021 Gt0318 022 Gt0318 023 Gt0318 024 Gt0318 025 Gt0318 026 Gt0318 027 Gt0318 028 Gt0318 029 Gt0318 030 Gt0318 031 Gt0318 032 Gt0318 033 Gt0318 034 Gt0318 035 Gt0318 037 Gt0318 038 Gt0318 039 Gt0318 040 Gt0318 041 Gt0318 042 Gt0318 043 Gt0318 044 Gt0318 045 Gt0318 046 Gt0318 047 Gt0318 90°32'49" 14°57'56.9" diorite. deformed Gt0319, 001 Gt0319 002 Gt0319 003 Gt0319 004 Gt0319 005 Gt0319 006 Gt0319 007 Gt0319 008 Gt0319 009 Gt0319 010 Gt0319 TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) VIII DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 7.0 8.8 2.6 3.6 5.5 8.9 0.0 3.4 7.5 3.2 2.1 1.3 4.7 1.8 4.2 2.2 0.0 4.0 2.6 1.8 1.3 0.0 3.0 1.3 5.2 8.7 8.0 7.7 0.0 8.9 9.6 0.5 3.5 0.4 0.4 9.1 0.0 5.1 9.1 5.5 3.0 6.2 3.0 1.3 0.9 4.7 9.8 2.3 -0.5 -5.9 -0.4 -0.9 -0.4 -0.4 -0.5 -0.9 -0.9 23.2 12.0 10.5 13.4 19.7 -276.3 % disc % σ 1 4 3 2 2 2 4 1 2 2 3 1 2 2 1 2 2 2 2 1 1 1 1 1 1 1 2 1 1 2 2 1 1 3 1 1 1 2 1 2 1 2 2 1 1 2 2 1 2 1 2 1 2 2 2 2 1 1 2 2 2 2 18 ±1 208 221 197 222 207 204 212 237 225 213 225 214 218 221 211 210 232 216 228 222 219 230 228 227 227 216 225 221 225 231 226 227 224 238 220 207 215 226 230 224 227 246 217 221 226 225 221 226 221 225 222 219 224 225 226 226 229 229 226 222 222 215 1047 Best age (Ma) age Best σ 91 52 18 53 42 65 80 55 84 96 79 37 44 38 33 44 42 50 66 48 40 62 83 47 35 74 43 47 41 69 53 66 36 78 40 48 42 42 51 31 57 41 54 37 56 56 62 61 48 35 55 67 49 57 ±1 237 110 115 111 101 131 101 131 205 Pb Pb 206 68 401 857 561 484 573 748 422 292 198 483 308 313 300 376 444 224 273 350 262 223 339 283 229 332 289 261 259 225 301 204 266 383 450 419 417 230 213 474 214 501 232 305 234 238 210 208 464 217 354 459 379 211 299 386 316 258 240 350 486 282 1047 -1199 Pb/ 207 σ 4 6 7 5 7 9 5 8 8 4 4 4 3 4 4 5 6 5 4 6 8 4 4 8 5 5 4 6 5 7 3 9 4 5 4 4 5 3 6 4 5 4 6 5 6 6 5 4 5 7 5 5 28 11 10 13 10 11 11 14 10 13 20 ±1 CORRECTEDAGES(Ma) U 235 59 271 251 220 239 254 239 218 209 228 260 231 233 223 229 237 238 231 232 227 225 231 225 228 231 233 225 227 251 241 225 221 233 226 238 229 246 226 272 218 229 227 226 220 224 243 225 235 218 234 241 237 223 233 241 236 232 204 228 233 246 220 Pb/ 1023 207 σ 2 3 4 1 1 2 2 2 1 2 1 2 1 1 1 2 1 3 1 1 1 2 1 1 2 2 1 1 3 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 4 2 2 2 2 2 4 1 2 2 1 1 1 2 2 2 2 2 ±1 U 238 208 221 197 222 207 204 221 211 210 212 228 222 219 230 232 228 225 227 227 216 225 221 225 231 226 227 224 238 207 213 215 225 230 224 227 246 217 221 226 225 221 226 225 214 218 222 224 225 226 226 237 220 226 221 219 229 229 216 226 222 222 215 Pb/ 1011 206 0.1 0.3 0.4 0.5 0.1 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.4 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.2 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.2 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.2 0.4 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.4 0.2 0.3 0.3 0.3 0.3 Rho 3 σ 9E-05 7E-05 8E-05 7E-05 ±1 0.0002 0.0001 0.0002 0.0007 0.0001 0.0002 0.0002 0.0003 0.0001 0.0002 0.0002 0.0009 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0003 0.0001 0.0001 0.0002 0.0001 0.0002 0.0002 0.0002 0.0004 0.0001 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0001 0.0002 0.0002 0.0005 0.0002 0.0003 0.0002 0.0002 Th 0.011 232 0.0124 0.0114 0.0112 0.0106 0.0116 0.00997 0.01096 0.00962 0.05144 0.01103 0.01097 0.01138 0.01088 0.01103 0.01096 0.01046 0.01251 0.01128 0.01111 0.01116 0.01077 0.01128 0.01085 0.01125 0.01433 0.01116 0.01107 0.01099 0.01275 0.01032 0.01057 0.01082 0.01109 0.01162 0.01121 0.01118 0.01591 0.01068 0.01112 0.01088 0.01083 0.01109 0.01044 0.01153 0.01043 0.01082 0.01086 0.01077 0.01126 0.01137 0.01041 0.01091 0.01124 0.01088 0.01085 0.01165 0.01122 0.01081 0.01127 0.01079 0.01108 0.01083 Pb/ 208 3 σ 2 ±1 0.0004 0.0003 0.0005 0.0008 0.0002 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0004 0.0002 0.0004 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0004 0.0003 0.0002 0.0002 0.0005 0.0002 0.0004 0.0002 0.0004 0.0002 0.0003 0.0002 0.0003 0.0003 0.0002 0.0002 0.0003 0.0003 0.0002 0.0003 0.0002 0.0004 0.0006 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0006 0.0002 0.0003 0.0003 0.0002 0.0002 0.0002 0.0004 0.0003 0.0003 0.0003 0.0003 U 238 0.0348 0.0326 0.0359 0.0374 0.0347 0.0356 0.0349 0.0346 0.0361 0.03274 0.03095 0.16985 0.03502 0.03209 0.03488 0.03597 0.03497 0.03452 0.03628 0.03332 0.03662 0.03594 0.03556 0.03581 0.03406 0.03553 0.03491 0.03549 0.03656 0.03573 0.03592 0.03531 0.03755 0.03263 0.03366 0.03387 0.03549 0.03638 0.03533 0.03579 0.03885 0.03426 0.03492 0.03564 0.03557 0.03495 0.03568 0.03308 0.03559 0.03382 0.03434 0.03509 0.03528 0.03548 0.03574 0.03571 0.03336 0.03617 0.03402 0.03574 0.03501 0.03498 0.03389 Pb/ 206 3 σ 0.005 0.008 0.005 0.008 0.006 0.024 ±1 0.0073 0.0139 0.0186 0.0046 0.0059 0.0092 0.0359 0.0165 0.0109 0.0094 0.0047 0.0051 0.0045 0.0067 0.0119 0.0043 0.0134 0.0053 0.0059 0.0057 0.0048 0.0077 0.0101 0.0054 0.0043 0.0101 0.0056 0.0057 0.0131 0.0052 0.0079 0.0174 0.0063 0.0088 0.0043 0.0116 0.0047 0.0058 0.0051 0.0058 0.0037 0.0077 0.0102 0.0047 0.0123 0.0164 0.0065 0.0051 0.0074 0.0066 0.0077 0.0119 0.0044 0.0065 0.0083 0.0066 0.0063 CORRECTEDRATIOS U 235 0.2614 0.2563 0.2222 0.2512 0.2575 0.2743 0.2425 1.7391 0.29136 0.26562 0.25589 0.25762 0.24512 0.25273 0.23961 0.26265 0.26353 0.25519 0.25638 0.25107 0.24866 0.25531 0.24822 0.25164 0.25581 0.25793 0.24805 0.25105 0.28059 0.26826 0.24863 0.24291 0.25823 0.24913 0.26475 0.25276 0.27414 0.24875 0.30673 0.23996 0.25258 0.25009 0.24975 0.24181 0.24739 0.27013 0.22839 0.24749 0.26003 0.23971 0.25896 0.26754 0.26309 0.24619 0.25756 0.26781 0.25174 0.30529 0.28057 0.24238 0.05978 0.26566 0.28442 Pb/ 207 3 σ 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.003 0.001 0.002 ±1 0.0031 0.0021 0.0019 0.0009 0.0009 0.0013 0.0012 0.0008 0.0023 0.0008 0.0048 0.0027 0.0012 0.0016 0.0013 0.0011 0.0009 0.0014 0.0011 0.0008 0.0019 0.0011 0.0017 0.0013 0.0012 0.0024 0.0011 0.0016 0.0033 0.0012 0.0018 0.0008 0.0021 0.0009 0.0012 0.0012 0.0007 0.0015 0.0013 0.0009 0.0026 0.0013 0.0015 0.0013 0.0015 0.0016 0.0024 0.0078 0.0015 0.0029 0.0007 0.0009 0.0012 Pb 206 0.0506 0.0527 0.0514 0.0535 0.0508 0.0523 0.0742 0.05677 0.05524 0.05173 0.05349 0.05147 0.05215 0.05139 0.05252 0.05323 0.04737 0.05263 0.05194 0.05074 0.05307 0.05209 0.05098 0.05144 0.05066 0.05236 0.05019 0.05157 0.05428 0.05594 0.05685 0.05517 0.05234 0.05512 0.05076 0.05411 0.05038 0.05655 0.05041 0.05724 0.05244 0.05084 0.05094 0.05032 0.05028 0.05629 0.05193 0.05008 0.05047 0.05578 0.05062 0.05359 0.05617 0.05419 0.05035 0.05437 0.05474 0.06762 0.05883 0.05679 0.01213 0.05915 0.06418 Pb/ 207 1.07 0.86 0.36 0.96 0.84 1.29 0.57 0.83 1.02 0.34 1.88 1.16 0.64 1.57 0.65 0.39 0.97 0.97 1.02 1.02 1.17 1.06 1.08 1.06 0.70 1.09 0.55 1.12 1.32 1.12 1.37 1.27 0.92 0.70 1.43 1.12 1.08 1.65 1.12 1.17 1.03 0.78 1.37 1.20 1.38 1.30 0.67 0.54 0.76 1.30 1.39 1.22 1.26 0.66 0.70 1.36 0.58 1.41 0.36 0.13 1.46 1.23 1.21 Th/U 56 81 25 12 96 23 67 65 55 39 42 76 51 73 83 91 86 17 26 97 55 53 32 10 59 165 197 265 108 119 203 538 365 124 133 155 171 161 155 289 100 121 248 315 163 125 271 424 228 219 168 461 219 165 147 147 245 125 215 144 440 140 103 (ppm) 1 Th 56 28 85 52 94 70 35 83 36 68 52 56 92 77 67 55 87 77 71 32 34 80 99 84 75 103 466 302 114 172 236 205 189 142 199 287 232 191 172 137 152 168 137 143 273 108 188 230 129 105 243 257 203 188 163 118 337 159 127 218 113 176 158 (ppm) 1 U Continued Sample number Sample 011 Gt0319 012 Gt0319 013 Gt0319 014 Gt0319 015 Gt0319 016 Gt0319 017 Gt0319 018 Gt0319 019 Gt0319 020 Gt0319 021 Gt0319 022 Gt0319 023 Gt0319 024 Gt0319 025 Gt0319 026 Gt0319 027 Gt0319 028 Gt0319 029 Gt0319 030 Gt0319 031 Gt0319 032 Gt0319 033 Gt0319 034 Gt0319 036 Gt0319 037 Gt0319 038 Gt0319 039 Gt0319 040 Gt0319 041 Gt0319 042 Gt0319 043 Gt0319 044 Gt0319 045 Gt0319 046 Gt0319 047 Gt0319 048 Gt0319 049 Gt0319 050 Gt0319 051 Gt0319 052 Gt0319 053 Gt0319 054 Gt0319 055 Gt0319 056 Gt0319 057 Gt0319 058 Gt0319 059 Gt0319 060 Gt0319 90°32'49" 14°57'56.9" gabbro. deformed Gt0320, 001 Gt0320 002 Gt0320 003 Gt0320 006 Gt0320 008 Gt0320 009 Gt0320 010 Gt0320 011 Gt0320 012 Gt0320 013 Gt0320 014 Gt0320 015 Gt0320 016 Gt0320 017 Gt0320 TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) IX DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 5.4 6.1 3.6 6.7 7.1 7.8 1.3 1.4 9.3 0.4 8.9 2.2 2.5 0.9 1.3 1.3 3.4 5.0 7.2 0.4 3.0 2.4 2.7 3.8 1.8 0.0 2.2 3.8 2.2 2.2 4.3 1.8 0.5 9.9 4.6 0.0 0.9 4.5 -1.4 -3.4 20.0 19.4 12.3 18.4 11.0 11.8 18.0 22.9 13.4 10.0 12.1 20.9 21.8 11.3 10.0 10.0 11.7 19.7 38.3 29.1 13.4 10.1 18.0 % disc % σ 2 2 3 3 3 2 3 3 2 2 1 3 2 2 2 2 2 2 3 3 4 3 7 2 4 1 2 2 2 3 2 2 3 2 1 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 1 2 3 2 2 3 2 2 2 2 30 36 ±1 200 204 200 164 219 231 232 216 227 217 231 226 227 224 211 105 227 223 218 215 212 217 185 208 237 247 210 232 235 225 246 954 224 231 227 228 227 227 228 219 228 224 207 219 230 221 223 224 226 226 225 220 215 212 219 230 218 215 359 211 211 1181 1073 Best age (Ma) age Best σ 30 60 91 60 87 56 93 36 55 94 82 93 89 69 67 83 31 70 42 55 53 47 65 69 70 68 67 68 40 62 41 36 36 43 63 36 67 72 53 77 88 60 43 45 75 53 ±1 115 119 114 144 167 124 107 130 116 107 106 127 153 118 113 215 104 Pb Pb 206 746 732 517 662 510 554 716 857 588 494 547 816 841 532 788 910 587 483 717 461 235 352 371 280 381 427 456 483 177 994 270 286 304 255 266 261 316 364 424 250 322 274 282 329 274 228 285 330 293 290 339 253 224 487 332 214 230 633 328 113 1073 1370 1181 Pb/ 207 σ 7 6 7 7 7 9 8 7 7 4 6 5 5 7 7 7 6 6 6 4 6 4 3 3 4 6 4 6 7 5 9 9 6 4 8 7 5 11 11 14 11 15 19 10 23 16 12 13 23 10 10 14 12 11 11 11 16 13 14 10 21 11 10 ±1 CORRECTEDAGES(Ma) U 235 250 253 228 201 246 262 283 280 262 261 247 292 289 256 986 279 342 148 262 248 266 237 226 229 237 229 231 230 235 240 224 231 236 229 231 212 225 239 225 223 229 235 231 230 230 219 192 223 213 243 255 241 268 218 217 270 207 399 968 221 204 235 Pb/ 1102 207 σ 2 1 3 2 2 2 2 2 3 4 6 2 4 1 2 2 2 3 2 2 2 3 2 7 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 1 2 3 3 3 2 2 3 3 2 2 2 3 3 3 7 2 2 3 ±1 U 238 200 204 200 164 219 231 232 216 227 235 217 231 226 227 947 224 211 227 223 218 215 225 224 231 227 228 227 227 228 212 217 219 228 224 207 219 230 221 223 224 226 226 225 220 215 185 208 212 219 237 230 247 218 215 246 210 359 954 211 211 232 Pb/ 1063 104.9 206 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.4 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.4 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.3 0.2 0.3 0.4 0.3 0.2 0.4 0.4 0.4 0.3 0.4 0.3 Rho 3 σ 9E-05 9E-05 ±1 0.0003 0.0001 0.0002 0.0003 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 0.0001 0.0004 0.0003 0.0009 0.0003 0.0002 0.0013 0.0003 0.0003 0.0001 0.0003 0.0003 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003 0.0001 0.0002 0.0002 0.0003 0.0003 0.0003 0.0001 0.0002 0.0002 0.0003 0.0007 0.0004 0.0005 0.0011 0.0002 0.0003 0.0002 Th 232 0.0114 0.0113 0.0117 0.0106 0.0099 0.01253 0.00988 0.01064 0.00981 0.01075 0.01129 0.01119 0.01036 0.01142 0.01073 0.01105 0.01112 0.01069 0.01169 0.03983 0.01139 0.00985 0.03163 0.01114 0.01055 0.01024 0.01138 0.01154 0.01126 0.01245 0.01118 0.01167 0.01153 0.01045 0.01072 0.01093 0.01101 0.01055 0.01048 0.01132 0.01101 0.01106 0.01141 0.01131 0.01096 0.01079 0.01079 0.00914 0.01024 0.00932 0.01024 0.01045 0.01046 0.01216 0.00984 0.01053 0.01191 0.01047 0.05365 0.01158 0.05373 0.00966 0.01163 Pb/ 208 3 σ 2 0.001 ±1 0.0003 0.0004 0.0002 0.0005 0.0004 0.0003 0.0004 0.0004 0.0003 0.0004 0.0004 0.0005 0.0005 0.0007 0.0004 0.0007 0.0002 0.0004 0.0004 0.0003 0.0004 0.0003 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 0.0002 0.0004 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0004 0.0004 0.0006 0.0004 0.0004 0.0004 0.0005 0.0003 0.0003 0.0003 0.0004 0.0005 0.0012 0.0005 0.0012 0.0003 0.0003 0.0004 U 238 0.034 0.1583 0.0353 0.0366 0.03149 0.03221 0.03159 0.02578 0.03463 0.03647 0.03664 0.03582 0.03711 0.03424 0.03641 0.03567 0.03586 0.03324 0.01641 0.03582 0.03523 0.03438 0.03386 0.03528 0.03647 0.03583 0.03599 0.03549 0.03591 0.03585 0.03596 0.03338 0.03427 0.03457 0.03599 0.03528 0.03259 0.03461 0.03625 0.03491 0.03517 0.03528 0.03571 0.03561 0.03549 0.03475 0.03395 0.02908 0.03277 0.03344 0.03462 0.03745 0.03634 0.03908 0.03437 0.03399 0.03885 0.03314 0.17926 0.05725 0.15958 0.03328 0.03327 Pb/ 206 3 σ 0.014 0.025 0.013 0.021 0.006 ±1 0.0073 0.0133 0.0175 0.0141 0.0189 0.0087 0.0155 0.0329 0.0094 0.0324 0.0077 0.0122 0.0125 0.0186 0.0115 0.0086 0.0104 0.0306 0.0086 0.0055 0.0068 0.0066 0.0087 0.0124 0.0083 0.0085 0.0133 0.0135 0.0087 0.0078 0.0079 0.0072 0.0047 0.0079 0.0047 0.0042 0.0043 0.0052 0.0075 0.0044 0.0079 0.0088 0.0136 0.0196 0.0064 0.0106 0.0166 0.0119 0.0178 0.0071 0.0053 0.0129 0.0254 0.0343 0.0114 0.0283 0.0089 0.0058 CORRECTEDRATIOS U 0.26 235 0.283 0.317 0.2544 1.5936 0.2938 1.6405 0.2632 0.25288 0.26328 0.25308 0.25543 0.24895 0.26023 0.26713 0.24643 0.25513 0.26207 0.25297 0.25602 0.23192 0.24781 0.26491 0.24858 0.24573 0.25266 0.26095 0.25558 0.25456 0.25415 0.24029 0.20801 0.24508 0.23386 0.27085 0.28553 0.26791 0.30224 0.23915 0.23847 0.30485 0.22667 1.96167 0.48084 0.24317 0.22207 0.27876 0.25175 0.21883 0.27443 0.29499 0.32086 0.29318 0.27575 0.33287 0.32966 0.28733 0.31677 0.40081 0.15727 0.29392 0.27619 0.29986 Pb/ 207 3 σ 0.001 0.004 0.001 0.003 ±1 0.0017 0.0011 0.0013 0.0013 0.0016 0.0024 0.0011 0.0016 0.0017 0.0026 0.0026 0.0018 0.0015 0.0016 0.0016 0.0009 0.0015 0.0009 0.0008 0.0008 0.0015 0.0008 0.0016 0.0017 0.0032 0.0013 0.0022 0.0032 0.0022 0.0031 0.0014 0.0023 0.0053 0.0013 0.0013 0.0012 0.0019 0.0012 0.0019 0.0028 0.0016 0.0036 0.0034 0.0025 0.0037 0.0051 0.0017 0.0019 0.0027 0.0057 0.0042 0.0014 0.0018 0.0061 0.0033 0.0024 0.0025 0.0036 0.0024 Pb 0.052 206 0.0527 0.0553 0.0521 0.0561 0.0671 0.05201 0.05243 0.05131 0.05156 0.05087 0.05165 0.05144 0.05382 0.05355 0.05399 0.05121 0.05283 0.05174 0.05192 0.05301 0.05174 0.05072 0.05303 0.05217 0.05325 0.05126 0.05188 0.05423 0.05064 0.05688 0.05536 0.05307 0.05042 0.05077 0.05678 0.04961 0.07937 0.06082 0.07227 0.05299 0.04827 0.06414 0.06372 0.05767 0.06164 0.05747 0.05866 0.06322 0.06761 0.05957 0.05706 0.05845 0.06631 0.05806 0.07518 0.06541 0.08744 0.06939 0.05955 0.05677 0.06325 0.05622 Pb/ 207 0.49 0.69 1.10 0.38 0.65 0.92 0.74 1.17 0.95 0.84 0.91 1.16 0.86 0.47 0.95 0.90 0.68 1.66 1.09 1.23 0.65 1.34 0.87 1.00 0.51 0.53 0.62 0.78 0.81 1.04 0.79 0.70 0.90 0.89 0.76 0.39 0.08 0.64 0.20 1.07 0.82 0.67 1.00 1.30 0.85 0.90 0.73 0.75 0.29 0.82 0.90 0.64 0.76 0.56 0.68 0.40 0.98 1.17 0.05 0.89 0.88 1.03 0.89 Th/U 24 33 62 68 74 79 70 31 48 86 55 40 57 60 66 95 46 91 66 50 65 86 52 92 48 11 101 115 175 299 260 303 120 140 176 218 726 155 176 128 185 574 666 147 297 291 619 959 182 160 162 191 177 195 163 100 151 197 218 170 100 506 142 (ppm) 1 Th 74 65 86 49 89 96 74 67 74 37 52 74 63 85 60 88 66 74 141 188 179 261 116 177 217 217 143 213 147 379 201 186 213 191 114 493 159 147 105 101 195 180 240 247 185 104 203 431 179 937 193 170 162 263 635 747 121 167 464 581 1942 1453 1163 (ppm) 1 U Continued Sample number Sample 018 Gt0320 019 Gt0320 020 Gt0320 021 Gt0320 022 Gt0320 023 Gt0320 024 Gt0320 025 Gt0320 026 Gt0320 027 Gt0320 028 Gt0320 029 Gt0320 030 Gt0320 031 Gt0320 032 Gt0320 033 Gt0320 034 Gt0320 035 Gt0320 036 Gt0320 037 Gt0320 038 Gt0320 039 Gt0320 040 Gt0320 041 Gt0320 042 Gt0320 043 Gt0320 044 Gt0320 90°30'10.9" 14°56'07.8" River orthogneiss. felsic Caliente Agua Gt0321, 006 Gt0321 007 Gt0321 008 Gt0321 009 Gt0321 010 Gt0321 012 Gt0321 013 Gt0321 014 Gt0321 015 Gt0321 016 Gt0321 018 Gt0321 019 Gt0321 020 Gt0321 021 Gt0321 022 Gt0321 024 Gt0321 025 Gt0321 026 Gt0321 027 Gt0321 028 Gt0321 030 Gt0321 031 Gt0321 032 Gt0321 033 Gt0321 034 Gt0321 036 Gt0321 037 Gt0321 038 Gt0321 039 Gt0321 040 Gt0321 042 Gt0321 043 Gt0321 044 Gt0321 045 Gt0321 046 Gt0321 048 Gt0321 TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) X DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 2.1 3.3 7.1 2.9 3.7 9.1 7.2 4.2 7.5 4.7 6.3 3.5 1.1 3.2 8.4 2.2 3.7 3.2 4.4 3.6 1.3 7.1 4.5 0.2 1.2 2.4 6.9 5.9 5.1 6.4 1.7 4.8 6.6 5.7 4.5 3.6 3.7 7.6 4.2 2.0 5.0 0.9 0.3 2.3 2.5 5.9 1.3 0.0 1.8 1.3 -4.3 -2.4 -1.6 -7.1 -2.8 -1.8 -2.6 19.7 57.4 15.0 16.0 10.7 19.0 % disc % σ 3 3 8 3 5 3 2 6 7 3 7 5 4 7 5 8 5 8 5 9 5 8 2 2 2 2 2 2 2 2 2 5 1 4 2 4 2 2 4 3 3 1 2 3 5 4 21 18 18 21 22 22 18 83 34 30 19 77 23 32 15 20 15 ±1 232 199 217 525 223 225 650 497 919 732 656 363 914 800 902 966 849 406 982 940 765 610 748 775 235 219 228 216 226 225 232 235 373 421 218 838 339 339 438 348 349 253 555 222 367 324 938 945 1107 1133 1047 1096 1106 1117 1021 1059 1122 1118 1038 2033 1103 1067 1008 Best age (Ma) age Best σ 21 18 18 21 22 22 18 38 31 27 83 34 30 19 77 37 23 32 92 25 49 76 21 54 21 39 52 35 29 33 32 45 28 81 87 51 59 49 57 59 66 73 33 29 60 20 25 28 25 29 56 57 26 60 26 35 27 22 ±1 142 166 124 100 117 Pb Pb 206 817 530 942 793 605 742 941 589 420 347 915 466 936 531 989 974 839 813 928 942 830 401 153 263 335 402 167 388 357 465 519 431 968 393 475 463 354 276 313 625 380 400 325 992 986 1107 1133 1047 1096 1106 1117 1021 2033 1103 1067 1059 1122 1118 1038 1013 1015 1009 1073 Pb/ 207 σ 8 7 7 9 8 8 7 5 9 7 9 5 6 5 6 6 7 8 5 8 7 6 7 4 5 7 5 4 8 7 6 6 4 6 9 8 18 15 11 11 11 34 15 18 14 30 13 12 14 11 15 12 17 15 17 10 10 12 10 16 10 24 36 ±1 CORRECTEDAGES(Ma) U 235 289 364 234 980 989 268 988 537 694 515 929 978 251 241 213 232 227 242 221 236 246 716 246 387 377 944 437 236 875 346 837 357 936 442 979 914 349 340 425 259 569 236 984 372 951 784 324 655 795 817 756 955 957 Pb/ 1092 1166 1025 1053 1113 1053 1096 1064 1032 1008 207 σ 2 3 8 6 2 6 7 3 6 5 4 6 6 4 5 9 6 2 3 2 2 2 2 2 3 5 2 2 7 5 1 4 2 4 4 2 2 4 8 3 3 1 5 2 8 5 3 9 5 8 8 5 4 4 2 3 5 7 5 15 15 13 20 ±1 U 238 232 155 199 926 953 217 525 235 223 219 228 216 226 225 225 656 235 373 914 650 421 218 838 339 339 902 438 348 349 406 253 555 222 919 982 367 942 940 765 324 610 748 775 732 938 945 994 232 363 800 966 849 497 Pb/ 1008 1084 1182 1012 1020 1122 1027 1085 1037 1037 206 0.2 0.3 0.6 0.6 0.4 0.3 0.4 0.3 0.2 0.3 0.4 0.3 0.3 0.3 0.3 0.5 0.3 0.2 0.4 0.6 0.8 0.7 0.3 0.5 0.4 0.6 0.4 0.4 0.4 0.4 0.8 0.5 0.5 0.4 0.2 0.8 0.4 0.4 0.4 0.4 0.5 0.4 0.7 0.7 0.6 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.5 0.6 0.4 0.3 0.3 0.3 0.4 0.2 0.9 Rho 3 σ 0.001 0.001 0.001 0.001 ±1 0.0009 0.0009 0.0002 0.0005 0.0008 0.0014 0.0007 0.0004 0.0003 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 0.0001 0.0006 0.0003 0.0005 0.0008 0.0064 0.0003 0.0025 0.0006 0.0021 0.0004 0.0007 0.0003 0.0001 0.0026 0.0004 0.0008 0.0003 0.0002 0.0004 0.0007 0.0008 0.0003 0.0008 0.0007 0.0003 0.0004 0.0003 0.0009 0.0004 0.0007 0.0002 0.0008 0.0007 0.0007 0.0009 0.0008 0.0007 0.0003 0.0003 0.0004 0.0003 0.0003 0.0011 Th 0.011 232 0.0262 0.0111 0.0474 0.0255 0.01289 0.01601 0.00918 0.04646 0.04813 0.01049 0.04881 0.01061 0.01084 0.01169 0.01022 0.01101 0.01049 0.02579 0.01174 0.01948 0.04762 0.04536 0.02095 0.01188 0.04191 0.04423 0.01729 0.04653 0.02189 0.01736 0.02382 0.02013 0.05405 0.01255 0.02771 0.01095 0.04859 0.05075 0.05931 0.01763 0.04713 0.03841 0.01613 0.03031 0.03732 0.03853 0.03666 0.04896 0.05168 0.05148 0.04775 0.05634 0.05321 0.05497 0.05039 0.05385 0.05005 0.01156 0.01801 0.04007 0.04885 0.04239 Pb/ 208 3 σ 2 0.001 0.001 0.001 0.001 ±1 0.0004 0.0003 0.0005 0.0015 0.0004 0.0011 0.0012 0.0004 0.0005 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0009 0.0003 0.0003 0.0012 0.0026 0.0009 0.0002 0.0008 0.0003 0.0006 0.0008 0.0004 0.0003 0.0007 0.0013 0.0005 0.0006 0.0002 0.0028 0.0009 0.0003 0.0023 0.0015 0.0009 0.0006 0.0015 0.0009 0.0014 0.0014 0.0009 0.0007 0.0007 0.0012 0.0008 0.0009 0.0017 0.0012 0.0008 0.0004 0.0005 0.0009 0.0012 0.0008 0.0033 U 238 0.0366 0.0579 0.1321 0.1617 0.1408 0.0802 0.03666 0.02427 0.03141 0.15456 0.15927 0.03421 0.16929 0.08478 0.03714 0.03527 0.03455 0.03599 0.03414 0.03566 0.03559 0.03544 0.10704 0.03715 0.05955 0.15235 0.10606 0.06753 0.03432 0.13875 0.05405 0.05401 0.15011 0.07036 0.05547 0.05558 0.06494 0.18303 0.04002 0.08984 0.03504 0.15327 0.16461 0.20122 0.05859 0.15733 0.15707 0.12598 0.05147 0.09925 0.12298 0.12777 0.12018 0.15669 0.17007 0.17145 0.15786 0.19007 0.17278 0.18323 0.17446 0.17447 0.16665 Pb/ 206 3 σ 0.01 0.021 0.022 ±1 0.0206 0.0061 0.0274 0.0298 0.0137 0.0239 0.0563 0.0233 0.0118 0.0175 0.0057 0.0072 0.0061 0.0075 0.0068 0.0143 0.0089 0.0291 0.0096 0.0074 0.0173 0.0294 0.0073 0.0157 0.0049 0.0387 0.0072 0.0185 0.0074 0.0392 0.0413 0.0062 0.0114 0.0151 0.0238 0.0084 0.0112 0.0077 0.0289 0.0341 0.0264 0.0228 0.0059 0.0768 0.0302 0.0077 0.0296 0.0225 0.0537 0.0737 0.0235 0.0182 0.0353 0.0196 0.0252 0.0218 0.0233 0.0329 0.0198 0.0176 CORRECTEDRATIOS U 235 1.367 1.551 1.561 1.821 1.944 0.2339 1.0235 1.5346 1.5136 1.9312 1.4959 1.6353 2.1525 1.2357 1.7429 1.9919 1.8505 1.7632 1.6993 0.4311 1.6493 1.6456 0.28063 0.26841 0.25623 0.25035 0.26903 0.24287 0.26112 0.27448 0.27447 0.46378 0.44983 0.98129 0.53746 0.26155 0.40614 1.27995 0.42168 0.54576 1.62334 1.45896 0.40993 0.39775 0.51963 0.29048 0.75052 0.26188 0.66101 0.44225 1.61938 1.16447 0.37554 0.90604 1.18686 1.10625 1.82071 1.56688 0.32865 0.25948 1.62574 0.30196 0.69668 Pb/ 207 3 σ 0.002 0.001 0.001 0.001 0.003 0.004 0.001 ±1 0.0022 0.0032 0.0011 0.0014 0.0012 0.0015 0.0013 0.0025 0.0017 0.0019 0.0018 0.0008 0.0021 0.0008 0.0012 0.0008 0.0015 0.0007 0.0006 0.0007 0.0008 0.0007 0.0015 0.0021 0.0007 0.0014 0.0008 0.0013 0.0008 0.0015 0.0009 0.0011 0.0007 0.0007 0.0033 0.0012 0.0011 0.0009 0.0015 0.0007 0.0013 0.0008 0.0008 0.0008 0.0009 0.0012 0.0007 0.0007 0.0046 0.0058 0.0011 0.0009 0.0013 0.0028 0.0009 0.0045 Pb 0.07 0.058 206 0.0552 0.0764 0.0596 0.05473 0.04911 0.05149 0.05314 0.05476 0.04941 0.05343 0.05441 0.06956 0.05367 0.05633 0.05635 0.07297 0.06633 0.05772 0.05546 0.07138 0.05453 0.07027 0.05658 0.07302 0.05626 0.07281 0.07515 0.05359 0.05178 0.05804 0.07645 0.05264 0.06059 0.05421 0.07045 0.07212 0.07746 0.05469 0.07465 0.07159 0.06704 0.05292 0.06621 0.07048 0.06676 0.07222 0.07419 0.07702 0.07199 0.07603 0.07685 0.07689 0.07324 0.07387 0.06559 0.12527 0.06004 0.07629 0.07494 0.06401 0.07044 Pb/ 207 0.98 0.81 0.81 0.86 0.97 0.65 1.09 0.77 0.69 0.43 0.87 0.10 0.10 0.20 0.05 0.01 0.01 0.29 0.20 0.19 0.28 0.03 0.57 0.20 0.03 0.01 0.06 0.23 0.01 0.07 0.01 0.09 0.27 1.13 0.32 0.35 0.07 1.05 0.25 0.01 0.37 0.44 0.92 1.26 0.14 0.47 0.10 0.10 0.53 0.29 0.28 0.53 0.36 0.42 0.63 0.71 1.19 0.14 0.34 0.01 0.81 0.40 Th/U 0.004 5 4 1 4 8 1 1 1 0 1 4 99 15 15 53 16 77 38 12 29 12 18 41 18 32 20 57 89 88 18 35 79 12 36 15 10 12 89 80 52 29 39 20 75 202 217 364 459 739 318 773 498 153 158 103 187 145 142 190 146 116 209 1568 (ppm) 1 Th 5 60 94 92 10 80 51 58 84 93 75 51 84 73 13 28 99 54 185 294 284 206 268 450 533 761 488 709 647 223 229 182 156 148 263 105 299 100 350 414 133 349 269 329 181 236 103 363 274 530 214 327 101 301 126 168 275 185 533 345 1100 3129 1319 (ppm) 1 U Continued Sample number Sample 049 Gt0321 050 Gt0321 051 Gt0321 052 Gt0321 054 Gt0321 055 Gt0321 056 Gt0321 057 Gt0321 058 Gt0321 060 Gt0321 061 Gt0321 062 Gt0321 063 Gt0321 064 Gt0321 90°29'12.5" 14°57'53.6" leucosome. migmatite Chol El Gt0332, 001 Gt0332 002 Gt0332 003 Gt0332 004 Gt0332 005 Gt0332 006 Gt0332 007 Gt0332 008 Gt0332 009 Gt0332 010 Gt0332 011 Gt0332 012 Gt0332 013 Gt0332 014 Gt0332 015 Gt0332 016 Gt0332 017 Gt0332 018 Gt0332 019 Gt0332 020 Gt0332 021 Gt0332 022 Gt0332 023 Gt0332 024 Gt0332 025 Gt0332 026 Gt0332 027 Gt0332 028 Gt0332 029 Gt0332 030 Gt0332 031 Gt0332 032 Gt0332 033 Gt0332 034 Gt0332 035 Gt0332 036 Gt0332 037 Gt0332 038 Gt0332 039 Gt0332 040 Gt0332 041 Gt0332 042 Gt0332 043 Gt0332 044 Gt0332 045 Gt0332 046 Gt0332 047 Gt0332 048 Gt0332 049 Gt0332 TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) XI DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 4.6 6.5 3.6 2.6 6.2 2.0 0.3 3.0 0.2 1.5 0.0 0.0 0.0 7.2 4.2 2.9 0.0 6.7 0.9 1.6 0.7 9.4 0.2 4.1 4.1 0.6 0.4 0.7 1.8 1.1 1.3 4.0 2.1 1.5 0.7 0.4 2.7 2.6 0.9 2.2 7.0 0.8 7.0 1.3 2.4 1.9 2.6 7.6 2.4 1.5 0.4 3.1 0.7 1.5 0.6 -0.2 -1.8 -0.9 -0.8 -1.5 81.7 33.9 21.1 % disc % σ 3 5 3 3 5 3 2 2 3 4 5 3 2 3 3 2 8 2 3 3 3 3 2 2 3 3 2 2 6 2 2 3 2 3 2 2 3 8 2 3 2 3 3 2 2 2 2 2 2 2 2 3 2 19 26 20 19 22 52 16 29 65 ±1 244 453 475 231 670 235 219 219 232 481 840 995 225 222 458 483 427 435 451 424 465 468 469 464 450 446 477 440 450 334 457 447 562 469 466 450 459 447 463 472 291 457 449 464 457 453 448 471 444 443 453 449 477 475 1067 1123 1105 1071 1051 1494 2225 1308 1053 1071 Best age (Ma) age Best σ 3 3 19 26 20 19 22 16 52 44 26 92 29 95 84 53 35 65 26 91 73 32 35 22 25 21 23 27 39 24 22 22 21 31 26 22 20 28 21 38 31 39 24 26 30 30 24 50 28 37 33 24 25 22 45 22 24 40 24 35 31 ±1 244 106 Pb Pb 206 485 713 247 192 463 601 929 225 406 218 218 490 532 450 699 461 535 583 494 481 446 472 499 462 475 495 448 520 492 579 485 542 522 487 509 671 495 530 495 519 520 526 667 517 512 462 526 470 494 500 441 1067 1123 1105 1071 1051 1494 2225 1308 1103 1053 1071 1003 Pb/ 207 σ 7 9 7 7 8 8 5 9 8 2 2 6 7 4 9 4 5 6 7 5 4 4 4 6 5 4 6 5 4 9 6 7 5 5 6 9 5 7 5 7 6 4 5 4 9 4 4 8 4 9 7 6 18 77 10 23 11 10 11 10 12 11 22 ±1 CORRECTEDAGES(Ma) U 235 826 574 476 680 235 225 227 238 219 219 250 462 491 430 480 452 502 442 485 471 471 460 453 454 473 445 456 348 467 454 566 471 479 462 463 457 498 476 313 463 460 473 469 490 459 478 446 457 456 456 865 998 480 468 Pb/ 1014 1034 1074 1079 1053 1054 1468 1009 1057 207 σ 3 7 3 3 5 6 5 4 5 6 5 3 3 3 2 2 2 3 3 3 2 4 3 3 3 3 2 2 3 3 2 2 6 2 2 3 2 3 2 3 8 2 3 2 3 2 2 2 2 2 2 2 2 6 2 8 2 3 5 5 3 2 12 ±1 U 238 407 865 453 475 670 235 225 231 222 219 219 232 458 483 451 481 424 465 468 469 464 450 446 477 440 450 334 457 447 562 469 466 450 447 463 472 291 457 449 457 453 448 471 444 443 453 449 988 427 435 459 464 840 995 477 475 Pb/ 1050 1018 1050 1065 1043 1053 1449 206 0.3 0.1 0.3 0.5 0.3 0.4 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.6 0.4 0.3 0.5 0.5 0.5 0.5 0.4 0.4 0.5 0.9 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.5 0.5 0.9 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.5 Rho 3 σ 0.003 ±1 0.0048 0.0007 0.0004 0.0003 0.0003 0.0009 0.0028 0.0028 0.0034 0.0059 0.0049 0.0044 0.0003 0.0003 0.0003 0.0002 0.0004 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003 0.0002 0.0003 0.0003 0.0001 0.0003 0.0003 0.0003 0.0003 0.0012 0.0003 0.0005 0.0003 0.0003 0.0003 0.0003 0.0005 0.0001 0.0002 0.0004 0.0001 0.0003 0.0003 0.0007 0.0002 0.0012 0.0003 0.0003 0.0006 0.0011 0.0008 0.0006 0.0008 0.0007 0.0003 0.0003 0.0008 Th 232 0.0232 0.0233 0.0239 0.0235 0.05394 0.04416 0.02695 0.02345 0.03362 0.05481 0.02728 0.01321 0.02604 0.08597 0.04323 0.02926 0.02256 0.02405 0.02017 0.02414 0.02335 0.02228 0.02316 0.02185 0.02191 0.02436 0.02142 0.02268 0.01643 0.02287 0.02246 0.02819 0.02336 0.02407 0.02303 0.02234 0.02034 0.02361 0.02554 0.02258 0.02227 0.02252 0.02355 0.02112 0.02154 0.02575 0.02264 0.02267 0.04994 0.05259 0.02015 0.02303 0.02344 0.02229 0.04448 0.05342 0.05463 0.05174 0.05417 0.04928 0.02416 0.02386 0.07075 Pb/ 208 3 σ 2 0.001 0.001 0.001 ±1 0.0006 0.0012 0.0005 0.0005 0.0009 0.0005 0.0005 0.0004 0.0003 0.0003 0.0004 0.0005 0.0004 0.0004 0.0003 0.0007 0.0006 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004 0.0005 0.0003 0.0004 0.0009 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0013 0.0004 0.0005 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004 0.0003 0.0004 0.0004 0.0004 0.0011 0.0004 0.0014 0.0004 0.0004 0.0021 0.0009 0.0008 0.0009 0.0009 0.0005 0.0004 0.0011 U 238 0.1657 0.0684 0.0698 0.0738 0.0747 0.06512 0.14367 0.07284 0.07648 0.10951 0.17684 0.03711 0.03546 0.03651 0.03496 0.03461 0.03462 0.03659 0.07356 0.07786 0.07241 0.07739 0.06804 0.07485 0.07524 0.07552 0.07459 0.07225 0.07162 0.07674 0.07072 0.07227 0.05314 0.07341 0.07181 0.09115 0.07545 0.07504 0.07234 0.07187 0.07444 0.07595 0.04619 0.07341 0.07208 0.07353 0.07274 0.07198 0.07572 0.07124 0.07121 0.07278 0.07217 0.17103 0.13917 0.17686 0.17968 0.17568 0.17749 0.16698 0.07679 0.07639 0.25199 Pb/ 206 3 σ 0.02 0.015 0.014 0.007 ±1 0.0392 0.2063 0.0175 0.0082 0.0448 0.0292 0.0265 0.0124 0.0114 0.0131 0.0098 0.0025 0.0027 0.0124 0.0093 0.0106 0.0059 0.0141 0.0061 0.0192 0.0075 0.0088 0.0114 0.0073 0.0064 0.0062 0.0065 0.0092 0.0071 0.0064 0.0079 0.0081 0.0062 0.0089 0.0116 0.0071 0.0076 0.0088 0.0073 0.0092 0.0082 0.0104 0.0096 0.0081 0.0064 0.0142 0.0061 0.0069 0.0119 0.0069 0.0247 0.0627 0.0214 0.0188 0.0219 0.0235 0.0104 0.0087 0.0315 CORRECTEDRATIOS U 235 1.895 1.8798 1.3441 1.8334 1.8209 1.7691 1.8223 1.6717 0.6047 0.5853 3.2453 1.2565 1.7152 0.7605 0.95347 1.70055 0.26071 0.24796 0.25055 0.26402 0.24094 0.24103 0.27975 0.57685 0.62159 0.52663 0.60464 0.56093 0.63942 0.54479 0.61262 0.59089 0.58979 0.57358 0.56201 0.56314 0.59385 0.55058 0.56762 0.40887 0.58327 0.56357 0.74541 0.59058 0.60226 0.57568 0.57738 0.56823 0.63361 0.59749 0.36057 0.57709 0.57238 0.59391 0.58736 0.62011 0.57184 0.60057 0.55142 0.56778 0.56649 0.56638 0.59865 Pb/ 207 3 σ 0.001 0.002 0.001 0.001 0.001 0.001 8E-05 7E-05 ±1 0.0027 0.0012 0.0024 0.0008 0.0011 0.0007 0.0007 0.0008 0.0024 0.0022 0.0026 0.0024 0.0009 0.0009 0.0009 0.0006 0.0008 0.0006 0.0015 0.0006 0.0008 0.0006 0.0006 0.0009 0.0006 0.0006 0.0008 0.0007 0.0006 0.0005 0.0008 0.0005 0.0008 0.0008 0.0008 0.0011 0.0006 0.0007 0.0008 0.0009 0.0006 0.0013 0.0007 0.0009 0.0006 0.0007 0.0006 0.0012 0.0006 0.0006 0.0006 0.0042 0.0102 0.0017 0.0007 Pb 0.057 0.058 206 0.0726 0.0559 0.0578 0.0571 0.06315 0.07002 0.07508 0.07639 0.07443 0.07508 0.07494 0.07436 0.07708 0.05113 0.05066 0.04994 0.05484 0.05049 0.05049 0.05627 0.05696 0.05805 0.05594 0.06273 0.05622 0.05993 0.05813 0.05944 0.05707 0.05674 0.05584 0.05721 0.05649 0.05719 0.05624 0.05658 0.05709 0.05773 0.05571 0.09328 0.05931 0.05684 0.05832 0.05687 0.05744 0.06192 0.05708 0.05771 0.05773 0.05791 0.06178 0.05766 0.05752 0.05624 0.05789 0.05645 0.05706 0.13981 0.08468 0.07632 0.05683 Pb/ 207 0.59 1.18 0.98 0.29 0.27 0.48 0.39 0.25 0.54 0.09 0.09 0.09 0.07 0.20 0.39 0.23 0.85 0.75 0.50 0.78 2.13 0.22 0.79 0.92 0.86 1.23 0.67 0.56 1.22 0.66 1.44 1.31 1.87 1.26 0.90 0.41 0.59 0.72 0.32 0.37 1.18 1.26 1.23 0.59 0.44 0.85 0.39 0.77 0.59 2.74 2.13 1.09 1.44 0.79 0.73 0.71 0.37 0.56 0.44 0.69 0.72 0.94 0.64 Th/U 7 28 70 61 13 47 42 53 42 57 34 63 90 43 89 94 90 86 32 18 91 237 134 110 374 146 398 137 130 606 279 210 224 241 103 339 941 209 740 585 461 163 137 160 267 150 476 216 258 130 257 224 412 619 500 234 478 176 607 206 132 1760 1065 (ppm) 1 Th 7 46 25 96 47 60 48 77 87 86 84 94 205 211 492 347 189 578 479 605 275 171 121 509 825 608 165 660 326 170 333 429 514 653 160 396 463 215 780 227 429 429 226 120 388 364 214 305 331 117 144 105 379 430 630 320 674 479 472 1494 1888 1187 1090 (ppm) 1 U Continued TABLE II TABLE Sample number Sample 050 Gt0332 051 Gt0332 052 Gt0332 053 Gt0332 054 Gt0332 055 Gt0332 056 Gt0332 057 Gt0332 058 Gt0332 059 Gt0332 060 Gt0332 061 Gt0332 062 Gt0332 063 Gt0332 064 Gt0332 065 Gt0332 066 Gt0332 067 Gt0332 90°14'24.4" 15°00'22.5" orthogneiss. Gt0341, 001 Gt0341 002 Gt0341 003 Gt0341 004 Gt0341 005 Gt0341 006 Gt0341 007 Gt0341 008 Gt0341 009 Gt0341 010 Gt0341 011 Gt0341 012 Gt0341 013 Gt0341 014 Gt0341 015 Gt0341 016 Gt0341 017 Gt0341 018 Gt0341 019 Gt0341 020 Gt0341 021 Gt0341 022 Gt0341 023 Gt0341 024 Gt0341 025 Gt0341 026 Gt0341 027 Gt0341 028 Gt0341 029 Gt0341 030 Gt0341 031 Gt0341 032 Gt0341 033 Gt0341 034 Gt0341 035 Gt0341 036 Gt0341 037 Gt0341 038 Gt0341 039 Gt0341 040 Gt0341 041 Gt0341 042 Gt0341 043 Gt0341 044 Gt0341 045 Gt0341

Geologica Acta, 9(3-4), 329-350 (2011) XII DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala 0.4 5.9 0.4 1.2 1.2 1.0 4.1 4.2 1.2 0.7 8.7 1.5 8.0 0.2 0.9 0.4 1.1 2.3 2.7 3.7 0.7 2.6 1.3 4.2 6.7 0.7 7.9 0.6 4.5 2.6 2.7 0.8 1.3 0.4 0.0 1.2 0.4 1.1 3.2 1.5 0.2 0.0 0.4 -2.0 -0.9 -2.3 -1.4 -1.8 -0.2 13.2 13.0 26.6 10.4 11.8 52.6 14.3 30.3 13.6 -16.4 % disc % σ 3 3 5 3 1 1 2 4 4 5 4 5 5 6 3 2 2 3 2 3 3 2 2 2 3 3 2 3 3 2 1 1 2 1 1 2 2 1 20 19 19 23 22 18 21 19 19 19 21 18 19 41 18 20 35 32 55 ±1 128 511 969 710 596 246 252 138 280 448 959 688 873 834 939 930 967 452 360 456 432 459 444 444 470 480 263 907 443 466 465 446 447 450 251 249 443 240 255 442 454 254 1131 1096 1113 1088 1115 1132 1129 1059 1097 1045 1090 1068 1043 1291 1114 1265 2486 1048 1014 Best age (Ma) age Best σ 20 19 19 23 22 18 21 19 19 19 21 19 41 19 20 35 81 30 27 28 41 45 32 55 47 30 22 34 99 61 22 27 24 32 32 39 31 43 30 44 38 27 46 35 20 30 30 44 27 25 30 37 82 436 511 ±1 498 128 211 257 Pb Pb 206 991 254 991 565 642 999 678 465 995 756 956 948 960 572 549 477 656 478 571 521 544 502 199 939 414 509 424 450 463 450 283 261 469 334 300 452 450 265 1131 1096 1113 1088 1115 1132 1129 1059 1097 1045 1090 1291 1114 1265 2486 1068 1043 1048 1014 1012 1007 Pb/ 207 σ 8 7 7 9 9 7 8 7 7 7 8 6 8 9 4 5 7 4 6 4 6 6 8 6 9 5 9 7 7 5 8 7 4 3 3 9 3 3 5 6 8 45 23 14 34 15 10 11 15 12 21 15 11 13 17 11 136 ±1 178 152 CORRECTEDAGES(Ma) U 235 976 610 685 279 294 198 324 450 459 469 462 465 456 970 704 897 483 990 484 866 946 955 980 257 915 437 472 472 457 445 449 450 254 386 250 448 248 259 443 454 255 Pb/ 1059 1035 1156 1067 1128 1052 1110 1131 1106 1122 1032 1122 1030 1104 1014 1081 1004 1013 207 σ 3 4 3 4 1 1 2 3 5 5 5 5 5 5 5 4 5 5 5 5 2 3 2 3 3 4 4 5 4 2 5 2 4 5 5 6 2 5 3 3 3 3 3 2 1 2 1 1 1 2 2 1 2 2 18 18 10 36 10 ±1 U 238 710 596 947 998 969 246 506 252 138 280 448 456 432 459 444 444 959 688 873 975 470 964 480 834 939 930 967 263 907 443 452 466 446 447 450 251 360 249 240 255 442 454 254 465 443 Pb/ 1098 1126 1031 1109 1154 1102 1118 1027 1016 1107 1001 1077 1118 1012 206 0.2 0.5 0.4 0.2 0.3 0.2 0.2 0.4 0.3 0.5 0.3 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.5 0.4 0.3 Rho 3 σ 8E-05 ±1 0.0238 0.0009 0.0008 0.0007 0.0042 0.0034 0.0002 0.0019 0.0003 0.0024 0.0003 0.0003 0.0004 0.0003 0.0003 0.0004 0.0009 0.0002 0.0005 0.0008 0.0004 0.0008 0.0007 0.0003 0.0009 0.0003 0.0004 0.0008 0.0003 0.0002 0.0007 0.0007 0.0003 0.0003 0.0004 0.0008 0.0008 0.0008 0.0002 0.0007 0.0003 0.0002 0.0004 0.0004 0.0003 0.0003 0.0002 0.0003 0.0002 0.0002 0.0002 0.0003 0.0003 0.0011 0.0008 0.0005 0.0003 0.0001 Th 0.056 0.024 232 0.0503 0.0123 0.0484 0.0122 0.0553 0.03663 0.05909 0.04441 0.05532 0.04905 0.01206 0.06371 0.00652 0.06733 0.02242 0.02283 0.02113 0.02323 0.02469 0.02264 0.05905 0.04848 0.03447 0.05358 0.04393 0.05568 0.02343 0.05932 0.04865 0.05888 0.05206 0.02401 0.05223 0.04188 0.04752 0.04688 0.04891 0.05855 0.05563 0.05603 0.01242 0.04561 0.02147 0.02247 0.02195 0.02203 0.02237 0.01237 0.01777 0.01262 0.01195 0.02172 0.02281 0.01265 0.05134 0.02359 0.02215 Pb/ 208 3 σ 2 0.001 0.001 ±1 0.0032 0.0006 0.0008 0.0018 0.0065 0.0033 0.0004 0.0007 0.0005 0.0002 0.0002 0.0004 0.0004 0.0005 0.0003 0.0005 0.0004 0.0009 0.0008 0.0006 0.0009 0.0009 0.0008 0.0008 0.0004 0.0009 0.0009 0.0009 0.0009 0.0009 0.0004 0.0008 0.0008 0.0008 0.0009 0.0011 0.0009 0.0009 0.0003 0.0009 0.0004 0.0004 0.0005 0.0004 0.0004 0.0004 0.0002 0.0004 0.0002 0.0002 0.0002 0.0004 0.0004 0.0002 0.0018 0.0004 0.0004 U 0.17 238 0.1857 0.0399 0.1894 0.0748 0.0712 0.11641 0.09689 0.15822 0.16746 0.16218 0.03896 0.08162 0.02158 0.04446 0.07201 0.07329 0.06937 0.07386 0.07134 0.07126 0.19089 0.16037 0.11255 0.17351 0.14498 0.18765 0.16336 0.07564 0.19606 0.18645 0.16137 0.18931 0.17264 0.07731 0.17075 0.13817 0.15686 0.15522 0.16187 0.18741 0.16797 0.18189 0.04166 0.15106 0.07111 0.07263 0.07492 0.07158 0.07184 0.07232 0.03964 0.05739 0.03939 0.03792 0.04029 0.07097 0.07301 0.04021 Pb/ 206 3 σ 0.35 0.01 0.006 ±1 0.2728 0.0111 0.0222 0.1238 0.5456 0.0303 0.0402 0.0104 0.0072 0.0454 0.0063 0.0089 0.0069 0.0096 0.0092 0.0243 0.0261 0.0223 0.0202 0.0354 0.0214 0.0183 0.0123 0.0264 0.0262 0.0301 0.0212 0.0414 0.0244 0.0101 0.0193 0.0556 0.0351 0.0271 0.0222 0.0329 0.0219 0.0193 0.0234 0.0062 0.0222 0.0107 0.0272 0.0107 0.0074 0.0115 0.0062 0.0043 0.0151 0.0042 0.0132 0.0039 0.0038 0.0076 0.0095 0.0103 CORRECTEDRATIOS U 1.9 235 2.018 2.0375 1.8186 1.9842 1.6892 2.0461 2.0198 1.7564 1.9658 1.7159 1.4623 0.5506 0.2837 1.8372 1.8602 0.2156 0.57147 0.58726 0.57569 0.58091 0.56646 1.59942 1.00002 1.41842 0.60878 1.97327 1.65157 1.76258 0.61043 1.71135 1.34641 1.53755 1.56093 1.62392 0.28745 0.53816 0.59211 0.59155 0.56879 0.55607 0.55692 0.46303 0.27898 0.55387 0.27705 0.29051 0.54684 0.56322 0.28573 0.82331 0.96358 1.77126 2.12074 1.61372 0.31666 0.33609 0.37609 0.55761 Pb/ 207 3 σ 0.001 0.002 0.001 0.001 0.001 0.001 0.005 ±1 0.0006 0.0008 0.0006 0.0009 0.0009 0.0009 0.0008 0.0016 0.0008 0.0007 0.0009 0.0009 0.0012 0.0007 0.0016 0.0009 0.0008 0.0008 0.0017 0.0011 0.0008 0.0013 0.0008 0.0007 0.0008 0.0011 0.0026 0.0007 0.0011 0.0006 0.0007 0.0007 0.0012 0.0007 0.0006 0.0007 0.0009 0.0013 0.0011 0.0018 0.0018 0.0157 0.0007 0.0009 0.0197 0.0146 0.0054 0.0033 0.0079 0.0032 0.0009 0.0007 Pb 0.056 206 0.0774 0.0553 0.05663 0.06149 0.05665 0.05911 0.05777 0.07737 0.07233 0.07603 0.07096 0.07668 0.07497 0.07575 0.07676 0.07423 0.07405 0.07731 0.05726 0.07466 0.07301 0.07067 0.07109 0.07294 0.07276 0.07609 0.07413 0.07579 0.05009 0.05505 0.05912 0.05746 0.05595 0.05627 0.05594 0.05195 0.05145 0.05642 0.05312 0.05233 0.05595 0.06444 0.05837 0.07216 0.07037 0.05852 0.05153 0.05129 0.07219 0.08395 0.07672 0.08283 0.05895 0.16292 0.06109 0.07245 0.06211 0.05632 Pb/ 207 0.57 1.70 0.63 1.32 0.24 0.31 0.31 0.37 0.16 0.35 0.27 0.29 0.29 0.18 0.33 0.45 0.33 0.15 0.30 0.25 0.13 0.26 0.28 0.26 0.23 0.24 0.42 0.35 0.59 0.39 0.41 0.39 0.38 0.36 0.36 0.49 0.52 0.46 0.68 0.28 0.41 0.50 0.12 0.08 0.33 0.34 0.14 0.02 0.18 0.17 0.43 0.20 0.35 0.77 0.65 0.52 0.55 0.03 0.34 Th/U 47 80 92 79 86 32 72 62 52 38 71 28 67 95 49 50 50 88 70 69 50 71 77 88 32 34 37 19 54 35 48 70 355 378 345 293 102 102 125 149 157 137 143 181 200 292 295 102 519 195 130 122 342 145 262 137 101 147 2791 (ppm) 1 Th 91 98 99 106 856 126 179 135 403 264 432 620 223 550 222 195 256 300 277 486 245 386 109 247 348 383 117 115 966 240 113 509 368 558 522 212 208 120 411 150 178 169 466 132 195 561 595 570 220 764 705 315 154 1051 1113 2490 1488 5108 4015 (ppm) 1 U Continued Sample number Sample 046 Gt0341 047 Gt0341 048 Gt0341 049 Gt0341 050 Gt0341 90°23'36.8" 15°03'24" dike. pegmatite Gt03113 001 Gt03113 002 Gt03113 003 Gt03113 004 Gt03113 005 Gt03113 006 Gt03113 007 Gt03113 008 Gt03113 009 Gt03113 010 Gt03113 011 Gt03113 012 Gt03113 013 Gt03113 014 Gt03113 015 Gt03113 016 Gt03113 017 Gt03113 018 Gt03113 019 Gt03113 020 Gt03113 021 Gt03113 022 Gt03113 023 Gt03113 024 Gt03113 025 Gt03113 026 Gt03113 027 Gt03113 028 Gt03113 029 Gt03113 030 Gt03113 89°41'02.4" 15°02'21.4" Pasabien. Rio migmatite Gt0405 001 Gt0405 002 Gt0405 003 Gt0405 004 Gt0405 005 Gt0405 006 Gt0405 007 Gt0405 008 Gt0405 009 Gt0405 010 Gt0405 011 Gt0405 012 Gt0405 013 Gt0405 014 Gt0405 015 Gt0405 016 Gt0405 017 Gt0405 018 Gt0405 019 Gt0405 020 Gt0405 021 Gt0405 023 Gt0405 024 Gt0405 025 Gt0405 TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) XIII DOI: 10.1344/105.000001695 L.A. SOLARI et al. Paleozoic-Mesozoic evolution of the Chuacús Complex, Guatemala Continued TABLE II TABLE

Geologica Acta, 9(3-4), 329-350 (2011) XIV DOI: 10.1344/105.000001695