The Effect of Habitat Degradation, Season and Gender on Morphological Parameters of Lesser Jerboas (Jaculus Jaculus L.) in Kuwait

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Habitat Degradation, Season and Gender on Morphological Parameters of Lesser Jerboas (Jaculus Jaculus L.) in Kuwait Animal Biodiversity and Conservation 35.1 (2012) 119 The effect of habitat degradation, season and gender on morphological parameters of lesser jerboas (Jaculus jaculus L.) in Kuwait M. Al–Mutairi, F. Mata & R. Bhuller Al–Mutairi, M., Mata, F. & Bhuller, R., 2012. The effect of habitat degradation, season and gender on mor- phological parameters of lesser jerboas (Jaculus jaculus L.) in Kuwait. Animal Biodiversity and Conservation, 35.1: 119–124, Doi: https://doi.org/10.32800/abc.2012.35.0119 Abstract The effect of habitat degradation, season and gender on morphological parameters of lesser jerboas (Jaculus jaculus L.) in Kuwait.— Arid environments suffer anthropogenic interference causing habitat degradation. This degradation can influence animal populations. We randomly captured a total of 198 lesser jerboas Jaculus jaculus in three seasons (autumn, spring and summer) in two relatively close areas (intact and degraded). All animals were sexed, and weight, body and tail length, and thigh thickness were taken. We found significant differences in weight (p < 0.001), which was lower in summer (p < 0.05) when fewer food resources were available. Thigh thickness was greater in the intact habitat (p < 0.01), explained by the greater amount of food resources and also by the higher numbers of predators in this area, prompting escape behaviour. Females in the intact area were heavier and had longer bodies and tails. This was related to greater availability of time for mothers to search for food in this area. Key words: Habitat, Degradation, Kuwait, Lesser jerboa, Jaculus jaculus L. Resumen El efecto de la degradación del hábitat, la estación del año y el sexo en algunos parámetros morfológicos del jerbo egipcio (Jaculus jaculus L.) en Kuwait.— En los climas áridos las interferencias antropógenas causan la degradación del hábitat, que puede afectar a las poblaciones animales. Se capturaron 198 jerbos egipcios al azar en tres estaciones del año (otoño, primavera y verano) y en áreas intactas y degradadas cercanas. Los individuos capturados se sexaron y se les registró el peso, la longitud del cuerpo, la longitud de la cola y el grosor del muslo. Se encontraron diferencias significativas en el peso (p < 0,001), que fue inferior en verano (p < 0,05), cuando hay menos recursos alimentarios. El grosor del muslo fue mayor en el hábitat intacto (p < 0,01), lo que se atribuye a una mayor disponibilidad de alimento y también a una mayor presencia de depredadores en la zona, que provocaba conductas de huida. Las hembras fueron más pesadas y tuvieron mayor longitud del cuerpo y de la cola en las zonas intactas, como consecuencia de una mayor disponibilidad de tiempo para buscar alimento por parte de las madres en esta zona. Palabras clave: Hábitat, Degradación, Kuwait, Jerbo egipcio, Jaculus jaculus L. (Received: 26 IV 12; Conditional acceptance: 31 V 12; Final acceptance: 15 VI 12) Matrah Al–Mutairi & Ravneet Bhuller, School of Biological Sciences, Univ. of Bristol, Woodland Road, Bristol BS8 1UG, UK.– Matrah Al–Mutairi, Kuwait Inst. for Scientific Research, P. O. Box 24885, Safat 13109, Kuwait.– Fernando Mata & Ravneet Bhuller, Hartpury College, Univ. of the West of England, Hartpury, GL19 3BE, UK. ISSN: 1578–665X © 2012 Museu de Ciències Naturals de Barcelona 120 Al–Mutairi et al. Introduction protected areas are lost. The country has lost most of its valuable and vulnerable plants in the second Desert mammal species have developed complex com- half of the last century due to urbanization, human binations of behavioral and physiological adaptations impact and climate change, factors that also reduced to ameliorate the impact of extreme temperatures and wildlife. Unfortunately, plant and animal communities limited free water. These adaptations typically consist of are disappearing quickly from other areas with open being nocturnal, semi–fossorial, and having the ability to access. Habitat loss and land deterioration are not extract all their water from their food (Whitford, 2002). the only factors contributing to the diminished wildlife Human activities have modified natural habitats populations in Kuwait. Other factors include unjustified in many ways. The most dramatic changes involve hunting and intentional destruction of their shelters. widespread degradation of entire areas, such as shift Mammals are the animals that suffer most from these from forest to agricultural use or urbanization. Howe- natural and anthropogenic factors. ver, a more pervasive influence is the construction of The aim of this study was to analyse differences linear open areas ––truck paths and roads –– through in morphological parameters of lesser jerboa (Jaculus previously continuous habitat. These open areas may jaculus L.) populations living in intact habitat with provide ecological situations that differ profoundly from abundant food resources, and populations living in those of the surrounding habitat and cause habitat degraded habitats with scarce food resources. The fragmentation and deterioration of food resources for effect of season and gender on the morphological desert mammals. parameters of lesser jerboas was also analysed. Limited food resources would result in smaller body size. Small desert mammals are often limited in their food choices in that they are forced to select more Material and methods digestible, energy–rich diets such as those based on seeds, as compared to large animals (Demment & Van The data were collected in autumn 2010, spring 2011 Soest, 1985). Heavier individuals have higher overwinter and summer 2011 in the semi–arid lands of the State of survival rates for the two genders: males and females. Kuwait. Two study sites were designated for the study This is primarily because larger body size should in- purposes: intact and degraded habitat. The intact study crease energy conservation and probability of survival area was the Kabd Research Station, which is located (Schorr et al., 2009). Larger individuals typically have 35 km southwest of Kuwait City. Ground elevation in more fat reserves and maybe less dependent upon food this area ranges between 70 and 130 m above sea– availability (French, 1988). Larger rodents use their fat level (Misak et al., 2002). Dense vegetation covers the storage while fasting at a slower rate than smaller indi- area and is dominated by the Arfaj shrubs (Rhanterium viduals and as a result, they can spend longer times at epapposum Oliv.) and other plants. It covers an area of higher body temperatures during hibernation, enabling 40 km2. The area is fenced and protected, and human enables them to survive (Geiser, 2004). disturbance is minimal because free access is prohibited. Several ecological and biological changes have This allows free foraging behavior for the lesser jerboas been attributed to climate change. Visser (2010), re- governed only by natural predation risk. ferring to small mammals, stated that climate change The degraded study area is an unprotected area is affecting the seasonal timing of reproduction and with free access and many camps for sheep and camel hibernation, as well as body size and species´’ distri- herders. The area has poor vegetation cover of the same bution ranges. Brown et al. (1993) assumed that each type found in protected areas, but found in scattered animal taxon has an optimal body weight; if reached patches only. It is located almost 45 km to the west of for mammals smaller than 100 g, their foraging ran- Kuwait city. It is separated from the intact study area ge will decrease and their energy will be diverted by almost 10 km and has a ground elevation ranging to reproduction which increases the population. In between 100 and 140 m. addition, population growth is related to the carrying Jerboas were captured over 24 nights for the three capacity of the ecosystem. With fixed resources, the seasons (eight nights per season) for each of the sites, carrying capacity of any ecosystem should decrease totaling 48 nights. The aim was to capture four jerboas with increasing body size. Therefore, if the resources per night to sample around 100 in each area. To achieve are limited, body size would be reduced to maintain these figures, the capture effort almost doubled in the the population (Savage et al., 2004). degraded areas where around five hours on average The United Nations Environmental Program were spent per night, in contrast with around three (UNEP) defined desertification as land degradation in hours on average in the protected areas. Animals were arid, semi–arid and dry–sub humid areas caused by captured using a slowly–driven vehicle with powerful adverse human impact. The causes of desertification spotlights immediately after sunset when the animals are a combination of several factors that include: start foraging for food. The lesser jerboas were blinded scarcity and decrease of mean rainfall as a result of by the powerful light and they stopped moving provided global changes, overgrazing, the increase of human no sounds were produced. To capture jerboas, a soft population that inhabits the dry lands, industrial net with a long handle was used (a similar approach misuse, land exploitation, domestic use of fragile was followed by Happold, 1967). vegetation especially for fuel, and many more factors Body weight, body length, tail length and thigh thic- that vary from one region into another (Thomas, kness of captured jerboas were measured. All jerboas 1993). In Kuwait, nearly all plants and animals outside were released at the point of capture immediately after Animal Biodiversity and Conservation 35.1 (2012) 121 habitats in the variable weight, and body length, tail Table 1. Lesser jerboa mean weights (g), with length and thigh thickness (data from autumn 2010 95% confidence intervals, in different seasons. only). Gender was used as the dependent variable The letters in superscript indicate a significant in a logistic regression via generalized linear models, difference (p < 0.05). where the independent variables used were categorical habitat (intact and degraded), and covariates were all Tabla 1.
Recommended publications
  • Genetic Diversity of Bartonella Species in Small Mammals in the Qaidam
    www.nature.com/scientificreports OPEN Genetic diversity of Bartonella species in small mammals in the Qaidam Basin, western China Huaxiang Rao1, Shoujiang Li3, Liang Lu4, Rong Wang3, Xiuping Song4, Kai Sun5, Yan Shi3, Dongmei Li4* & Juan Yu2* Investigation of the prevalence and diversity of Bartonella infections in small mammals in the Qaidam Basin, western China, could provide a scientifc basis for the control and prevention of Bartonella infections in humans. Accordingly, in this study, small mammals were captured using snap traps in Wulan County and Ge’ermu City, Qaidam Basin, China. Spleen and brain tissues were collected and cultured to isolate Bartonella strains. The suspected positive colonies were detected with polymerase chain reaction amplifcation and sequencing of gltA, ftsZ, RNA polymerase beta subunit (rpoB) and ribC genes. Among 101 small mammals, 39 were positive for Bartonella, with the infection rate of 38.61%. The infection rate in diferent tissues (spleens and brains) (χ2 = 0.112, P = 0.738) and gender (χ2 = 1.927, P = 0.165) of small mammals did not have statistical diference, but that in diferent habitats had statistical diference (χ2 = 10.361, P = 0.016). Through genetic evolution analysis, 40 Bartonella strains were identifed (two diferent Bartonella species were detected in one small mammal), including B. grahamii (30), B. jaculi (3), B. krasnovii (3) and Candidatus B. gerbillinarum (4), which showed rodent-specifc characteristics. B. grahamii was the dominant epidemic strain (accounted for 75.0%). Furthermore, phylogenetic analysis showed that B. grahamii in the Qaidam Basin, might be close to the strains isolated from Japan and China.
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • Current Status of the Mammals of Balochistan Author(S)
    Pakistan J. Zool., vol. 39(2), pp. 117-122, 2007. Current Status of the Mammals of Balochistan SYED ALI GHALIB, ABDUL JABBAR, ABDUR RAZZAQ KHAN AND AFSHEEN ZEHRA Department of Zoology (Wildlife and Fisheries),University of Karachi, Karachi (SAG, AZ), Forest and Wildlife Department, Government of Balochistan, Uthal (AJ) and Halcrow Pakistan (Pvt) Ltd, Karachi (ARK) Abstract.- Ninety species of mammals of Balochistan have been recorded so far belonging to 9 orders and 27 families; of these, 2lspecies are threatened,4species are endemic to Balochistan, 14 species are of special conservation interest,8 sites are important for mammals. Special efforts are being made to conserve the important mammals particularly in the protected areas specially in Chiltan Hazarganji National Park and the Hingol National Park. Key words: Biodiversity, threatened species, Balochistan, protected areas. INTRODUCTION 0030-9923/2007/0002-0117 $ 8.00/0 Copyright 2007 Zoological Society of Pakistan. al. (2002), Shafiq and Barkati (2002), Khan et al. (2004), Javed and Azam (2005), Khan and Siddiqui Balochistan is the largest province of (2005), Roberts (2005) and Roberts (2005a). Pakistan extending over an area of 350,000 sq.km As many as 2 National Parks, 14 Wildlife and the smallest number of inhabitants about 0.7 Sanctuaries and 8 Game Reserves have been million only. The province lies between 24°32’N established in the Province (Table I).At present, and 60°70’E.The-coast line is about 770 km long. detailed baseline studies on the biodiversity of The east-central and northern part of the province Hingol National Park are being undertaken under has high mountains of which considerable parts the GEF funded project on the Management of reach an elevation of above 2,300 m (7000feet) and Hingol National Park w.e.f.
    [Show full text]
  • New Species of Three-Toed Jerboa (Dipodidae, Rodentia) from the Deserts of Khorasan Province, Iran
    Iranian Journal of Animal Biosystematics (IJAB) Vol. 1, No. 1, 29-44, 2005 ISSN: 1735-434X New species of three-toed jerboa (Dipodidae, Rodentia) from the deserts of Khorasan province, Iran 1* 2 JAMSHID DARVISH AND FARAMARZ HOSSEINIE 1. Rodentology Research Department (RRD), Ferdowsi University, Mashhad, Iran 2. Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran The present study introduces, for the first time, the black tail tip three-toed jerboa from the east of the Iranian Plateau. This new species is different from its sympatric species, Jaculus blanfordi, considering the clear black color of the hairs of its tail tip and the two large styles on the glans of the penis. Key words: Three- toed jerboa, new species, Khorasan, Iran, Iranian Plateau. INTRODUCTION Among the rodents collected for the research projects on rodents fauna of east of Iran (years 1996- 2000) - sponsored by National Science Council of Iran, three specimens of three-toed jerboa were found form Kavir-e-Namak, near Kashmar and Bandan in Khorasan Province, which had not been seen nor reported thus far. The specimens were then taken under detailed conventional studies and were found to belong to a new speciesof the genus Jaculus. The three-toed jerboa, Jaculus, is a large– sized jerboa found in desert biotopes. It has two subgenera, Jaculus with one species, J.(J.) jaculus which is without style on glans penis (Didier et Petter , 1960) and Haltomys with three species, J. (H.) lichtensteini, J. (H.) orientalis, and J. (H.) blanfordi (Corbet, 1978), with two styles on glans penis (Shenbrot, 1995) which so far are reported from Turkistan to Western Sahara.
    [Show full text]
  • (Allactaginae, Dipodidae, Rodentia): a Geometric Morphometric Study
    ZOOLOGICAL RESEARCH Cranial variation in allactagine jerboas (Allactaginae, Dipodidae, Rodentia): a geometric morphometric study Bader H. Alhajeri1,* 1 Department of Biological Sciences, Kuwait University, Safat 13060, Kuwait ABSTRACT rostra) from A. major+A. severtzovi+O. sibirica (with Allactaginae is a subfamily of dipodids consisting of converse patterns), while PC2 differentiated four- and five-toed jerboas (Allactaga, Allactodipus, Orientallactaga (with enlarged cranial bases and Orientallactaga, Pygeretmus, Scarturus) found in rostra along with reduced zygomatic arches and open habitats of Asia and North Africa. Recent foramina magna) from Scarturus+Pygeretmus (with molecular phylogenies have upended our the opposite patterns). Clustering based on the understanding of this group’s systematics across unweighted pair group method with arithmetic mean taxonomic scales. Here, I used cranial geometric (UPGMA) contained the four genera, but S. hotsoni morphometrics to examine variation across 219 clustered with O. bullata+O. balikunica and O. specimens of 14 allactagine species (Allactaga sibirica clustered with A. major+A. severtzovi, likely major, A. severtzovi, Orientallactaga balikunica, O. due to convergence and allometry, respectively. bullata, O. sibirica, Pygeretmus platyurus, P. pumilio, Keywords: Allactaga; Cranial morphometrics; P. shitkovi, Scarturus aralychensis, S. euphraticus, Five-toed jerboas; Orientallactaga; Pygeretmus; S. hotsoni, S. indicus, S. tetradactylus, S. williamsi) Scarturus in light of their revised taxonomy. Results showed no significant sexual size or shape dimorphism. Species INTRODUCTION significantly differed in cranial size and shape both Allactaginae Vinogradov, 1925 is a subfamily of four- and five- overall and as species pairs. Species identity had a toed jerboas and is currently divided into five genera strong effect on both cranial size and shape.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • The Changing Rodent Pest Fauna in Egypi'
    THE CHANGING RODENT PEST FAUNA IN EGYPI' A. MAHER ALI. Plant Protection Department Asslut University. Asslut. Egypt ABSTRACT: The most serious known rodent pests in agricultural irrigated land are: Rattus rattus. Arvicanthis niloticus and Acomys sp. Occasionally there are rodent outbreaks in agricultural planta­ tions. The changing agro-ecosystem in the present and future agricultural plantations is expected to affect the status of the following potential rodent pest species: Spalax ehrenbergi aegyptiacus, Nesokia indica, Jaculus oriental is, and Gerbillus gerbillus gerbillus. Basic studies are needed to quantify damage including water loss, which is caused by rodents, forecast of rodent outbreaks. and integrated control of rodents in agricultural projects. INTRODUCTION The depredations of rodents and the struggle to prevent them will never diminish, even though man desires to raise his standard of living and health. In the face of the rapidly rising human population in Egypt, the problem has become more acute. The pattern of rodent populations is changed when man converts deserts, forests and rangeland into food or fiber production schemes. This is a corrmon feature of the Middle East region, including Egypt. In some cases such activities are carried out without prior knowledge of the actual fauna of the area, and the natural predators of rodents are driven away , or killed for food, or for the sake of their skins. As a result rodents increase in number and different rodent species may appear. The causes of shifts in species distribution are mostly due to changes in environmental conditions and the superior survival strategy of the replacing species. There are several examples of a predominant rodent species being replaced by another one under various ecological conditions.
    [Show full text]
  • Mammals of Jord a N
    Mammals of Jord a n Z . A M R , M . A B U B A K E R & L . R I F A I Abstract: A total of 79 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carn i- vora, Hyracoidea, Art i odactyla, Lagomorpha and Rodentia) have been re c o rde d from Jordan. Bats and rodents re p res ent exhibit the highest diversity of re c o rde d species. Notes on systematics and ecology for the re c o rded species were given. Key words: mammals, Jordan, ecology, sytematics, zoogeography, arid enviro n m e n t . Introduction species, while lagomorphs and hyracoids are the lowest. The mammalian diversity of Jordan is remarkable considering its location at the In this account we list the surv i v i n g meeting point of three diff e rent faunal ele- mammals of Jordan, including some re i n t ro- ments; the African, Oriental and Palaearc- duced species. tic. This diversity is a combination of these Table 1: Summary to the mammalian taxa occurring elements in addition to the occurrence of in Jordan few endemic forms. Jord a n ’s location re s u l t- O rd e r No. of Families No. of Species ed in a huge faunal diversity compared to I n s e c t i v o r a 2 5 the surrounding countries, hetero g e n e i t y C h i ro p t e r a 8 2 4 and range expansion of diff e rent species.
    [Show full text]
  • AMERICAN MUSEUM NOVITATES Published by Number 161 the American Museum Op NATURAL Historay March 31, 1925 New York City
    AMERICAN MUSEUM NOVITATES Published by Number 161 THE AMERIcAN MusEuM oP NATURAL HISToRaY March 31, 1925 New York City 59.9,32(51.7) JERBOAS FROM MONGOLIA' BY GLOVER M. ALLEN A very beautiful series of jerboas from several localities in the Gobi Desert was secured by the Asiatic Expeditions of The American Museum of Natural History under the leadership of Mr. Roy Chapman Andrews. Although the species represented are few, they are of unusual interest, for they include a very interesting new Allactaga, the five-toed jerboa, and a striking new genus related to Dipus, the three-toed jerboa. The series of Allactaga mongolica may be considered as typical and shows, on comparison with specimens of the species from Chili, China, that the latter is subspecifically distinct and may bear the name annulata given many years ago by Milne-Edwards, but latterly placed in synonymy. Allactaga mongolica (Radde) Dipus jaculus mongolica RADDE, 1862, 'Reisen im Suden von Ost-Sibirien,' I, p. 170, P1. viii, figs. 3a-3b. A five-toed, long-eared jerboa, buffy gray above, clear white below; the tail-tip with a flattened tuft, white at its base, black in its middle three-fourths, and white terminally. This characteristic desert species was found in abundance by the Expeditions of 1922 and 1923, and a fine series was secured at localities in the central Gobi, namely, Turin, Artsa Bogdo, Tsagan Nor, Hurum Tui, Gun Burte, Sain Noin Khan, Ussuk, Loh, near Tze-Tsen Wang, twenty miles southwest of Urga, and on the Tola River, eighty miles west of that city, as well as in the vicinity of Erhlien, Sair Usu, and east as far as Iren Dabasu.
    [Show full text]
  • Systematics, Distribution and Ecological Analysis of Rodents in Jordan
    Systematics, distribution and ecological analysis of rodents in Jordan ZUHAIR S. AMR1,2, MOHAMMAD A. ABU BAKER3, MAZIN QUMSIYEH4 & EHAB EID5 1Department of Biology, Jordan University of Science and Technology, P. O. Box 3030, Irbid, Jordan. E-mail: [email protected] 2Corresponding author 2Enviromatics, Environmental Management and Consulting Company, Amman, Jordan, E- mail: [email protected] 3Palestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine, E-mail: [email protected]. 4The Royal Marine Conservation Society of Jordan, Amman, Jordan, E-mail: [email protected] Abstract Distributional and ecological data were given to all rodents of Jordan. The rodent fauna of Jordan consists of 28 species with 20 genera in eight families (Cricetidae, Dipodidae, Gliridae, Hystricidae, Muridae, Myocastoridae, Sciuridae, and Spalacidae), including four introduced species. Keys for families and species were provided, along with diagnosis for each species and cranial illustrations for most species. Habitat preference and zoogeographic affinities of rodents in Jordan were analyzed, as well as their status and conservation. Threat categories and causes of threats on the rodents of Jordan were also analyzed. The distribution of rodents in Jordan represents a reflection of their global distribution ranges and habitat preferences. Species associated with the temperate forest of northern Jordan includes Sciurus anomalus and two wood mice, Apodemus mystacinus and A. flavicollis, while non-forested areas are represented by Nannospalax ehrenbergi and Microtus guentheri. Strict sand dwellers include Gerbillus cheesmani and G. gerbillus. Petrophiles associated with sandstone or black lava deserts are exemplified by Acomys russatus, A. r. lewsi, H. indica and S. calurus. Others including: Jaculus jaculus, G.
    [Show full text]
  • Rijksdienst Voor Ondernemend Nederland Team Vergunningen Natuur T.A.V
    Rijksdienst voor Ondernemend Nederland Team Vergunningen Natuur T.a.v. Mw. C. Krutzen Postbus 19530 2500 CM Den Haag Datum: 28 april 2015 Uw referentie: WDH/2015/01 Geachte mevrouw Krutzen, Namens cliënt, de Stichting Platform Verantwoord Huisdierenbezit, gevestigd te Barneveld, kantoor kiezende aan de Operatie Mannahof 5 te Nootdorp, die mij hiertoe heeft gemachtigd, dien ik bij deze, voor zover dit op grond van de jurisprudentie van het Hof van Justitie vereist is, de door u bij brief van 16 april 2015 opgevraagde stukken in het kader van artikel 2, tweede en derde lid, van de Regeling houders van dieren, in. Ten aanzien van de stukken genoemd in het tweede lid van de Regeling houders van dieren, merk ik het volgende op. Relevante jurisprudentie Hof van Justitie over positieflijsten Uit de lange reeks van uitspraken van het Hof van Justitie inzake positieflijsten heeft zich vaste jurisprudentie ontwikkeld. Het overgrote deel van deze jurisprudentie betreft zaken waarin het gaat om de volksgezondheid. Meestal betreft het positieflijsten inzake voedingssupplementen, vitamines en conserveermiddelen. Echter, kern van de jurisprudentie is dat een positieflijst, ongeacht het onderwerp, het vrije verkeer van goederen belemmert omdat het alleen invoer toestaat van goederen die op de positieflijst staan en niet van andere goederen of pas nadat een procedure is gevoerd om het betreffende goed op de positieflijst op te nemen. Toegestane belangen Een positieflijst mag dan ook alleen maar worden ingesteld in het kader van belangen die in de wetgeving en jurisprudentie zijn vastgelegd. Dit zijn onder andere het leven en de gezondheid van mensen en dieren, waarbij het begrip dierenwelzijn ook middels jurisprudentie is toegelaten.
    [Show full text]
  • A Karyotype Comparison Among 3 Species of Allactaga (Mammalia: Dipodidae) from Central Iran
    Turkish Journal of Zoology Turk J Zool (2015) 39: 46-52 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1308-14 A karyotype comparison among 3 species of Allactaga (Mammalia: Dipodidae) from central Iran Maryam RAHIMI-POZVE, Mansoureh MALEKIAN*, Mahmoud Reza HEMAMI Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran Received: 06.08.2013 Accepted: 11.05.2014 Published Online: 02.01.2015 Printed: 30.01.2015 Abstract: We studied karyotype and chromosomal characteristics of 3 species of five-toed jerboa from central Iran, including Allactaga firouzi, A. williamsi, and A. elater. This study revealed that the 3 species possessed a diploid number of 48 chromosomes. The first pair of chromosomes was significantly larger than other chromosomes in all 3 species. The total length of the haploid genome of Allactaga elater was longer than those of the other 2 species, and most of the chromosomes of the 3 species were metacentric. Based on total form percentage, interchromosomal asymmetry index, and centromeric index, Allactaga elater had the highest interchromosomal asymmetry. Allactaga firouzi showed the highest between-chromosomal symmetry based on the difference of range of relative length, coefficient of variability, and intrachromosomal asymmetry index. Cluster analysis showed that A. firouzi and A. williamsi have more affinity than previously thought. Key words: Dipodidae, Allactaga firouzi, Allactaga elater, Allactaga williamsi, karyotype, chromosomal characteristics, Isfahan 1. Introduction jerboa (Allactaga euphratica), Hotson’s jerboa (Allactaga Knowledge of the evolutionary history and genetic hotsoni), Iranian jerboa (Allactaga firouzi), and Toussi structure of species is necessary for conservation and jerboa (Allactaga toussi) (Lay, 1967; Darvish et al., 2008; management of biodiversity (Zhang et al., 2002; Mace et Tarahomi et al., 2010).
    [Show full text]