Stratigraphy and Paleobiology of the Upper Cretaceous- Lower Paleogene Sediments from the Trans-Saharan Seaway in Mali

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy and Paleobiology of the Upper Cretaceous- Lower Paleogene Sediments from the Trans-Saharan Seaway in Mali Stratigraphy and Paleobiology of the Upper Cretaceous- Lower Paleogene Sediments from the Trans-Saharan Seaway in Mali Authors: O'leary, Maureen A., Bouaré, Mamadou L., Claeson, Kerin M., Heilbronn, Kelly, Hill, Robert V., et al. Source: Bulletin of the American Museum of Natural History, 2019(436) : 1-183 Published By: American Museum of Natural History URL: https://doi.org/10.1206/0003-0090.436.1.1 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Bulletin-of-the-American-Museum-of-Natural-History on 10 Jun 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Charles University STRATIGRAPHY AND PALEOBIOLOGY OF THE UPPER CRETACEOUS–LOWER PALEOGENE SEDIMENTS FROM THE TRANS-SAHARAN SEAWAY IN MALI MAUREEN A. O’LEARY, MAMADOU L. BOUARÉ, KERIN M. CLAESON, KELLY HEILBRONN, ROBERT V. HILL, JACOB MCCARTNEY, JOCELYN A. SESSA, FAMORY SISSOKO, LEIF TAPANILA, ELISABETH WHEELER, AND ERIC M. ROBERTS BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Downloaded From: https://bioone.org/journals/Bulletin-of-the-American-Museum-of-Natural-History on 10 Jun 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Charles University STRATIGRAPHY AND PALEOBIOLOGY OF THE UPPER CRETACEOUS-LOWER PALEOGENE SEDIMENTS FROM THE TRANS-SAHARAN SEAWAY IN MALI MAUREEN A. O’LEARY Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University; Division of Paleontology, American Museum of Natural History MAMADOU L. BOUARÉ École Nationale des Ingénieurs, Bamako, Republic of Mali KERIN M. CLAESON Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine KELLY HEILBRONN Geosciences, College of Science and Engineering, James Cook University, Townsville, Australia ROBERT V. HILL Department of Science Education, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York JACOB MCCARTNEY Department of Biology, State University of New York College at Geneseo JOCELYN A. SESSA Academy of Natural Sciences of Drexel University, Philadelphia Division of Paleontology, American Museum of Natural History FAMORY SISSOKO Institut des Sciences Humaines, Bamako, Republic of Mali LEIF TAPANILA Department of Geosciences, Idaho State University, Pocatello; Division of Earth Science, Idaho Museum of Natural History ELISABETH WHEELER Department of Research and Collections, North Carolina Museum of Natural Sciences; Department of Forest Biomaterials, North Carolina State University, Raleigh ERIC M. ROBERTS Geosciences, College of Science and Engineering, James Cook University, Townsville, Australia BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 436, 177 pp., 82 figures, 3 tables, 2 plates Issued June 28, 2019 Copyright © American Museum of Natural History 2019 ISSN 0003-0090 Downloaded From: https://bioone.org/journals/Bulletin-of-the-American-Museum-of-Natural-History on 10 Jun 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Charles University CONTENTS Abstract.............................................................................7 Introduction and Prior Research .......................................................8 Epeiric Seas: Definitions and Modern Comparisons ...................................11 Tectonics, Geography and Eustasy Impacting the Trans-Saharan Seaway .................12 Paleoenvironment of the Trans-Saharan Seaway ......................................15 Repository and Institutional Abbreviations...........................................17 Geological Research and Analysis .....................................................18 Subdivision and Proposed Nomenclature for the Upper Cretaceous-lower Paleogene Stratigraphy of Northeastern Mali ...............................................18 Synthesis of Sedimentology and Sequence Stratigraphy ................................39 Fossiliferous Phosphate Facies......................................................40 Other Noteworthy Fossiliferous Facies...............................................44 Notes on Taphonomy and Specimen Collection.......................................45 GPlates Reconstruction of the Trans-Saharan Seaway..................................45 Systematic Ichnology ................................................................51 Ichnogenus Thalassinoides . 51 Ichnospecies Teredolites clavatus . 51 Ichnospecies Gastrochaenolites ornatus . 52 Ichnospecies Skolithos sp. ..........................................................54 Coprolites, Morphotypes 1-5 .......................................................54 Ichnospecies Linichnus serratus . 55 Ichnospecies Knethichnus parallelum . 56 Systematic Paleontology..............................................................56 Angiospermae Fabaceae, Caesalpinioideae ...........................................56 ?Caesalpinioxylon moragjonesiae . 56 Fabaceae ...................................................................59 Echinodermata . 61 Echinoidea, Spatangoida, Linthia sudanensis .......................................61 Irregularia, Neognathostomata, Plesiolampadidae, Oriolampas michelini . 63 Phymosomatoida, Stomopneustoida, Stomechinidae, Echinotiara perebaskinei . 63 Mollusca ........................................................................66 Cephalopoda...................................................................66 Nautiloidea indet. ...........................................................66 Nautilida, Hercoglossidae. ....................................................66 ?Deltoidonautilus sp........................................................66 Cimomia reymenti . 67 Cimomia ogbei . 67 ?Cimomia sp. .............................................................67 Ammonitida, Sphenodiscidae . 68 Libycoceras crossense ......................................................68 Libycoceras sp. ............................................................68 3 Downloaded From: https://bioone.org/journals/Bulletin-of-the-American-Museum-of-Natural-History on 10 Jun 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Charles University 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 436 Gastropoda . 73 Sorbeoconcha . 73 Campaniloidea, Ampullinidae, Crommium nigeriense . 73 ?Cerithioidea indet. .......................................................73 Turritellidae..............................................................74 “Haustator” sp. .........................................................74 Turritellinae ...........................................................74 Turritellinae indet. “A”................................................74 Turritellinae indet. “B” ...............................................74 Turritellinae indet. “C” ...............................................76 ?Mesalia sp. .........................................................76 Naticoidea, Naticidae......................................................76 ?Euspira sp . 73 ?Polinices sp. 73 Latrogastropoda, Cypraeoidea, Eocypraeidae indet. ..............................78 Stromboidea . .79 ?Stromboidea indet. .......................................................79 Rostellariidae.............................................................79 Tibia sp................................................................79 ?Calyptraphorus sp. .....................................................79 Neogastropoda . 81 Volutoidea, Volutidae . 81 ?Volutilithes sp..........................................................81 ?Athleta s p. “A” .........................................................81 ?Athleta sp. “B” ........................................................81 Buccinoidea, Melongenidae ................................................83 ?Cornulina sp . 83 Heligmotoma ?oluwolei . 83 ?Pseudoliva sp. .........................................................83 Vetigastropoda, Trochoidea indet............................................83 Bivalvia, Ostreida...............................................................83 Ostreida....................................................................83 Ostreida indet. ...........................................................86 Ostreoidea, Ostreidae indet. ................................................86 Arcida, Arcoidea ............................................................87 ?Arcidae indet. ........................................................87 Glycymerididae, Trigonarca sp. ..........................................87 Pectinida, Plicatuloidea, Plicatulidae, ?Plicatula sp................................88 Palaeoheterodonta, Unionida, ?Unionidae indet..................................88 Archiheterodonta, Carditoidea, Carditidae,
Recommended publications
  • From the Crato Formation (Lower Cretaceous)
    ORYCTOS.Vol. 3 : 3 - 8. Décembre2000 FIRSTRECORD OT CALAMOPLEU RUS (ACTINOPTERYGII:HALECOMORPHI: AMIIDAE) FROMTHE CRATO FORMATION (LOWER CRETACEOUS) OF NORTH-EAST BRAZTL David M. MARTILL' and Paulo M. BRITO'z 'School of Earth, Environmentaland PhysicalSciences, University of Portsmouth,Portsmouth, POl 3QL UK. 2Departmentode Biologia Animal e Vegetal,Universidade do Estadode Rio de Janeiro, rua SâoFrancisco Xavier 524. Rio de Janeiro.Brazll. Abstract : A partial skeleton representsthe first occurrenceof the amiid (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus from the Nova Olinda Member of the Crato Formation (Aptian) of north east Brazil. The new spe- cimen is further evidencethat the Crato Formation ichthyofauna is similar to that of the slightly younger Romualdo Member of the Santana Formation of the same sedimentary basin. The extended temporal range, ?Aptian to ?Cenomanian,for this genus rules out its usefulnessas a biostratigraphic indicator for the Araripe Basin. Key words: Amiidae, Calamopleurus,Early Cretaceous,Brazil Première mention de Calamopleurus (Actinopterygii: Halecomorphi: Amiidae) dans la Formation Crato (Crétacé inférieur), nord est du Brésil Résumé : la première mention dans le Membre Nova Olinda de la Formation Crato (Aptien ; nord-est du Brésil) de I'amiidé (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus est basée sur la découverted'un squelettepar- tiel. Le nouveau spécimen est un élément supplémentaireindiquant que I'ichtyofaune de la Formation Crato est similaire à celle du Membre Romualdo de la Formation Santana, située dans le même bassin sédimentaire. L'extension temporelle de ce genre (?Aptien à ?Cénomanien)ne permet pas de le considérer comme un indicateur biostratigraphiquepour le bassin de l'Araripe. Mots clés : Amiidae, Calamopleurus, Crétacé inférieu4 Brésil INTRODUCTION Araripina and at Mina Pedra Branca, near Nova Olinda where cf.
    [Show full text]
  • Identifying Heterogeneity in Rates of Morphological Evolution: Discrete Character Change in the Evolution of Lungfish (Sarcopterygii; Dipnoi)
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01460.x IDENTIFYING HETEROGENEITY IN RATES OF MORPHOLOGICAL EVOLUTION: DISCRETE CHARACTER CHANGE IN THE EVOLUTION OF LUNGFISH (SARCOPTERYGII; DIPNOI) Graeme T. Lloyd,1,2 Steve C. Wang,3 and Stephen L. Brusatte4,5 1Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 2E-mail: [email protected] 3Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081 4Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 5Department of Earth and Environmental Sciences, Columbia University, New York, New York 10025 Received February 9, 2010 Accepted August 15, 2011 Data Archived: Dryad: doi:10.5061/dryad.pg46f Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as “living fossils” due to an apparent slowdown in rates since the Devonian.
    [Show full text]
  • A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
    bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019.
    [Show full text]
  • Geo-Eco-Trop., 2020, 44, 1: 161-174 Osteology and Phylogenetic Relationships of Gregoriopycnodus Bassanii Gen. Nov., a Pycnodon
    Geo-Eco-Trop., 2020, 44, 1: 161-174 Osteology and phylogenetic relationships of Gregoriopycnodus bassanii gen. nov., a pycnodont fish (Pycnodontidae) from the marine Albian (Lower Cretaceous) of Pietraroja (southern Italy) Ostéologie et relations phylogénétiques de Gregoriopycnodus bassanii gen. nov., un poisson pycnodonte (Pycnodontidae) de l’Albien marin (Crétacé inférieur) de Pietraroja (Italie du Sud) Louis TAVERNE 1, Luigi CAPASSO 2 & Maria DEL RE 3 Résumé: L’ostéologie et les relations phylogénétiques de Gregoriopycnodus bassanii gen. nov., un poisson pycnodonte de l’Albien marin (Crétacé inférieur) de l’Italie du Sud, sont étudiées en détails. Ce genre fossile appartient à la famille des Pycnodontidae, comme le montre la présence d’un peniculus branchu sur le pariétal. Gregoriopycnodus diffère des autres genres de la famille par son préfrontal court, en forme de plaque et qui est partiellement soudé au mésethmoïde. Au sein de la famille, la position systématique de Gregoriopycnodus est intermédiaire entre celle de Tepexichthys et Costapycnodus, d’une part, et celle de Proscinetes, d’autre part. Mots-clés: Pycnodontiformes, Pycnodontidae, Gregoriopycnodus bassanii gen. nov., ostéologie, phylogénie, Albien marin, Italie du Sud Abstract: The osteology and the phylogenetic relationships of Gregoriopycnodus bassanii gen. nov., a pycnodont fish from the marine Albian (Lower Cretaceous) of Pietraroja (southern Italy), are studied in details. This fossil genus belongs to the family Pycnodontidae, as shown by the presence of a branched peniculus on the parietal. Gregoriopycnodus differs from the other genera of the family by its short and plate-like prefrontral that is partly fused to the mesethmoid. Within the family, the systematic position of Gregoriopycnodus is intermediate between that of Tepexichthys and Costapycnodus, on the one hand, and that of Proscinetes, on the other hand.
    [Show full text]
  • New Locality for Lepidosiren Paradoxa (Fitzinger, 1837)(Dipnoi
    13 3 the journal of 2118 biodiversity data 20 May 2017 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 13(3): 2118, 20 May 2017 https://doi.org/10.15560/13.3.2118 ISSN 1809-127X © 2017 Check List and Authors New locality for Lepidosiren paradoxa (Fitzinger, 1837) (Dipnoi: Lepidosirenidae) in Argentina Evelyn Romina Vallone Laboratorio de Paleontología de Vertebrados, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICyTTP-CONICET), Materi y España, 3105 Diamante, ER, Argentina E-mail: [email protected] Abstract. This study documents a new locality of the lungfish was caught by a local fisherman in shallow waters (depth of Lepidosiren paradoxa on the coast of the Entre Rios Province approximately 3 m) in a coastal area of the locality of Gen- in the lower Paraná River. This finding represents the third eral Alvear, Entre Ríos Province, Argentina (31°55ʹ27.60ʺ S, southern record of this species on southern of South America. 060°39ʹ45.52ʺ W) (Fig. 1). After collection, the specimen was Additionally, as this region has been relatively well sampled frozen and transported to the laboratory for identification. The both during past decades and currently, I discuss possible specimen was identified according to diagnosis of Ringuelet reasons why this new specimen has been observed only et al. (1967) then deposited in the Fish Collection of the Labo- recently. ratorio de Vertebrados, Centro de Investigaciones Científicas y Key words. South American lungfish; Entre Ríos; Paraná River Transferencia de Tecnología a la Producción (CICyTTP-V-18, Diamante, Entre Ríos, Argentina). The description follows the anatomical nomenclature proposed by Ringuelet et al.
    [Show full text]
  • 14. Knochenfische (Osteichthyes) 14. Bony Fishes (Osteichthyes)
    62: 143 – 168 29 Dec 2016 © Senckenberg Gesellschaft für Naturforschung, 2016. 14. Knochenfische (Osteichthyes) 14. Bony fishes (Osteichthyes) Martin Licht †, Ilja Kogan 1, Jan Fischer 2 und Stefan Reiss 3 † verstorben — 1 Technische Universität Bergakademie Freiberg, Geologisches Institut, Bereich Paläontologie/Stratigraphie, Bernhard-von- Cotta-Straße 2, 09599 Freiberg, Deutschland und Kazan Federal University, Institute of Geology and Petroleum Technologies, 4/5 Krem- lyovskaya St., 420008 Kazan, Russland; [email protected] — 2 Urweltmuseum GEOSKOP, Burg Lichtenberg (Pfalz), Burgstraße 19, 66871 Thal lichtenberg, Deutschland; [email protected] — 3 Ortweinstraße 10, 50739 Köln, Deutschland; [email protected] Revision accepted 18 July 2016. Published online at www.senckenberg.de/geologica-saxonica on 29 December 2016. Kurzfassung Neun Gattungen von Knochenfischen aus der Gruppe der Actinopterygier können für die sächsische Kreide als gesichert angegeben werden: Anomoeodus, Pycnodus (Pycnodontiformes), Ichthyodectes (Ichthyodectiformes), Osmeroides (Elopiformes), Pachyrhizodus (in- certae sedis), Cimolichthys, Rhynchodercetis, Enchodus (Aulopiformes) und Hoplopteryx (Beryciformes). Diese Fische besetzten unter- schiedliche trophische Nischen vom Spezialisten für hartschalige Nahrung bis zum großen Fischräuber. Eindeutige Sarcopterygier-Reste lassen sich im vorhandenen Sammlungsmaterial nicht nachweisen. Zahlreiche von H.B. Geinitz für isolierte Schuppen und andere Frag- mente vergebene Namen müssen als nomina dubia angesehen werden.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • SI Appendix for Hopkins, Melanie J, and Smith, Andrew B
    Hopkins and Smith, SI Appendix SI Appendix for Hopkins, Melanie J, and Smith, Andrew B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Corrections to character matrix Before running any analyses, we corrected a few errors in the published character matrix of Kroh and Smith (1). Specifically, we removed the three duplicate records of Oligopygus, Haimea, and Conoclypus, and removed characters C51 and C59, which had been excluded from the phylogenetic analysis but mistakenly remain in the matrix that was published in Appendix 2 of (1). We also excluded Anisocidaris, Paurocidaris, Pseudocidaris, Glyphopneustes, Enichaster, and Tiarechinus from the character matrix because these taxa were excluded from the strict consensus tree (1). This left 164 taxa and 303 characters for calculations of rates of evolution and for the principal coordinates analysis. Other tree scaling methods The most basic method for scaling a tree using first appearances of taxa is to make each internal node the age of its oldest descendent ("stand") (2), but this often results in many zero-length branches which are both theoretically questionable and in some cases methodologically problematic (3). Several methods exist for modifying zero-length branches. In the case of the results shown in Figure 1, we assigned a positive length to each zero-length branch by having it share time equally with a preceding, non-zero-length branch (“equal”) (4). However, we compared the results from this method of scaling to several other methods. First, we compared this with rates estimated from trees scaled such that zero-length branches share time proportionally to the amount of character change along the branches (“prop”) (5), a variation which gave almost identical results as the method used for the “equal” method (Fig.
    [Show full text]
  • Back Matter (PDF)
    Index acritarchs 131 Carbonate Dagestan 259 Aeronian, recovery patterns 127-33 carbonate ramps, Frasnian-Famennian 135 Alaska, graptolites 119-26 Carboniferous Albian, Late, Albian-Cenomanian oceanic anoxic 'lesser mass extinction event' events (OAEs) 240-1 rugose corals ammonites 231 extinction 188-9 Campanian 299-308 recovery 192-7 desmoceratacean, E Russia, Sakhalin 299-308 survival interval 189-91 Santonian-Maastrichtian, stratigraphy 300-3 catastrophic mass extinction 54 see also goniatites Caucasus, N ammonoids foraminifera, Danian extinctions 337-42 early stages 164-8 locations 337 goniatite survival 163-85 Caucasus, NE Japan 306 foraminifera, Cenomanian-Turonian Boundary juvenile ornament 169 Event 259--64 morphological sequence 169 location map 260 protoconch size 166, 181 Cauvery Basin, oceanic anoxic events (OAEs) 238 recovery, Sakhalin 304, 306 Cenomanian-Turonian Boundary Event taxonomic diversity, dynamics 305 dinoflagellate cyst assemblages recovery, England, Amphipora-bearing limestone 135-61 oceanic anoxic events 279-97 angiosperms, origination, extinction and diversity 73 England, S 267 Anisian Stage 223, 224 food chain recovery 265-77 Lazarus taxa 227 foraminifera 237-44, 259-64 Annulata Event, Devonian 178 Milankovitch rhythms 246 Apterygota 65 oceanic anoxic events (OAEs) archaeocyaths 82, 86 India, SE, Cauvery Basin 237-44 Ashgill, correlation of biotic events 129 NE Caucasus 259-64 Atavograptus atavus Zone 124 Spain, Menoyo section 245-58 Avalonian plate 125 Turonian lithological logs, England, SE 280-2 Changxingian
    [Show full text]
  • A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)
    Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha. Keywords: Biogeography, Osteoglossidae, Paleontology, Phylogeny, Taxonomy. Os peixes da Superordem Osteoglossomorpha têm sido foco de inúmeros estudos sobre a morfologia, sistemática e evo- lução, particularmente devido à sua posição basal dentre os peixes teleósteos.
    [Show full text]
  • For Peer Review
    Page 1 of 40 Geological Journal Page 1 of 32 1 2 3 Neogene echinoids from the Cayman Islands, West Indies: regional 4 5 6 implications 7 8 9 10 1 2 3 11 STEPHEN K. DONOVAN *, BRIAN JONES and DAVID A. T. HARPER 12 13 14 15 1Department of Geology, Naturalis Biodiversity Center, Leiden, the Netherlands 16 17 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada, T6G 2E3 18 For Peer Review 19 3 20 Department of Earth Sciences, Durham University, Durham, UK 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 *Correspondence to: S. K. Donovan, Department of Geology, Naturalis Biodiversity Center, 49 50 Darwinweg 2, 2333 CR Leiden, the Netherlands. 51 52 E-mail: [email protected] 53 54 55 56 57 58 59 60 http://mc.manuscriptcentral.com/gj Geological Journal Page 2 of 40 Page 2 of 32 1 2 3 The first fossil echinoids are recorded from the Cayman Islands. A regular echinoid, Arbacia? sp., the 4 5 spatangoids Brissus sp. cf. B. oblongus Wright and Schizaster sp. cf. S. americanus (Clark), and the 6 7 clypeasteroid Clypeaster sp. are from the Middle Miocene Cayman Formation. Test fragments of the 8 9 mellitid clypeasteroid, Leodia sexiesperforata (Leske), are from the Late Pleistocene Ironshore 10 11 Formation. Miocene echinoids are preserved as (mainly internal) moulds; hence, all species are left 12 13 14 in open nomenclature because of uncertainties regarding test architecture.
    [Show full text]
  • History of Fishes - Structural Patterns and Trends in Diversification
    History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external
    [Show full text]