Topological Strings and Quantum Curves

Total Page:16

File Type:pdf, Size:1020Kb

Topological Strings and Quantum Curves TOPOLOGICAL STRINGS AND QUANTUM CURVES arXiv:0911.3413v1 [hep-th] 17 Nov 2009 This work has been accomplished at the Institute for Theoretical Physics (ITFA) of the University of Amsterdam (UvA) and is financially supported by a Spinoza grant of the Netherlands Organisation for Scientific Research (NWO). Cover illustration: Lotte Hollands Cover design: The DocWorkers Lay-out: Lotte Hollands, typeset using LATEX ISBN 978 90 8555 020 4 NUR 924 c L. Hollands / Pallas Publications — Amsterdam University Press, 2009 All rights reserved. Without limiting the rights under copyright reserved above, no part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the written permission of both the copyright owner and the author of the book. TOPOLOGICAL STRINGS AND QUANTUM CURVES ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op donderdag 3 september, te 14.00 uur door LOTTE HOLLANDS geboren te Maasbree PROMOTIECOMMISSIE Promotor prof. dr. R.H. Dijkgraaf Overige leden prof. dr. J. de Boer prof. dr. A.O. Klemm prof. dr. E.M. Opdam dr. H.B. Posthuma dr. S.J.G. Vandoren prof. dr. E.P. Verlinde Faculteit der Natuurwetenschappen, Wiskunde en Informatica PUBLICATIONS This thesis is based on the following publications: R. Dijkgraaf, L. Hollands, P. Sułkowski and C. Vafa, Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions, arXiv/0709.4446 [hep-th], JHEP 02 (2008) 106. L. Hollands, J. Marsano, K. Papadodimas and M. Shigemori, Nonsupersymmetric Flux Vacua and Perturbed N=2 Systems, arXiv/0804.4006 [hep-th], JHEP 10 (2008) 102. R. Dijkgraaf, L. Hollands and P. Sułkowski, Quantum Curves and D-Modules, arXiv/0810.4157 [hep-th], JHEP 11 (2009) 047. M. Cheng and L. Hollands, A Geometric Derivation of the Dyon Wall-Crossing Group, arXiv/0901.1758 [hep-th], JHEP 04 (2009) 067. Contents 1 Introduction 1 1.1 Fermions on Riemann surfaces . .1 1.2 Outline of this thesis . .9 2 Calabi-Yau Geometry 15 2.1 The Strominger-Yau-Zaslow conjecture . 16 2.2 The Fermat quintic . 21 2.3 Local Calabi-Yau threefolds . 27 3 I-brane Perspective on Vafa-Witten Theory and WZW Models 31 3.1 Instantons and branes . 32 3.2 Vafa-Witten twist on ALE spaces . 42 3.3 Free fermion realization . 51 3.4 Nakajima-Vafa-Witten correspondence . 58 4 Topological Strings, Free Fermions and Gauge Theory 69 4.1 Curves in = 2 gauge theories . 70 N 4.2 Geometric engineering . 81 4.3 Topological invariants of Calabi-Yau threefolds . 89 4.4 BPS states and free fermions . 101 5 Quantum Integrable Hierarchies 113 5.1 Semi-classical integrable hierarchies . 114 5.2 -modules and quantum curves . 119 D 5.3 Fermionic states and quantum invariants . 134 6 Quantum Curves in Matrix Models and Gauge Theory 147 6.1 Matrix model geometries . 149 6.2 Conifold and c = 1 string . 163 6.3 Seiberg-Witten geometries . 169 6.4 Discussion . 185 7 Dyons and Wall-Crossing 189 7.1 Compact curves of genus 1 and 2 . 190 7.2 Quarter BPS dyons . 199 7.3 Wall-crossing in = 4 theory . 215 N 8 Fluxes and Metastability 235 8.1 Ooguri-Ookouchi-Park formalism . 237 8.2 Geometrically engineering the OOP formalism . 238 8.3 Embedding in a larger Calabi-Yau . 256 8.4 Concluding remarks . 269 A Level-rank duality 273 Bibliography 277 Samenvatting 293 Acknowledgments 299 Chapter 1 Introduction The twentieth century has seen the birth of two influential theories of physics. On very small scales quantum mechanics is very successful, whereas general relativity rules our universe on large scales. Unfortunately, in regimes at small scale where gravity is nevertheless non-negligible—such as black holes or the big bang—neither of these two descriptions suffice. String theory is the best candidate for a unified theoretical description of nature to date. However, strings live at even smaller scales than those governed by quantum mechanics. Hence string theory necessarily involves levels of energy that are so high that they cannot be simulated in a laboratory. Therefore, we need another way to arrive at valid predictions. Although string theory thus rests on physical arguments, it turns out that this framework carries rich mathematical structure. This means that a broad array of mathematical techniques can be deployed to explore string theory. Vice versa, physics can also benefit mathematics. For ex- ample, different physical perspectives can relate previously unconnected topics in mathematics. In this thesis we are motivated by this fertile interaction. We both use string the- ory to find new directions in mathematics, and employ mathematics to discover novel structures in string theory. Let us illustrate this with an example. 1.1 Fermions on Riemann surfaces This section briefly introduces the main ingredients of this thesis. We will meet all in much greater detail in the following chapters. So-called Riemann surfaces play a prominent role in many of the fruitful in- teractions between mathematics and theoretical physics that have developed in 2 Chapter 1. Introduction the second half of the twentieth century. Riemann surfaces are smooth two- dimensional curved surfaces that have a number of holes, which is called their genus g. Fig. 1.1 shows an example. Figure 1.1: A compact Riemann surface with just one hole in it is called a 2-torus T 2. We refer to its two 1-cycles as the A and the B-cycle. Riemann surfaces additionally come equipped with a complex structure, so that any small region of the surface resembles the complex plane C. An illustrative class of Riemann surfaces is defined by equations of the form Σ: F (x; y) = 0; where x; y C: 2 Here, F can for instance be a polynomial in the complex variables x and y.A simple example is a (hyper)elliptic curve defined by y2 = p(x); where p(x) is a polynomial. The curve is elliptic if p has degree 3 or 4, in which case its genus is g = 1. For higher degrees of p it is hyperelliptic and has genus g > 1. Figure 1.2: A simple example of a non-compact Riemann surface is defined by the equation 2 2 2 x + y = 1 in the complex plane C . The complex structure of a compact Riemann surface can be conveniently char- acterized by a period matrix. This is a symmetric square matrix τij of complex numbers, whose rank equals the genus of the surface and whose imaginary part is strictly positive. The complex structure of a 2-torus, illustrated in Fig. 1.1, is 1.1. Fermions on Riemann surfaces 3 for example determined by one complex number τ that takes values in the upper half plane. The period matrix encodes the contour integrals of the g independent holomor- phic 1-forms over the 1-cycles on the surface. To this end one picks a canon- ical basis of A-cycles and B-cycles, where the only non-trivial intersection is A Bj = δij. The 1-forms !i may then be normalized by integrating them 1 \ over the A-cycles, so that their integrals over the B-cycles determine the period matrix: Z Z !j = δij; !j = τij: Ai Bi Conformal field theory Riemann surfaces play a dominant role in the study of conformal field theories (CFT’s). Quantum field theories can be defined on a space-time background M, which is usually a Riemannian manifold with a metric g. The quantum field theory is called conformal when it is invariant under arbitrary rescaling of the metric g. A CFT therefore depends only on the conformal class of the metric g. The simplest quantum field theories study a bosonic scalar field φ on the back- ground M. The contribution to the action for a massless scalar is Z mn Sboson = pg g @mφ @nφ, M m yielding the Klein-Gordon equation @m@ φ = 0 (for zero mass) as equation of motion. Note that, on the level of the classical action, this theory is clearly conformal in 2 dimensions; this still holds for the full quantum theory. Since a 2-dimensional conformal structure uniquely determines a complex structure, the free boson defines a CFT on any Riemann surface Σ. Let us compactify the scalar field φ on a circle S1, so that it has winding modes along the 1-cycles of the Riemann surface. The classical part of the CFT partition function is determined by the solutions to the equation of motion. The holomor- phic contribution to the classical partition function is well-known to be encoded in a Riemann theta function X 2πi 1 ptτp+ptν θ (τ; ν) = e ( 2 ); g p2Z where the integers p represent the momenta of φ that flow through the A-cycles of the 2-dimensional geometry. Another basic example of a CFT is generated by a fermionic field on a Rie- mann surface. Let us consider a chiral fermion (z). Mathematically, this field 4 Chapter 1. Introduction transforms on the Riemann surface as a (1=2; 0)-form, whence (z)pdz = (z0)pdz0; where z and z0 are two complex coordinates. Such a chiral fermion contributes to the 2-dimensional action as Z Sfermion = (z) @A (z); Σ where @A = @ + A, and A is a connection 1-form on Σ. This action determines the Dirac equation @A (z) = 0 as its equation of motion.
Recommended publications
  • UNIVERSIDADE ESTADUAL DE CAMPINAS on the Completeness Of
    UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Computação Científica AUGUSTO CESAR SILVA SOARES PEREIRA On the completeness of the ADHM construction Sobre a completude da construção ADHM Campinas 2018 Augusto Cesar Silva Soares Pereira On the completeness of the ADHM construction Sobre a completude da construção ADHM Dissertação apresentada ao Instituto de Matemática, Estatística e Computação Cien- tífica da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Matemática. Dissertation presented to the Institute of Mathematics, Statistics and Scientific Com- puting of the University of Campinas in par- tial fulfillment of the requirements for the degree of Master in Mathematics. Supervisor: Henrique Nogueira de Sá Earp Este exemplar corresponde à versão final da Dissertação defendida pelo aluno Augusto Cesar Silva Soares Pereira e orientada pelo Prof. Dr. Hen- rique Nogueira de Sá Earp. Campinas 2018 Agência(s) de fomento e nº(s) de processo(s): CNPq, 131877/2016-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Matemática, Estatística e Computação Científica Ana Regina Machado - CRB 8/5467 Pereira, Augusto Cesar Silva Soares, 1991- P414o PerOn the completeness of the ADHM construction / Augusto Cesar Silva Soares Pereira. – Campinas, SP : [s.n.], 2018. PerOrientador: Henrique Nogueira de Sá Earp. PerDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica. Per1. Fibrados
    [Show full text]
  • Review Article Instantons, Topological Strings, and Enumerative Geometry
    Hindawi Publishing Corporation Advances in Mathematical Physics Volume 2010, Article ID 107857, 70 pages doi:10.1155/2010/107857 Review Article Instantons, Topological Strings, and Enumerative Geometry Richard J. Szabo1, 2 1 Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, UK 2 Maxwell Institute for Mathematical Sciences, Edinburgh, UK Correspondence should be addressed to Richard J. Szabo, [email protected] Received 21 December 2009; Accepted 12 March 2010 Academic Editor: M. N. Hounkonnou Copyright q 2010 Richard J. Szabo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We review and elaborate on certain aspects of the connections between instanton counting in maximally supersymmetric gauge theories and the computation of enumerative invariants of smooth varieties. We study in detail three instances of gauge theories in six, four, and two dimensions which naturally arise in the context of topological string theory on certain noncompact threefolds. We describe how the instanton counting in these gauge theories is related to the computation of the entropy of supersymmetric black holes and how these results are related to wall-crossing properties of enumerative invariants such as Donaldson-Thomas and Gromov- Witten invariants. Some features of moduli spaces of torsion-free sheaves and the computation of their Euler characteristics are also elucidated. 1. Introduction Topological theories in physics usually relate BPS quantities to geometrical invariants of the underlying manifolds on which the physical theory is defined.
    [Show full text]
  • ADHM Construction of (Anti-)Self-Dual Instantons in Eight Dimensions
    Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 910 (2016) 199–224 www.elsevier.com/locate/nuclphysb ADHM construction of (anti-)self-dual instantons in eight dimensions ∗ Atsushi Nakamula, Shin Sasaki, Koki Takesue Department of Physics, Kitasato University, Sagamihara 252-0373, Japan Received 25 April 2016; received in revised form 21 June 2016; accepted 24 June 2016 Available online 30 June 2016 Editor: Hubert Saleur Abstract We study the ADHM construction of (anti-)self-dual instantons in eight dimensions. We propose a gen- eral scheme to construct the (anti-)self-dual gauge field configurations F ∧ F =± ∗8 F ∧ F whose finite topological charges are given by the fourth Chern number. We show that our construction reproduces the known SO(8) one-instanton solution. We also construct multi-instanton solutions of the ’t Hooft and the Jackiw–Nohl–Rebbi (JNR) types in the dilute instanton gas approximation. The well-separated configura- tions of multi-instantons reproduce the correct topological charges with high accuracy. We also show that our construction is generalized to (anti-)self-dual instantons in 4n(n = 3, 4, ...)dimensions. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction It is well known that instantons in gauge theories play important roles in the study of non- perturbative effects [1,2]. Instantons in four-dimensional gauge theories with gauge group G are defined by configurations such that the gauge field strength 2-form F satisfies the (anti-)self-dual equation F =± ∗4 F .
    [Show full text]
  • Gauge Theory
    Preprint typeset in JHEP style - HYPER VERSION 2018 Gauge Theory David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html [email protected] Contents 0. Introduction 1 1. Topics in Electromagnetism 3 1.1 Magnetic Monopoles 3 1.1.1 Dirac Quantisation 4 1.1.2 A Patchwork of Gauge Fields 6 1.1.3 Monopoles and Angular Momentum 8 1.2 The Theta Term 10 1.2.1 The Topological Insulator 11 1.2.2 A Mirage Monopole 14 1.2.3 The Witten Effect 16 1.2.4 Why θ is Periodic 18 1.2.5 Parity, Time-Reversal and θ = π 21 1.3 Further Reading 22 2. Yang-Mills Theory 26 2.1 Introducing Yang-Mills 26 2.1.1 The Action 29 2.1.2 Gauge Symmetry 31 2.1.3 Wilson Lines and Wilson Loops 33 2.2 The Theta Term 38 2.2.1 Canonical Quantisation of Yang-Mills 40 2.2.2 The Wavefunction and the Chern-Simons Functional 42 2.2.3 Analogies From Quantum Mechanics 47 2.3 Instantons 51 2.3.1 The Self-Dual Yang-Mills Equations 52 2.3.2 Tunnelling: Another Quantum Mechanics Analogy 56 2.3.3 Instanton Contributions to the Path Integral 58 2.4 The Flow to Strong Coupling 61 2.4.1 Anti-Screening and Paramagnetism 65 2.4.2 Computing the Beta Function 67 2.5 Electric Probes 74 2.5.1 Coulomb vs Confining 74 2.5.2 An Analogy: Flux Lines in a Superconductor 78 { 1 { 2.5.3 Wilson Loops Revisited 85 2.6 Magnetic Probes 88 2.6.1 't Hooft Lines 89 2.6.2 SU(N) vs SU(N)=ZN 92 2.6.3 What is the Gauge Group of the Standard Model? 97 2.7 Dynamical Matter 99 2.7.1 The Beta Function Revisited 100 2.7.2 The Infra-Red Phases of QCD-like Theories 102 2.7.3 The Higgs vs Confining Phase 105 2.8 't Hooft-Polyakov Monopoles 109 2.8.1 Monopole Solutions 112 2.8.2 The Witten Effect Again 114 2.9 Further Reading 115 3.
    [Show full text]
  • MATHEMATICAL USES of GAUGE THEORY S. K. Donaldson Imperial
    MATHEMATICAL USES OF GAUGE THEORY S. K. Donaldson Imperial College, London 1. Introduction 1.1. This article surveys some developments in pure mathematics which have, to vary- ing degrees, grown out of the ideas of gauge theory in Mathematical Physics. The realisation that the gauge fields of particle physics and the connections of differen- tial geometry are one and the same has had wide-ranging consequences, at different levels. Most directly, it has lead mathematicians to work on new kinds of questions, often shedding light later on well-established problems. Less directly, various funda- mental ideas and techniques, notably the need to work with the infinite-dimensional gauge symmetry group, have found a place in the general world-view of many math- ematicians, influencing developments in other fields. Still less direct, the workin this area—between geometry and mathematical physics—has been a prime exam- ple of the interaction between these fields which has been so fruitful over thepast thirty years. The body of this paper is divided into three sections: roughly corresponding to Analysis, Geometry and Topology. However the different topics come together in many different ways: indeed the existence of these links between the topics isone the most attractive features of the area. 1.2 Gauge transformations. We do not have space in this article to review the usual foundational mate- rial on connections, curvature and related differential geometric constructions: for these we refer to standard texts. We will however briefly recall the notions of gauge transformations and gauge fixing. The simplest case is that of abelian gauge theory—connections on a U(1)-bundle, say over R3.
    [Show full text]
  • Spectral Curves, and the Equations of Bogomolny and Nahm
    Monopoles on R3, Spectral Curves, and the Equations of Bogomolny and Nahm Alexander B. Atanasov Abstract This paper introduces the Bogomolny equations, describing SU(n) monopoles of Yang- Mills-Higgs theory in three dimensional Euclidean space. After restricting to the case of SU(2), we describe the geometry of the monopole solution space via a scattering approach of Hitchin [1]. We demonstrate how monopole solutions give rise to a spectral curve of eigenval- 1 ues on T CP and how this may more clearly be understood in terms of a rational map idea of Donaldson [2]. We then introduce the Nahm equations of [3] as an application of the ADHM 3 idea to finding solutions to the self-duality conditions in the reduced case of R , and illustrate the equivalence of the Bogomolny and Nahm equations. Finally, we generalize these ideas by introducing the Nahm transform: a nonabelian generalization of the Fourier transform that relates the self-dual vector bundles on one space to vector bundles on another. Introduction The goal of this paper is to give the reader a gentle introduction to the notable discoveries in the study of monopoles in R3. In section 1, we give a review of the mathematics of gauge theory. We make use of of these techniques in section 2 to give two derivations of the Bogomolny equations. The first approach derives the equations directly from the anti-self-duality (ASD) conditions for instanton solutions in 4 R by treating the fourth component of the connection 1-form, A4, as a scalar field φ and ignoring translations @4 along the x4 direction.
    [Show full text]
  • This Electronic Thesis Or Dissertation Has Been Downloaded from the King’S Research Portal At
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Aspects of M-Branes in M-Theory Owen, Miles Carson Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to: Share: to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Mar. 2019 Aspects of M-Branes in M-Theory Miles Owen A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics King's College London December 2018 Abstract This thesis will present work completed throughout the course of my doctoral studies.
    [Show full text]
  • Sasakian Quiver Gauge Theories and Instantons on Calabi-Yau Cones
    ITP–UH–22/14 EMPG–14–20 Sasakian quiver gauge theories and instantons on Calabi-Yau cones Olaf Lechtenfeld1 , Alexander D. Popov1 and Richard J. Szabo2 1Institut f¨ur Theoretische Physik and Riemann Center for Geometry and Physics Leibniz Universit¨at Hannover Appelstraße 2, 30167 Hannover, Germany Email: [email protected] , [email protected] 2Department of Mathematics, Heriot-Watt University Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, U.K. and Maxwell Institute for Mathematical Sciences, Edinburgh, U.K. and The Higgs Centre for Theoretical Physics, Edinburgh, U.K. Email: [email protected] Abstract We consider SU(2)-equivariant dimensional reduction of Yang-Mills theory on manifolds of the form M S3/Γ, where M is a smooth manifold and S3/Γ is a three-dimensional Sasaki-Einstein orbifold.× We obtain new quiver gauge theories on M whose quiver bundles are based on the affine arXiv:1412.4409v2 [hep-th] 28 Oct 2016 ADE Dynkin diagram associated to Γ. We relate them to those arising through translationally- invariant dimensional reduction over the associated Calabi-Yau cones C(S3/Γ) which are based on McKay quivers and ADHM matrix models, and to those arising through SU(2)-equivariant dimensional reduction over the leaf spaces of the characteristic foliations of S3/Γ which are K¨ahler orbifolds of CP 1 whose quiver bundles are based on the unextended Dynkin diagram corresponding to Γ. We use Nahm equations to describe the vacua of SU(2)-equivariant quiver gauge theories on the cones as moduli spaces of spherically symmetric instantons.
    [Show full text]
  • 7D Supersymmetric Yang-Mills Theory on Toric and Hypertoric Manifolds
    UPPSALA DISSERTATIONS IN MATHEMATICS 116 7D supersymmetric Yang-Mills theory on toric and hypertoric manifolds Andreas Rocén Department of Mathematics Uppsala University UPPSALA 2019 Dissertation presented at Uppsala University to be publicly examined in Å4001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 20 September 2019 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Andrew Swann (Aarhus University, Department of Mathematics). Abstract Rocén, A. 2019. 7D supersymmetric Yang-Mills theory on toric and hypertoric manifolds. Uppsala Dissertations in Mathematics 116. 43 pp. Uppsala: Department of Mathematics. ISBN 978-91-506-2780-0. This thesis consists of an introduction and three research papers in the general area of geometry and physics. In particular we study 7D supersymmetric Yang-Mills theory and related topics in toric and hypertoric geometry. Yang-Mills theory is used to describe particle interactions in physics but it also plays an important role in mathematics. For example, Yang-Mills theory can be used to formulate topological invariants in differential geometry. In Paper I we formulate 7D maximally supersymmetric Yang-Mills theory on curved manifolds that admit positive Killing spinors. For the case of Sasaki-Einstein manifolds we perform a localisation calculation and find the perturbative partition function of the theory. For toric Sasaki-Einstein manifolds we can write the answer in terms of a special function that count integer lattice points inside a cone determined by the toric action. In Papers II and III we consider 7D maximally supersymmetric Yang-Mills theory on hypertoric 3-Sasakian manifolds. We show that the perturbative partition function can again be formulated in terms of a special function counting integer lattice points in a cone, similar to the toric case.
    [Show full text]
  • N=1 Supersymmetric Yang-Mills Theory and Adjoint QCD on the Lattice
    = 1 supersymmetric Yang-Mills theory N and adjoint QCD on the lattice Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität Jena von M.Sc. Juan Camilo López Vargas geboren am 24.04.1990 in Medellin Gutachter 1. Dr. habil. Georg Bergner (Friedrich-Schiller-Universität Jena) 2. Prof. Dr. Agostino Patella (Humboldt-Universität zu Berlin) 3. Dr. David Schaich (University of Liverpool) Tag der Disputation: 08.10.2020 Abstract In this work we study the low-energy physics of Yang-Mills theory coupled to adjoint matter by means of lattice Monte Carlo simulations. A main ingredient of our computa- tions is the Yang-Mills gradient flow, which is a gradient flow in field space. The kernel of the flow operator smoothens the fields in such a way that correlators of local operators can be computed avoiding divergences and extra multiplicative renormalisations. The flow kernel can also be related, under some specific conditions, to a renormalisation group transformation. This property allows to compute the scaling dimensions of operators, with respect to variations of the energy scale. We exploit these two properties of the gradient flow in order to study non-perturbative properties of Yang-Mills with adjoint fermions. First, we study the case when the Yang-Mills field is coupled to a single adjoint fermion. This model is the = 1 supersymmetric Yang-Mills theory. It is the only N QCD-like supersymmetric theory in the sense that it has no scalars, is asymptotically free, has a low-energy mass-gap, is confining and shows fermion condensation.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 06 May 2008 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Dorey, N. and Hollowood, T. J. and Khoze, V. V. and Mattis, M. P. (2002) 'The calculus of many instantons.', Physics reports., 371 (4-5). pp. 231-459. Further information on publisher's website: http://dx.doi.org/10.1016/S0370-1573(02)00301-0 Publisher's copyright statement: Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk hep-th/0206063 May 2002 The Calculus of Many Instantons Nick Dorey,1 Timothy J. Hollowood,1 Valentin V. Khoze2 and Michael P. Mattis3 1Department of Physics, University of Wales Swansea, Swansea, SA2 8PP, UK [email protected], [email protected] 2Department of Physics, University of Durham, Durham, DH1 3LE, UK [email protected] 3121 Fox Meadow Road, Scarsdale, NY10583, USA [email protected] ABSTRACT arXiv:hep-th/0206063v1 7 Jun 2002 We describe the modern formalism, ideas and applications of the instanton calculus for gauge theories with, and without, supersymmetry.
    [Show full text]
  • Infinite-Parameter ADHM Transform
    Infinite-Parameter ADHM Transform R. S. Ward∗ Department of Mathematical Sciences, Durham University, Durham DH1 3LE. July 28, 2020 Abstract The Atiyah-Drinfeld-Hitchin-Manin (ADHM) transform and its vari- ous generalizations are examples of non-linear integral transforms be- tween finite-dimensional moduli spaces. This note describes a natural infinite-dimansional generalization, where the transform becomes a map from boundary data to a family of solutions of the self-duality equations in a domain. Dedicated to Michael Atiyah, in Memoriam 1 Introduction One of many discoveries named after Michael Atiyah is the ADHM (Atiyah- Drinfeld-Hitchin-Manin) transform [1]. Starting with the work of Nahm [14, 15], it was subsequently generalized in various ways; see for example the arXiv:2006.01459v2 [math-ph] 26 Jul 2020 review [12]. Independent of this, but related to it, was the Fourier-Mukai transform in algebraic geometry [13, 2]. Now ADHM is an integral transform, and as such is analogous to the Fourier, Radon and Penrose transforms, and also to the inverse scatter- ing transform in soliton theory. These other examples are usually encoun- tered in infinite-dimensional contexts: for example, the Fourier transform ∗Email: [email protected] 1 is an isomorphism of infinite-dimensional vector spaces. By contrast, the ADHM transform and its generalizations have mostly been studied in finite- dimensional contexts, giving correspondences between finite-dimensional mod- uli spaces. Indeed, it originally arose from algebraic geometry (the construc- tion of algebraic vector bundles), and index theory was an important part of it. The ADHM construction and its various generalizations involve the ker- nels of Dirac operators, with part of the analysis being to prove that these operators are Fredholm, so that their kernels are finite-dimensional.
    [Show full text]