Small Silencing Rnas: an Expanding Universe

Total Page:16

File Type:pdf, Size:1020Kb

Small Silencing Rnas: an Expanding Universe REVIEWS Small silencing RNAs: an expanding universe Megha Ghildiyal and Phillip D. Zamore Abstract | Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats. 2 Argonaute The defining features of small silencing RNAs are their both plants and nematodes, spreading from cell to cell . Argonaute proteins are the short length (~20–30 nucleotides), and their association In C. elegans, RNAi is also heritable: silencing can be effectors of small RNA-directed with members of the Argonaute family of proteins, which transferred to the progeny of the worm that was origi- silencing. Small RNAs guide they guide to their regulatory targets, typically resulting in nally injected with the trigger dsRNA3. Viral infection, Argonautes to their RNA targets; Argonautes carry out reduced expression of target genes. Beyond these defining inverted-repeat transgenes or aberrant transcription the regulation. Argonaute features, different small RNA classes guide diverse and products all lead to the production of dsRNA. dsRNA proteins are characterized by complex schemes of gene regulation. Some small silencing is converted to siRNAs that direct RNAi. siRNAs were two domains — Piwi (a RNAs, such as small interfering RNAs (siRNAs), derive discovered in plants4 and were later shown in animal ribonuclease domain) and PAZ (a ssRNA-binding module). from dsRNA, whereas others, such as Piwi-interacting extracts to serve as guides that direct endonucleolytic RNAs (piRNAs), do not. These different classes of regu- cleavage of their target RNAs5,6. siRNAs can be classified latory RNAs also differ in the proteins required for their according to the proteins involved in their biogenesis, biogenesis, the constitution of the Argonaute-containing their mode of regulation or their size. In this Review, we complexes that execute their regulatory functions, their differentiate the major types of siRNAs according to the modes of gene regulation and the biological functions in molecules that trigger their production — a classification which they participate. New small RNA classes and new scheme that best captures the biological distinctions examples of existing classes continue to be discovered, among small silencing RNAs. such as the recent identification of endogenous siRNAs (endo-siRNAs) in flies and mammals. Here, we provide siRNAs derived from exogenous agents. Early examples an overview of small silencing RNAs from plants and of RNAi were triggered by exogenous dsRNA. In these metazoan animals. For each class, we describe its bio- cases, long exogenous dsRNA is cleaved into double- genesis, function and mode of target regulation, provid- stranded siRNAs by Dicer, a dsRNA-specific RNase III ing examples of the regulatory networks in which each family ribonuclease7 (FIG. 1). siRNA duplexes produced by participates (TABLE 1). Finally, we highlight several exam- Dicer comprise two ~21 nucleotide strands, each bear- ples of unexpected, and often unexplained, complexity in ing a 5′ phosphate and 3′ hydroxyl group, paired in a way Department of Biochemistry the interactions between distinct small RNA pathways. that leaves two-nucleotide overhangs at the 3′ ends5,8,9. The and Molecular strand that directs silencing is called the guide, whereas the Pharmacology and Howard The discovery of RNAi Hughes Medical Institute, other strand, which is ultimately destroyed, is the passen- University of Massachusetts In 1998, Fire and Mello established dsRNA as the silenc- ger. Target regulation by siRNAs is mediated by the RNA- Medical School, 364 ing trigger in Caenorhabditis elegans1. Their experiments induced silencing complex (RISC), which is the generic Plantation Street, Worcester, overturned the contemporary view that antisense RNA name for an Argonaute–small RNA complex6. In addi- Massachusetts 01605, USA induced silencing by base pairing to its mRNA coun- tion to an Argonaute protein and a small RNA guide, the Correspondence to P.D.Z. e-mail: phillip.zamore@ terpart, thereby preventing its translation into protein. RISC might also contain auxiliary proteins that extend or umassmed.edu In worms and other animals, siRNA-mediated silenc- modify its function; for example, proteins that redirect the doi:10.1038/nrg2504 ing is known as RNAi. Remarkably, RNAi is systemic in target mRNA to a site of general mRNA degradation10. 94 | FEBRUARY 2009 | VOLUME 10 www.nature.com/reviews/genetics © 2009 Macmillan Publishers Limited. All rights reserved REVIEWS Table 1 | Types of small silencing RNAs Name Organism Length (nt) Proteins Source of trigger Function Refs miRNA Plants, algae, animals, 20–25 Drosha (animals only) Pol II transcription Regulation of mRNA 93–95, viruses, protists and Dicer (pri-miRNAs) stability, translation 200–202,226 casiRNA Plants 24 DCL3 Transposons, repeats Chromatin 38,44,51, modification 52,61–63 tasiRNA Plants 21 DCL4 miRNA-cleaved RNAs from Post-transcriptional 64–68 the TAS loci regulation natsiRNA Plants 22 DCL1 Bidirectional transcripts Regulation of 71,72 induced by stress stress-response genes 24 DCL2 21 DCL1 and DCL2 Exo-siRNA Animals, fungi, protists ~21 Dicer Transgenic, viral or other Post-transcriptional 4,5,8,227 exogenous dsRNA regulation, antiviral Plants 21 and 24 defense Endo-siRNA Plants, algae, animals, ~21 Dicer (except secondary Structured loci, convergent Post-transcriptional 75–79,82, fungi, protists siRNAs in C. elegans, and bidirectional regulation of 83,86,87, which are products of transcription, mRNAs transcripts 200,201, RdRP transcription, paired to antisense and transposons; 228 and are therefore not pseudogene transcripts transcriptional gene technically siRNAs) silencing piRNA Metazoans excluding 24–30 Dicer-independent Long, primary transcripts? Transposon regulation, 157, Trichoplax adhaerens unknown functions 163–169, 177,202 piRNA-like Drosophila 24–30 Dicer-independent In ago2 mutants in Unknown 76 (soma) melanogaster Drosophila 21U-RNA Caenorhabditis elegans 21 Dicer-independent Individual transcription of Transposon regulation, 114, piRNAs each piRNA? unknown functions 173–175 26G RNA Caenorhabditis elegans 26 RdRP? Enriched in sperm Unknown 114 ago2, Argonaute2; casiRNA, cis-acting siRNA; DCL, Dicer-like; endo-siRNA, endogenous small interfering RNA; exo-siRNA, exogenous small interfering RNA; miRNA, microRNA; natsiRNA, natural antisense transcript-derived siRNA; piRNA, Piwi-interacting RNA; Pol II, RNA polymerase II; pri-miRNA, primary microRNA; RdRP, RNA-dependant RNA polymerase; tasiRNA, trans-acting siRNA. Mammals and C. elegans each have a single Dicer duplex. AGO2 can then cleave the passenger strand as that makes both microRNAs (miRNAs) and siR- if it were a target RNA27–31. AGO2 always cleaves its NAs11–14, whereas Drosophila species have two Dicers: RNA target at the phosphodiester bond between the DCR-1 makes miRNAs, whereas DCR-2 is specialized nucleotides that are paired to nucleotides 10 and 11 for siRNA production15. The fly RNAi pathway defends of the guide strand8,9. Release of the passenger strand against viral infection, and Dicer specialization might after its cleavage converts pre-RISC to mature RISC, reduce competition for Dicer between precursor miR- which contains only single-stranded guide RNA. In NAs (pre-miRNAs) and viral dsRNAs. Alternatively, flies, the guide strand is 2′-O-methylated at its 3′ end DCR-2 and Argonaute2 (AGO2) specialization might by the S-adenosyl methionine-dependent methyltrans- reflect the evolutionary pressure on the siRNA pathway ferase HEN1 (also known as piRNA methyltransferase, to counter rapidly evolving viral strategies to escape PIMET), completing RISC assembly32,33. In plants, RNAi. In fact, dcr-2 and ago2 are among the most both miRNAs and siRNAs are terminally methylated, rapidly evolving Drosophila genes16. C. elegans might a modification that is crucial for their stability34–36. achieve similar specialization with a single Dicer by Plants exhibit a surprising diversity of small RNA using the dsRNA-binding protein RNAi defective types and the proteins that generate them. The diver- (RDE-4) as the gatekeeper for entry into the RNAi sification of RNA silencing pathways in plants might pathway17. However, no natural virus infection has reflect the need of a sessile organism to cope with biotic been documented in C. elegans18. By contrast, mammals and abiotic stress. The number of RNA silencing pro- might not use the RNAi pathway to respond to viral teins can vary enormously among animals too, with infection, having evolved an elaborate, protein-based C. elegans producing 27 distinct Argonaute proteins immune system19–21. compared with 5 in flies. Phylogenetic data suggest that The relative thermodynamic stabilities of the 5′ ends nearly all of these ‘extra’ C. elegans Argonautes act in the of the two siRNA strands in the duplex determines the secondary siRNA pathway37, perhaps because endog- identity of the guide and passenger strands22–24. In flies, enous secondary siRNAs are so plentiful in worms. this thermodynamic difference is sensed
Recommended publications
  • Trans-Acting Antisense Rnas Mediate Transcriptional Gene Cosuppression in S
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae Jurgi Camblong,1 Nissrine Beyrouthy, Elisa Guffanti, Guillaume Schlaepfer, Lars M. Steinmetz,2 and Francxoise Stutz3 Department of Cell Biology and NCCR ‘‘Frontiers in Genetics’’ Program, University of Geneva, 1211 Geneva 4, Switzerland Homology-dependent gene silencing, a phenomenon described as cosuppression in plants, depends on siRNAs. We provide evidence that in Saccharomyces cerevisiae, which is missing the RNAi machinery, protein coding gene cosuppression exists. Indeed, introduction of an additional copy of PHO84 on a plasmid or within the genome results in the cosilencing of both the transgene and the endogenous gene. This repression is transcriptional and position-independent and requires trans-acting antisense RNAs. Antisense RNAs induce transcriptional gene silencing both in cis and in trans, and the two pathways differ by the implication of the Hda1/2/3 complex. We also show that trans-silencing is influenced by the Set1 histone methyltransferase, which promotes antisense RNA production. Finally we show that although antisense-mediated cis-silencing occurs in other genes, trans- silencing so far depends on features specific to PHO84. All together our data highlight the importance of noncoding RNAs in mediating RNAi-independent transcriptional gene silencing. [Keywords: Antisense RNA; cis and trans transcriptional gene silencing; PHO84; cosuppression; RNAi-independent TGS; noncoding RNA; S. cerevisiae] Supplemental material is available at http://www.genesdev.org. Received January 15, 2009; revised version accepted May 18, 2009. Eukaryotic gene expression is a complex process regu- recently reported (Camblong et al.
    [Show full text]
  • Comparison of the Effects on Mrna and Mirna Stability Arian Aryani and Bernd Denecke*
    Aryani and Denecke BMC Research Notes (2015) 8:164 DOI 10.1186/s13104-015-1114-z RESEARCH ARTICLE Open Access In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability Arian Aryani and Bernd Denecke* Abstract Background: MicroRNA has become important in a wide range of research interests. Due to the increasing number of known microRNAs, these molecules are likely to be increasingly seen as a new class of biomarkers. This is driven by the fact that microRNAs are relatively stable when circulating in the plasma. Despite extensive analysis of mechanisms involved in microRNA processing, relatively little is known about the in vitro decay of microRNAs under defined conditions or about the relative stabilities of mRNAs and microRNAs. Methods: In this in vitro study, equal amounts of total RNA of identical RNA pools were treated with different ribonucleases under defined conditions. Degradation of total RNA was assessed using microfluidic analysis mainly based on ribosomal RNA. To evaluate the influence of the specific RNases on the different classes of RNA (ribosomal RNA, mRNA, miRNA) ribosomal RNA as well as a pattern of specific mRNAs and miRNAs was quantified using RT-qPCR assays. By comparison to the untreated control sample the ribonuclease-specific degradation grade depending on the RNA class was determined. Results: In the present in vitro study we have investigated the stabilities of mRNA and microRNA with respect to the influence of ribonucleases used in laboratory practice. Total RNA was treated with specific ribonucleases and the decay of different kinds of RNA was analysed by RT-qPCR and miniaturized gel electrophoresis.
    [Show full text]
  • Human 28S Rrna 5' Terminal Derived Small RNA Inhibits Ribosomal Protein Mrna Levels Shuai Li 1* 1. Department of Breast Cancer
    bioRxiv preprint doi: https://doi.org/10.1101/618520; this version posted April 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Human 28s rRNA 5’ terminal derived small RNA inhibits ribosomal protein mRNA levels Shuai Li 1* 1. Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China. * To whom correspondence should be addressed. Tel.: +86 22 23340123; Fax: +86 22 23340123; Email: [email protected] & [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/618520; this version posted April 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Recent small RNA (sRNA) high-throughput sequencing studies reveal ribosomal RNAs (rRNAs) as major resources of sRNA. By reanalyzing sRNA sequencing datasets from Gene Expression Omnibus (GEO), we identify 28s rRNA 5’ terminal derived sRNA (named 28s5-rtsRNA) as the most abundant rRNA-derived sRNAs. These 28s5-rtsRNAs show a length dynamics with identical 5’ end and different 3’ end. Through exploring sRNA sequencing datasets of different human tissues, 28s5-rtsRNA is found to be highly expressed in bladder, macrophage and skin. We also show 28s5-rtsRNA is independent of microRNA biogenesis pathway and not associated with Argonaut proteins. Overexpression of 28s5-rtsRNA could alter the 28s/18s rRNA ratio and decrease multiple ribosomal protein mRNA levels.
    [Show full text]
  • The Sirna Suppressor RTL1 Is Redox-Regulated Through Glutathionylation of a Conserved Cysteine in the Double-Stranded-RNA-Bindin
    The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain Cyril Charbonnel, Adnan Niazi, Emilie Elvira-Matelot, Elżbieta Nowak, Matthias Zytnicki, Anne De bures, Edouard Jobet, Alisson Opsomer, Nahid Shamandi, Marcin Nowotny, et al. To cite this version: Cyril Charbonnel, Adnan Niazi, Emilie Elvira-Matelot, Elżbieta Nowak, Matthias Zytnicki, et al.. The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain. Nucleic Acids Research, Oxford University Press, 2017, 45 (20), pp.11891-11907. 10.1093/nar/gkx820. hal-02116017 HAL Id: hal-02116017 https://hal.archives-ouvertes.fr/hal-02116017 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Published online 15 September 2017 Nucleic Acids Research, 2017, Vol. 45, No. 20 11891–11907 doi: 10.1093/nar/gkx820 The siRNA suppressor RTL1 is redox-regulated
    [Show full text]
  • Global Analysis of Small RNA and Mrna Targets of Hfq
    Blackwell Science, LtdOxford, UKMMIMolecular Microbiology 1365-2958Blackwell Publishing Ltd, 200350411111124Original ArticleA. Zhang et al.Global analysis of Hfq targets Molecular Microbiology (2003) 50(4), 1111–1124 doi:10.1046/j.1365-2958.2003.03734.x Global analysis of small RNA and mRNA targets of Hfq Aixia Zhang,1 Karen M. Wassarman,2 greatly expanded over the past few years (reviewed in Carsten Rosenow,3 Brian C. Tjaden,4† Gisela Storz1* Gottesman, 2002; Grosshans and Slack, 2002; Storz, and Susan Gottesman5* 2002; Wassarman, 2002; Massé et al., 2003). A subset of 1Cell Biology and Metabolism Branch, National Institute of these small RNAs act via short, interrupted basepairing Child Health and Development, Bethesda MD 20892, interactions with target mRNAs. How do these small USA. RNAs find and anneal to their targets? In Escherichia coli, 2Department of Bacteriology, University of Wisconsin, at least part of the answer lies in their association with Madison, WI 53706, USA. and dependence upon the RNA chaperone, Hfq. The 3Affymetrix, Santa Clara, CA 95051, USA. abundant Hfq protein was identified originally as a host 4Department of Computer Science, University of factor for RNA phage Qb replication (Franze de Fernan- Washington, Seattle, WA 98195, USA. dez et al., 1968), but later hfq mutants were found to 5Laboratory of Molecular Biology, National Cancer exhibit multiple phenotypes (Brown and Elliott, 1996; Muf- Institute, Bethesda, MD 20892, USA. fler et al., 1996). These defects are, at least in part, a reflection of the fact that Hfq is required for the function of several small RNAs including DsrA, RprA, Spot42, Summary OxyS and RyhB (Zhang et al., 1998; Sledjeski et al., Hfq, a bacterial member of the Sm family of RNA- 2001; Massé and Gottesman, 2002; Møller et al., 2002).
    [Show full text]
  • Exploring the Structure of Long Non-Coding Rnas, J
    IMF YJMBI-63988; No. of pages: 15; 4C: 3, 4, 7, 8, 10 1 2 Rise of the RNA Machines: Exploring the Structure of 3 Long Non-Coding RNAs 4 Irina V. Novikova, Scott P. Hennelly, Chang-Shung Tung and Karissa Y. Sanbonmatsu Q15 6 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 7 Correspondence to Karissa Y. Sanbonmatsu: [email protected] 8 http://dx.doi.org/10.1016/j.jmb.2013.02.030 9 Edited by A. Pyle 1011 12 Abstract 13 Novel, profound and unexpected roles of long non-coding RNAs (lncRNAs) are emerging in critical aspects of 14 gene regulation. Thousands of lncRNAs have been recently discovered in a wide range of mammalian 15 systems, related to development, epigenetics, cancer, brain function and hereditary disease. The structural 16 biology of these lncRNAs presents a brave new RNA world, which may contain a diverse zoo of new 17 architectures and mechanisms. While structural studies of lncRNAs are in their infancy, we describe existing 18 structural data for lncRNAs, as well as crystallographic studies of other RNA machines and their implications 19 for lncRNAs. We also discuss the importance of dynamics in RNA machine mechanism. Determining 20 commonalities between lncRNA systems will help elucidate the evolution and mechanistic role of lncRNAs in 21 disease, creating a structural framework necessary to pursue lncRNA-based therapeutics. 22 © 2013 Published by Elsevier Ltd. 24 23 25 Introduction rather than the exception in the case of eukaryotic 50 organisms. 51 26 RNA is primarily known as an intermediary in gene LncRNAs are defined by the following: (i) lack of 52 11 27 expression between DNA and proteins.
    [Show full text]
  • Epigenetic Roles of PIWI‑Interacting Rnas (Pirnas) in Cancer Metastasis (Review)
    ONCOLOGY REPORTS 40: 2423-2434, 2018 Epigenetic roles of PIWI‑interacting RNAs (piRNAs) in cancer metastasis (Review) JIA LIU1, SHUJUN ZHANG2 and BINGLIN CHENG1 1Department of Integrated Traditional Chinese and Western Medicine Oncology, The First Affiliated Hospital of Harbin Medical University; 2Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China Received March 19, 2018; Accepted September 3, 2018 DOI: 10.3892/or.2018.6684 Abstract. P-element-induced wimpy testis (PIWI)-interacting 7. Epigenetics of ncRNAs in cancer RNAs (piRNAs) are epigenetic-related short ncRNAs that 8. Discussion participate in chromatin regulation, transposon silencing, and modification of specific gene sites. These epigenetic factors or alterations are also involved in the growth of a variety 1. Introduction of human cancers, including lung, breast, and colon cancer. Accumulating evidence has revealed that tumor metastasis P-element-induced wimpy testis (PIWI)-interacting RNAs and invasion involve genetic and epigenetic factors. Cancer (piRNAs) belong to a new class of ncRNAs that have been asso- metastasis is characterized by epigenetic alterations including ciated with many cancers (1). piRNAs are involved in the gene DNA methylation and histone modification. Changes in DNA regulation process in which certain nucleotides bind coding methylation, H3K9me3 heterochromatin and transposable regions in gene promoters (2). piRNAs function in the epigen- elements have been detected in several cancers. piRNAs may etic regulation of DNA methylation (3), transposable silencing function in gene silencing and gene modification upstream and chromatin modification (4). PIWI is a type of Argonaute or downstream of oncogenes in cancer cell lines or cancer protein that binds to piRNAs and carries out unique functions tissues.
    [Show full text]
  • Patenting Interfering RNA
    Patenting Interfering RNA J. Douglas Schultz SPE Art Unit 1635 (571) 272-0763 [email protected] Oligonucleotide Inhibitors: Mechanisms of Action RNAi - Mechanism of Action • dsRNA induces sequence-specific degradation of homologous gene transcripts • RISC metabolizes dsRNA to small 21-23- nucleotide siRNAs – RISC contains dsRNase (“Dicer”), ssRNase (Argonaut 2 or Ago2) • RISC utilizes antisense strand as “guide” to find cleavable target siRNA Mechanism of Action miRNA Mechanism of Action Interfering RNA Glossary of Terms • RNAi – RNA interference • dsRNA – double stranded RNA • siRNA – small interfering RNA, double stranded, 21-23 nucleotides • shRNA – short hairpin RNA (doubled stranded by virtue of a ssRNA folding back on itself) • miRNA – micro RNA • RISC – RNA-induced silencing complex – Dicer – RNase endonuclease siRNA miRNA • Exogenously delivered • Endogenously produced • 21-23mer dsRNA • 21-23mer dsRNA • Acts through RISC • Acts through RISC • Induces homologous target • Induces homologous target cleavage cleavage • Perfect sequence match • Imperfect sequence match – Results in target degradation – Results in translation arrest RNAi Patentability issues Sample Claims: • A siRNA that inhibits expression of a nucleic acid encoding protein X. OR • A siRNA comprising a 2’-modification, wherein said modification comprises 2’-fluoro, 2’-O-methyl, or 2’- deoxy. (Note: no target recited) OR • A method of reducing tumor cell growth comprising administering siRNA targeting protein X. RNAi Patentability Issues 35 U.S.C. 101 – Utility • Credible/Specific/Substantial/Well Established. • Used to attempt modulation of gene expression in human diseases • Routinely investigate gene function in a high throughput fashion or to (see Rana RT, Nat. Rev. Mol. Cell Biol. 2007, Vol. 8:23-36).
    [Show full text]
  • Posttranscriptional Regulation of Microrna Biogenesis in Animals
    Molecular Cell Review Posttranscriptional Regulation of MicroRNA Biogenesis in Animals Haruhiko Siomi1,* and Mikiko C. Siomi1,* 1Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan *Correspondence: [email protected] (H.S.), [email protected] (M.C.S.) DOI 10.1016/j.molcel.2010.03.013 MicroRNAs (miRNAs) control gene expression in animals, plants, and unicellular eukaryotes by promoting degradation or repressing translation of target mRNAs. miRNA expression is often tissue specific and devel- opmentally regulated, and regulation occurs both transcriptionally and posttranscriptionally. This regulation is crucial, as alteration of miRNA expression has been linked to human diseases, including several cancers. Here, we discuss recent studies that shed light on how multiple steps in the miRNA biogenesis pathway are regulated to modulate miRNA function in animals. Introduction miRNA turn over, recent findings have uncovered a significant The lin-4 miRNA was identified in C. elegans in 1993 (Lee et al., role for posttranscriptional mechanisms in the regulation of 1993). At the time, lin-4 was thought to be a worm-specific curi- miRNA biogenesis and activity (Carthew and Sontheimer, osity, but with the subsequent identification of the let-7 miRNA, 2009; Davis and Hata, 2009). Here, we review recent progress which is phylogenetically conserved (Pasquinelli et al., 2000; in our understanding of the posttranscriptional mechanisms of Reinhart et al., 2000), researchers took
    [Show full text]
  • RNA Interference in the Nucleus: Roles for Small Rnas in Transcription, Epigenetics and Beyond
    REVIEWS NON-CODING RNA RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond Stephane E. Castel1 and Robert A. Martienssen1,2 Abstract | A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability. RNA interference Since the discovery that double-stranded RNAs (dsRNAs) have revealed a conserved nuclear role for RNAi in (RNAi). Silencing at both the can robustly silence genes in Caenorhabditis elegans and transcriptional gene silencing (TGS). Because it occurs post-transcriptional and plants, RNA interference (RNAi) has become a new para- in the germ line, TGS can lead to transgenerational transcriptional levels that is digm for understanding gene regulation. The mecha- inheritance in the absence of the initiating RNA, but directed by small RNA molecules. nism is well-conserved across model organisms and it is dependent on endogenously produced small RNA. uses short antisense RNA to inhibit translation or to Such epigenetic inheritance is familiar in plants but has Post-transcriptional gene degrade cytoplasmic mRNA by post-transcriptional gene only recently been described in metazoans. silencing silencing (PTGS). PTGS protects against viral infection, In this Review, we cover the broad range of nuclear (PTGS).
    [Show full text]
  • RNA Stem Structure Governs Coupling of Dicing and Gene Silencing in RNA
    RNA stem structure governs coupling of dicing and PNAS PLUS gene silencing in RNA interference Hye Ran Koha,b,1, Amirhossein Ghanbariniakia,c,d, and Sua Myonga,c,d,1 aDepartment of Biophysics, Johns Hopkins University, Baltimore, MD 21218; bDepartment of Chemistry, Chung-Ang University, Seoul 06974, Korea; cInstitute for Genomic Biology, University of Illinois, Urbana, IL 61801; and dCenter for Physics of Living Cells, University of Illinois, Urbana, IL 61801 Edited by Brenda L. Bass, University of Utah School of Medicine, Salt Lake City, UT, and approved October 13, 2017 (received for review June 8, 2017) PremicroRNAs (premiRNAs) possess secondary structures consist- coworkers (20), but its relationship to the silencing efficiency has ing of a loop and a stem with multiple mismatches. Despite the not been tested. While the effect of mismatches between the well-characterized RNAi pathway, how the structural features of guide strand and target mRNA has been extensively studied (21– premiRNA contribute to dicing and subsequent gene-silencing 24), the effect of mismatch between guide and passenger strand efficiency remains unclear. Using single-molecule FISH, we dem- has not been systematically examined. onstrate that cytoplasmic mRNA, but not nuclear mRNA, is reduced We sought to study how different structural features found in during RNAi. The dicing rate and silencing efficiency both increase premiRNAs and presiRNAs modulate overall gene-silencing in a correlated manner as a function of the loop length. In contrast, efficiency by measuring two key steps in the RNAi pathway: (i) mismatches in the stem drastically diminish the silencing efficiency dicing kinetics to measure how quickly premiRNA or presiRNA without impacting the dicing rate.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0086860 A1 Sohail (43) Pub
    US 20040O86860A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0086860 A1 Sohail (43) Pub. Date: May 6, 2004 (54) METHODS OF PRODUCING RNAS OF Publication Classification DEFINED LENGTH AND SEQUENCE (51) Int. Cl." .............................. C12Q 1/68; C12P 19/34 (76) Inventor: Muhammad Sohail, Marston (GB) (52) U.S. Cl. ............................................... 435/6; 435/91.2 Correspondence Address: MINTZ, LEVIN, COHN, FERRIS, GLOWSKY (57) ABSTRACT AND POPEO, PC. ONE FINANCIAL CENTER Methods of making RNA duplexes and single-stranded BOSTON, MA 02111 (US) RNAS of a desired length and Sequence based on cleavage of RNA molecules at a defined position, most preferably (21) Appl. No.: 10/264,748 with the use of deoxyribozymes. Novel deoxyribozymes capable of cleaving RNAS including a leader Sequence at a (22) Filed: Oct. 4, 2002 Site 3' to the leader Sequence are also described. Patent Application Publication May 6, 2004 Sheet 1 of 2 US 2004/0086860 A1 DNA Oligonucleotides T7 Promoter -TN-- OR 2N-2-N-to y Transcription Products GGGCGAAT-N-UU GGGCGAAT-N-UU w N Deoxyribozyme Cleavage - Q GGGCGAAT -------' Racction GGGCGAAT N-- UU N-UU ssRNA products N-UU Anneal ssRNA UU S-2N- UU siRNA product FIGURE 1: Flowchart summarising the procedure for siRNA synthesis. Patent Application Publication May 6, 2004 Sheet 2 of 2 US 2004/0086860 A1 Full-length transcript 3'-digestion product 5'-digestion product (5'GGGCGAATA) A: Production of single-stranded RNA templates by in vitro transcription and digestion With a deoxyribozyme V 2- 2 V 22inv 22 * 2 &3 S/AS - 88.8x, *...* or as IGFR -- is as 4.
    [Show full text]