Peoria Lakes Comprehensive Conservation Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Peoria Riverfront Development, Illinois (Ecosystem Restoration)
PEORIA RIVERFRONT DEVELOPMENT, ILLINOIS (ECOSYSTEM RESTORATION) FEASIBILITY STUDY WITH INTEGRATED ENVIRONMENTAL ASSESSMENT MAIN REPORT MARCH 2003 DEPARTMENT OF THE ARMY ROCK ISLAND DISTRICT, CORPS OF ENGINEERS CLOCK TOWER BUILDING - P.O. BOX 2004 ROCK ISLAND, ILLINOIS 61204-2004 REPLY TO ATTENTION OF http://www.mvr.usace.army.mil CEMVR-PM-M PEORIA RIVERFRONT DEVELOPMENT, ILLINOIS (ECOSYSTEM RESTORATION) FEASIBILITY STUDY WITH INTEGRATED ENVIRONMENTAL ASSESSMENT MAIN REPORT MARCH 2003 Executive Summary he Peoria Riverfront Development (Ecosystem Restoration) Project area includes Lower Peoria Lake. The area lies within Peoria and Tazewell Counties, Illinois, and includes TIllinois River Miles 162-167. The project is related to the Peoria Riverfront Development Project, a public and private cooperative effort that also includes revitalization of the City’s downtown area. Development includes a visitor’s center, city park, residential redevelopment, community center, riverboat landing, sports complex, entertainment centers, and retail development. The region has begun to reclaim its abandoned industrial riverfront, with the understanding that a healthy, attractive, and sustainable environment must be present. The Illinois River is a symbol of the region’s economic, social, and cultural history, as well as its future. Therefore, ecosystem restoration in Peoria Lake is a vital component to an overall effort and vision to develop the Peoria Riverfront in an ecologically, economically, and socially sustainable manner. This Ecosystem Restoration Feasibility Study was conducted by the U.S. Army Corps of Engineers and the Illinois Department of Natural Resources (Non-Federal Sponsor) to investigate the Federal and State interest in ecosystem restoration within Peoria Lake. In support of this resource vision, several regulatory efforts on the part of the cities and counties to address the sedimentation issue affecting the Illinois River have been adopted. -
Groundwater in the Peoria Region
STATE OF ILLINOIS ADLAI E. STEVENSON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION NOBLE J. PUFFER, Director DD7ISION OF THE STATE WATER SURVEY A. M. BUSWELL, Chief URBANA BULLETIN NO. 39 GROUNDWATER IN THE PEORIA REGION PART 1—GEOLOGY LELAND HORBERG, STATE GEOLOGICAL SURVEY PART 2—HYDROLOGY MAX SUTER, STATE WATER SURVEY PART 3—CHEMISTRY T. E. LARSON, STATE WATER SURVEY A Cooperative Research Project Conducted by The State Water Survey and The State Geological Survey PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS 1950 This report is also a publication of THE STATE GEOLOGICAL SURVEY as its BULLETIN NO. 75. STATE OF ILLINOIS ADLAI E. STEVENSON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION NOBLE J. PUFFER, Director DIVISION OF THE STATE WATER SURVEY A. M. BUSWELL, Chief URBANA BULLETIN NO. 39 GROUNDWATER IN THE PEORIA REGION PART 1—GEOLOGY LELAND HORBERG, STATE GEOLOGICAL SURVEY PART 2—HYDROLOGY MAX SUTER, STATE WATER SURVEY PART 3—CHEMISTRY T. E. LARSON, STATE WATER SURVEY A Cooperative Research Project Conducted by The State Water Survey and The State Geological Survey PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS 1950 ORGANIZATION STATE OF ILLINOIS HON. ADLAI E. STEVENSON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION HON. NOBLE J. PUFFER, Director BOARD OF NATURAL RESOURCES AND CONSERVATION HON. NOBLE J. PUFFER, Chairman W. H. NEWHOUSE, PH.D., Geology ROGER ADAMS, PH.D., D.SC, Chemistry LOUIS R. HOWSON, C.E., Engineering A. E. EMERSON, PH.D., Biology LEWIS H. TIFFANY, PH.D., Forestry GEORGE D. STODDARD, PH.D., LITT.D., LL.D., L.H.D. -
La Grange Pool - Illinois River 2021 Fisheries Fact Sheet
LA GRANGE POOL - ILLINOIS RIVER 2021 FISHERIES FACT SHEET The Illinois River is formed at the confluence of the Des Plaines and Kankakee rivers near Channahon in northeastern Illinois. It flows southwest for 273 miles across the state to enter the Mississippi River at Grafton. There are five dams along the Illinois forming pooled reaches named (upstream to downstream) the Dresden Pool, Marseilles Pool, Starved Rock Pool, Peoria Pool and La Grange Pool. The downstream reach is called the Alton Pool because it is influenced by Mel Price Lock and Dam on the Mississippi River at Alton. LOCATION: The La Grange Pool of the Illinois River extends from the La Grange Lock and Dam at mile 80.2 to the tailwater of the Peoria Lock and Dam at mile 157.7. Brown, Cass, Schuyler, Mason, Fulton, Tazewell and Peoria counties border this reach. RIVER ACCESS: The La Grange Pool is characterized by slow to moderate water velocities and soft substrates of sand and mud. The large number of backwater lakes and sloughs made this reach historically one of the most biologically productive river reaches in the world for waterfowl and fish. Backwaters managed for fishing by IDNR include state fish and wildlife areas at Anderson Lake, Spring Lake, Rice Lake, and Banner Marsh as well as the restored Thompson and Flag lakes at the Emiquon Preserve. Bath Chute, a river side channel, has excellent panfish and largemouth bass populations and is accessible by a public boat ramp in Bath. Boat access to the LaGrange Pool is also available at LaGrange Lock and Dam, Beardstown, Browning, Havana, Liverpool, Kingston Mines and Pekin. -
Switchgrass – Reprinted from Friends of Hagerman NWR Weekly Blog, December 14, 2017 (Written by Linn Cates)
Switchgrass – Reprinted from Friends of Hagerman NWR Weekly Blog, December 14, 2017 (Written by Linn Cates) Switchgrass, Panicum virgatum, is a fast-growing, tall, warm weather perennial grass. It forms large, open, feathery looking, finely textured seed heads that transform it from a pleasing, but plainer look, (while the nearby spring and summer flowers demand the limelight) to an impressive, dressy fall showing. This continues, though somewhat subdued, right through the winter, until mid-spring when things warm up and a whole new chorus of green leaves emerge from the switchgrass crown to begin the show anew. Native to the North American prairie, switchgrass’s large range is east of the Rocky Mountains (south of latitude 55°N,) from Canada south through the United States and into Mexico. In Texas, it grows in all regions (below left in Comfort, TX) but is rare in the Trans-Pecos area of west Texas. In our part of Texas, North Central, you can see it at Clymer Meadow (above right), a large prairie remnant nearby in Hunt County, in native haying meadows near St. Jo in Montague County, at Austin College’s Sneed property in Grayson County, and at Hagerman National Wildlife Refuge among other places. But you could see it easily and up close by driving out to Hagerman NWR Visitor Center and taking a look in the Butterfly Garden right behind the parking area. You won’t miss it; one of the garden’s switchgrass specimens (below) has a plaque hanging in front of it, identifying it as “Switchgrass, Plant of the Month.” The repertoire of this performer, Panicum virgatum, is extensive. -
Prairie Restoration Technical Guides
Optimal Collection Period Seed Ripening Period EARLY SEASON NATIVE FORBS May June July August September EARLY SEASON NATIVE FORBS May June July August SCIENTIFIC NAME COMMON NAME 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 SCIENTIFIC NAME COMMON NAME 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 Caltha palustris Marsh marigold LATE SEASON NATIVE FORBS August September October November SEED COLLECTING Prairie smoke SCIENTIFIC NAME COMMON NAME 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 FROM Antennaria neglecta Pussytoes Stachys palustris Woundwort Castilleja coccinea Indian paintbrush Vicia americana Vetch False dandelion Rudbeckia hirta Black-eyed Susan TALLGRASS PRAIRIES Saxifraga pensylvanica Swamp saxifrage Lobelia spicata Spiked lobelia Senecio aureus Golden ragwort Iris shrevei Sisyrinchium campestre Blue-eyed grass Hypoxis hirsuta Yellow star grass Rosa carolina Pasture rose Content by Greg Houseal Pedicularis canadensis Lousewort Oxypolis rigidior Cowbane PRAIRIE RESTORATION SERIES V Prairie violet Vernonia fasciculata Ironweed Cardamine bulbosa Spring cress Veronicastrum virginicum Culver's root Allium canadense Wild garlic Heliopsis helianthoides Seed of many native species are now Lithospermum canescens Hoary puccoon L Narrow-leaved loosestrife commercially1 available for prairie Phlox maculata Marsh phlox Lythrum alatum Winged loosestrife Phlox pilosa Prairie phlox reconstructions, large or small. Yet many Ceanothus americana New Jersey tea Anemone canadensis Canada anemone Eupatorium maculatum Spotted Joe Pye people have an interest in collecting Prunella vulgaris var. -
Illinois River Bluffs Area Assessment
sS*Hs%,„ Volume 4 Socio-Economic Profile Environmental Quality Archaeological Resources Illinois River Bluffs Area Assessment ILLINOIS DfPABTMFNT OF NATURAL RESOURCES *:; -;.: • » . J-.-.J ILLINOIS KIVLKtSLUf-r;, AREA ASSESSMENT. COPY "99 ILLINOIS STATE WATER SURVEY LIBRARY jy 7 Illinois River Bluffs Area Assessment Volume 4 Part I: Socio-Economic Profile Illinois Department of Natural Resources Office of Realty and Environmental Planning Division of Energy and Environmental Assessment 524 South Second Springfield, Illinois 62701 (217)524-0500 Part II: Environmental Quality Illinois Department of Natural Resources Office of Scientific Research and Analysis Dlinois State Water Survey 2204 Griffith Drive Champaign, Dlinois 61820 (217)244-5459 Waste Management and Research Center One East Hazelwood Drive Champaign, Illinois 61820 (217)333-8944 Part III: Archaeological Resources Steven R. Ahler Illinois Department of Natural Resources Office of Scientific Research and Analysis Illinois State Museum Spring & Edward Streets Springfield, Dlinois 62706 (217)782-7387 1998 Jim Edgar, Governor State of Illinois Brent Manning, Director Illinois Department of Natural Resources 524 South Second Springfield, Illinois 62701 300 Printed by the authority of the State of Illinois Other CTAP Publications The Changing Illinois Environment: Critical Trends, summary and 7-volume technical report Illinois Land Cover, An Atlas, plus CD-ROM Inventory ofEcologically Resource-Rich Areas in Illinois Rock River Area Assessment, 5 -volume technical report The Rock -
Restoring the Prairie
Restoring the Prairie Grade: 3rd Season: Winter Time: 1 ½ hours Group Size: 1 class Ratio: 1:5 (adult: children) For the Teacher: Overview Students design an investigation about prairie restoration driven by their own questions. They participate directly in restoring the prairie by planting seeds in the prairie. (If possible, they may also be able to make observations of seedlings in the greenhouse and/or plant seeds there.) Lastly, they reflect upon their discoveries and answer their investigation questions. Subjects Covered Science MN Academic Helps support 17 standards. See section “2009 Minnesota Academic Standards Standards Supported in Science” and “2010 Minnesota Academic Standards in Language Arts.” Skills Used Investigating, following directions, listening, cooperating, asking and answering questions, observing, describing, measuring, sketching, reflecting, concluding, magnifying, collecting data, analyzing data, restoring habitat, thinking critically, writing, examining, discovering, teamwork, organizing Performance After completing this activity, students will be better able to… Objectives Identify two methods of prairie restoration (sowing in the field, sowing in the greenhouse and planting seedlings in the field) Name two kinds of prairie plants (grasses and forbs) Name at least one prairie plant species Plant prairie seeds in the field Explain why people restore prairie Enjoy making a difference improving the health of the prairie Vocabulary Investigate, prairie, restore, seedling, greenhouse, seeding/sowing, grass, forb, germinate, sowing For the PWLC Instructor: PWLC Theme The Prairie Pothole Region Primary EE Message The prairie pothole region is valuable and in need of restoration and protection. Sub-message People: The U.S. Fish and Wildlife Service works with others to preserve, manage, and restore prairie wetlands in the prairie pothole region. -
The Physical Geography of the Illinois River Valley Near Peoria
The Physical Geography of the Illinois River Valley Near Peoria An Updated Self-Conducted Field Trip using EcoCaches and GPS Technology Donald E. Bevenour East Peoria Community High School Illinois State University Copyright, 1991 Updated by: Kevin M. Emmons Morton High School Bradley University 2007 Additional Support: Martin Hobbs East Peoria Community High School Abstract THE PHYSICAL GEOGRAPHY OF THE ILLINOIS RIVER VALLEY NEAR PEORIA: AN UPDATED SELF CONDUCTED FIELD TRIP USING ECOCACHES AND GPS TECHNOLOGY This field trip has been written so that anyone can enjoy the trip without the guidance of a professional. The trip could be taken by student groups, families, or an individual; at least two people, a driver and a reader/navigator, are the recommended minimum number of persons for maximum effectiveness and safety. Subjects of discussion include the Illinois River, the Bloomington, Shelbyville, and LeRoy Moraines, various aspects of the glacial history of the area, stream processes, floodplains, natural vegetation, and human adaptations to the physical environment such as agriculture, industry, transportation, and growth of cities. Activities include riding to the top of a lookout tower, judging distance to several landmark objects, and scenic views of the physical and cultural environment. All along the trip, GPS coordinates are supplied to aid you in your navigation. Information on EcoCaches is available at http://www.ilega.org/ Why take a self-guided field trip? A self-guided field trip is an excellent way to learn more about the area in which one lives. Newcomers or visitors to an area should find it a most enlightening manner in which to personalize the new territory. -
Biological Opinion for the Operation and Maintenance of the 9-Foot Navigation Channel on the Upper Mississippi River System
BIOLOGICAL OPINION FOR THE OPERATION AND MAINTENANCE OF THE 9-FOOT NAVIGATION CHANNEL ON THE UPPER MISSISSIPPI RIVER SYSTEM SUMMARY OF FINDINGS In this Biological Opinion, the U.S. Fish and Wildlife Service (Service) has determined that the continued operation and maintenance of the 9-foot Navigation Project will jeopardize the continued existence of the Higgins’ eye pearly mussel (Lampsilis higginsi) and the pallid sturgeon (Sacphirhynchus albus). We have also provided reasonable and prudent alternatives that will allow the continued operation and maintenance of the 9-foot Navigation Project while offsetting adverse impacts to the species and avoiding jeopardy. If the reasonable and prudent alternatives are not implemented, then the likelihood of survival and recovery of these species will be appreciably reduced. The Corps of Engineers (Corps) is required to notify the Service of its final decision on the implementation of the reasonable and prudent alternatives described herein. In addition, we have found that the project will not jeopardize the least tern (Sterna antillarum) and winged mapleleaf mussel (Quadrula fragosa) but will result in incidental take. We have provided an Incidental Take Statement with reasonable and prudent measures that will minimize the impacts of this take on these species. We also have determined that the proposed action will likely adversely affect the bald eagle (Haliaeetus leucocephalus) and the Indiana bat (Myotis sodalis). However, while the project may affect individuals, the impacts will be offset by management actions proposed by the Corps or will be negligible, and will not rise to the level of incidental take (i.e., harm and harassment). -
Illinois Waterway
Illinois Waterway Locks & Dams Rock Island District 2018 US Army Corps of Engineers® Mississippi Valley Division The 9-foot Channel Navigation Project The Upper Mississippi River – Illinois Waterway System includes 37 locks and 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The U.S. Army Corps of Engineers manages the 37 locks and dams on the Mississippi and Illinois rivers providing a water stairway of travel for commercial and recreational traffic from Minneapolis-St. Paul to St. Louis and from Chicago to the Mississippi River. The 866 miles of the Upper Mississippi River begin in Minneapolis, Minn., and end at the confluence of the Ohio River at Cairo, Ill. The 333 miles of the Illinois Waterway start in the Chicago Area Waterway and continue downstream to the Illinois River’s confluence with the Mississippi River at Grafton, Ill. The Illinois Waterway is composed of seven water systems: Illinois River, Des Plaines River, Chicago Sanitary and Shipping Canal, South Branch Chicago River, Cal-Sag Channel, Little Calumet River and the Calumet River. There are more than 580 manufacturing facilities, terminals, grain elevators, and docks that ship and receive tonnage in the Upper Mississippi River basin. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). In 2015, the 9-foot channel project generated an estimated $3 billion of transportation cost savings compared to its approximately $246 million operation and maintenance cost. -
Partridge Creek Watershed Restoration Plan
Partridge Creek Watershed Restoration Plan January, 2004 Tri-County Regional Planning Commission Prepared by: Melissa Eaton, Planner II With funding from Illinois Department of Natural Resources’ Conservation 2000 Program Executive Summary Partridge Creek and its tributaries deliver approximately 30,000 tons of sediment to Upper Peoria Lake on an annual basis (Windhorn, 2003). This sediment fills the navigable channels of the Illinois River, depletes deep-water habitat, and creates polluted, murky water that suffocates fish and prevents sunlight from reaching aquatic plants, a necessary start to the food chain of the Illinois River. According to a recent study of the United States Department of Agriculture/Natural Resource Conservation Service, much of this sediment originates in the gullies formed from uncontrolled stormwater runoff from forested, urban, and agricultural land uses. This stormwater and resulting erosion can only be controlled through proper forest management, strategic/low impact development of urban areas, and the adoption of a tri- county unified stormwater ordinance that further restricts post development stormwater runoff. While individual streambanks can be stabilized and pockets of wetlands restored, it will take a great deal of community action and commitment to create the necessary ordinances and proper urban planning to truly reverse the declining trend of local water quality. While soil erosion and sedimentation are the main focus of this report, other water quality and natural resource concerns are addressed. Individual homeowners can have a large collective impact on water quality by reducing fertilizer application on lawns, directing downspouts to pervious surfaces, disposing household chemical pollutants properly, etc. There is also potential for landowners of large and small tracts of land to aid in the preservation of biodiversity of the Partridge Creek Watersheds by utilizing such informational resources as Creating Habitats and Homes for Illinois Wildlife by the Illinois Department of Natural Resources. -
PEORIA LAKE SEDIMENT INVESTIGATION by Misganaw
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship Repository SURFACE WATER SECTION AT THE Illinois Department of UNIVERSITY OF ILLINOIS Energy and Natural Resources SWS Contract Report 371 PEORIA LAKE SEDIMENT INVESTIGATION by Misganaw Demissie and Nani G. Bhowmik Prepared for the U.S. Army Corps of Engineers, Rock Island District Champaign, Illinois January 1986 CONTENTS Page Introduction .................................................................................................................................. 1 Acknowledgments............................................................................................................... 3 Background................................................................................................................................... 4 Method of Analysis....................................................................................................................... 10 Mapping of Peoria Lake and Tributary Watersheds............................................................. 10 Review of Previous Data and Literature .............................................................................. 12 Field Data Collection and Analysis ..................................................................................... 12 Velocity and Discharge Measurements ........................................................................ 13 Suspended Sediment Concentration, Bed Load,