Symmetric Logspace Is Closed Under Complement Basic Research in Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

Symmetric Logspace Is Closed Under Complement Basic Research in Computer Science BRICS BRICS RS-94-31 Nisan & Ta-Shma: Symmetric Logspace is Closed Under Complement Basic Research in Computer Science Symmetric Logspace is Closed Under Complement Noam Nisan Amnon Ta-Shma BRICS Report Series RS-94-31 ISSN 0909-0878 September 1994 Copyright c 1994, BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK - 8000 Aarhus C Denmark Telephone:+45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] Symmetric Logspace is Closed Under Complement Noam Nisan Amnon TaShma noamcshujiacil amcshujiacil September Abstract We present a Logspace manyone reduction from the undirected stconnectivity prob lem to its complement This shows that SL co SL Intro duction This pap er deals with the complexity class symmetric Logspace SL dened by Lewis and Papadimitriou in LP This class can b e dened in several equivalentways Languages which can b e recognised by symmetric nondeterministic Turing Machines that run within logarithmic space See LP Languages that can b e accepted by a uniform family of p olynomial size contact schemes also sometimes called switching networks See Raz Languages which can b e reduced in Logspace via a manyone reduction to USTCON the undirected stconnectivity problem A ma jor reason for the interest in this class is that it captures the complexityofUSTCON The input to USTCON is an undirected graph G and twovertices in it s t and the input should b e accepted if s and t are connected via a path in G The similar problem ST CON where the graph G is allowed to b e directed is complete for NL nondeterministic Logspace wn to b e in SL or co SL eg colourabilityis Several combinatorial problems are kno complete in co SL Rei The following facts are known regarding SL relative to other complexity classes in the vicinity L SL RL NL Here L is the class deterministic Logspace and RL is the class of problems that can b e accepted with onesided error by a randomized Logspace machine running in p olynomial This work was supp orted byBSFgrant and byaWolfeson award administered by the Israeli Academy of Sciences The work was revised while visiting BRICS Basic Research in Computer Science Centre of the Danish National ResearchFoundation time The containment SL RL is the only nontrivial one in the line ab ove and follows directly from the randomized Logspace algorithm for USTCON of AKL It is also L known that SL SC Nis SL L KWandSL DS P AC E log n NSW After the surprising pro ofs that NL is closed under complementwere found Imm Sze Boro din et al BCD asked whether the same is true for SL They could prove only the weaker statement namely that SL co RL and left SL co SL as an op en problem In this pap er wesolve the problem in the armativeby exhibiting a Logspace manyone reduction from USTCON to its complement Quite surprisingly the pro of of our theorem do es not use inductive counting as do the pro ofs of NL co NL and is in fact even simpler than them however it uses the AKS sorting networks Theorem SL co SL It should b e noted that the monotone analogues see GS of SL and co SL are known to b e dierent KW SL SL SL As a direct corollary of our theorem we get that L SL SL where L is the class of languages accepted by Log space oracle Turing machines with oracle from SL and SL SL is dened similarly b eing careful with the waywe allow queries see RST SL SL Corollary L SL SL This also shows that the symmetric Logspace hierarchy dened in Rei collapses to SL Pro of of Theorem Overview of pro of We show that we can upp er and lower b ound the numb er of connected comp onents of a graph using connectivity problems We upp er b ound this numb er using a transitiveclosure metho d which can b e easily done since we are allowed to freely use connectivity problems However trying to lowerb ound the numb er of connected comp onents this way requires nega tion The heart of the pro of lies in lowerb ounding the numb er of connected comp onents and weachieve this in a surprisingly easy wayby computing a spanning forest In subsection weshowhowtocombine many connectivity problems to one single con nectivity problem In subsection we showhow to nd a spanning forest using connectivity problems In subsection weshowhow to use this spanning forest to nd the number of connected comp onents of a graph and howwe solvethest nonconnectivity problem with it Pro jections to USTCON In this pap er we will use only the simplest kind of reductions ie Log S pace uniform pro jec tion reductions SV Moreover we will b e interested only in reductions to USTCONIn this subsection we dene this kind of reduction and weshow some of its basic prop erties n Notation Given f f g f g denote by f f g f g the restriction n n of f to inputs of length n Denote by f the k th bit function of f ieiff f g nk n n k n f g then f f f n n nk n n Notation We represent an nnode undirectedgraph G using variables x fx g ij ij n st x is i i j E GIff x operates on graphswewillwrite f G meaning that ij n the input to f is a binary vector of length representing G Definition We say that f f g f g reduces to USTCONm m mn if there is a uniform family of S pacelog n functions f g st for al l n and k nk is a projection ie is a mapping from fi j g to f x x g nk nk ij m i i in Given x dene G to bethegraph G fmgE where x x g E fi j j i j or i j x and x or i j x and x nk nk i i nk i i It should hold that f x thereisapath from to m in G nk x If is restricted to the set f x g we say that f monotonically reduces to USTCONm i in Lemma If f has uniform monotone formulae of size sn then f is monotonical ly re ducible to USTCONO sn Pro of Given a formula recursively build G s t as follows If x then build a graph with twovertices s and t and one edge b et ween them i lab elled with x i If and G s t the graphs for i then identify s with t and i i i i dene s s t t If and G s t the graphs for i then identify s with t and i i i i s with t and dene s s t and t s t Using the AK S sorting networks AKS which b elong to NC we get Corollary Sort f g f g which given a binary vector sorts it is monotoni cal ly reducible to USTCONpol y Lemma If f monotonical ly reduces to USTCONm and g reduces to USTCONm then f g reduces to USTCONm m where is the standard function composition operator Pro of f monotonically reduces to a graph with m vertices where each edge is lab elled with one of f x g In the comp osition function f g each x is replaced by x g y i i i i which can b e reduced to a connectivity problem of size m Replace each edge lab elled x i with its corresp onding connectivity problem Finding a spanning forest In this section we showhow to build a spanning forest using USTCON This construction was also noticed by Reif and indep endentl y by Co ok Rei Given a graph G index the edges from to mWe can view the indices as weights to the edges and as no two edges have the same weight weknow that there is a unique minimal spanning forest F In our case where the edges are indexed this minimal forest is the lexicographically rst spanning forest It is well known that the greedy algorithm nds a minimal spanning forest Let us recall how the greedy algorithm works in our case The algorithm builds a spanning forest F which is at the b eginning empty F Then the algorithm checks the edges one by one according to their order for each edge e if e do es not close a cycle in F then e is added to the forest ie F F feg At rst glance the algorithm lo oks sequential however claim shows that the greedy algorithm is actually highly parallel Moreover all we need to check that an edge do es not participate in the forest is one st connectivity problem over a simple to get graph Definition For an undirectedgraph G denote by LF F G the lexicographical ly rst span ning forest of GLet n SF G f g be i j LF F G SF G ij otherwise Lemma SF reduces to USTCONpol y Pro of Let F b e the lexicographically rst spanning forest of GFor e E dene G to e b e the subgraph of G containing only the edges fe E j indexe indexeg e E i is not connected to j in G Claim e i j F e Pro of Let e i j E Denote by F the forest which the greedy algorithm built at the e time it was checking eSoe F e do es not close a cycle in F e e F and therefore e do es not close a cycle in F but then e do es not close a cycle e in the transitive closure of F and in particular e do es not close a cycle in G e e e do es not close a cycle in G therefore e do es not close a cycle in F and e F e e Therefore SF G x i is connected to j in G ij ij ij Since x can b e viewed as the connectivity problem over the graph with twovertices ij and one edge lab elled x it follows from lemmas that SF reduces to USTCON ij Notice however that the reduction is not monotone Putting it together First wewant to build a function that takes one representative from each connected com p onent We dene LI Gtobe ithevertex i has the largest index in its connected i comp onent n Definition LI G f g i has the largest index in its connectedcomponent LI G i otherwise Lemma LI reduces to USTCONpol y Pro of W n LI G i is connected
Recommended publications
  • Interactive Proof Systems and Alternating Time-Space Complexity
    Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement.
    [Show full text]
  • Complexity Theory Lecture 9 Co-NP Co-NP-Complete
    Complexity Theory 1 Complexity Theory 2 co-NP Complexity Theory Lecture 9 As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form: ′ L = x y y <p( x ) R (x, y) { |∀ | | | | → } Anuj Dawar University of Cambridge Computer Laboratory NP – the collection of languages with succinct certificates of Easter Term 2010 membership. co-NP – the collection of languages with succinct certificates of http://www.cl.cam.ac.uk/teaching/0910/Complexity/ disqualification. Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 3 Complexity Theory 4 NP co-NP co-NP-complete P VAL – the collection of Boolean expressions that are valid is co-NP-complete. Any language L that is the complement of an NP-complete language is co-NP-complete. Any of the situations is consistent with our present state of ¯ knowledge: Any reduction of a language L1 to L2 is also a reduction of L1–the complement of L1–to L¯2–the complement of L2. P = NP = co-NP • There is an easy reduction from the complement of SAT to VAL, P = NP co-NP = NP = co-NP • ∩ namely the map that takes an expression to its negation. P = NP co-NP = NP = co-NP • ∩ VAL P P = NP = co-NP ∈ ⇒ P = NP co-NP = NP = co-NP • ∩ VAL NP NP = co-NP ∈ ⇒ Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 5 Complexity Theory 6 Prime Numbers Primality Consider the decision problem PRIME: Another way of putting this is that Composite is in NP.
    [Show full text]
  • The Complexity of Space Bounded Interactive Proof Systems
    The Complexity of Space Bounded Interactive Proof Systems ANNE CONDON Computer Science Department, University of Wisconsin-Madison 1 INTRODUCTION Some of the most exciting developments in complexity theory in recent years concern the complexity of interactive proof systems, defined by Goldwasser, Micali and Rackoff (1985) and independently by Babai (1985). In this paper, we survey results on the complexity of space bounded interactive proof systems and their applications. An early motivation for the study of interactive proof systems was to extend the notion of NP as the class of problems with efficient \proofs of membership". Informally, a prover can convince a verifier in polynomial time that a string is in an NP language, by presenting a witness of that fact to the verifier. Suppose that the power of the verifier is extended so that it can flip coins and can interact with the prover during the course of a proof. In this way, a verifier can gather statistical evidence that an input is in a language. As we will see, the interactive proof system model precisely captures this in- teraction between a prover P and a verifier V . In the model, the computation of V is probabilistic, but is typically restricted in time or space. A language is accepted by the interactive proof system if, for all inputs in the language, V accepts with high probability, based on the communication with the \honest" prover P . However, on inputs not in the language, V rejects with high prob- ability, even when communicating with a \dishonest" prover. In the general model, V can keep its coin flips secret from the prover.
    [Show full text]
  • Chapter 24 Conp, Self-Reductions
    Chapter 24 coNP, Self-Reductions CS 473: Fundamental Algorithms, Spring 2013 April 24, 2013 24.1 Complementation and Self-Reduction 24.2 Complementation 24.2.1 Recap 24.2.1.1 The class P (A) A language L (equivalently decision problem) is in the class P if there is a polynomial time algorithm A for deciding L; that is given a string x, A correctly decides if x 2 L and running time of A on x is polynomial in jxj, the length of x. 24.2.1.2 The class NP Two equivalent definitions: (A) Language L is in NP if there is a non-deterministic polynomial time algorithm A (Turing Machine) that decides L. (A) For x 2 L, A has some non-deterministic choice of moves that will make A accept x (B) For x 62 L, no choice of moves will make A accept x (B) L has an efficient certifier C(·; ·). (A) C is a polynomial time deterministic algorithm (B) For x 2 L there is a string y (proof) of length polynomial in jxj such that C(x; y) accepts (C) For x 62 L, no string y will make C(x; y) accept 1 24.2.1.3 Complementation Definition 24.2.1. Given a decision problem X, its complement X is the collection of all instances s such that s 62 L(X) Equivalently, in terms of languages: Definition 24.2.2. Given a language L over alphabet Σ, its complement L is the language Σ∗ n L. 24.2.1.4 Examples (A) PRIME = nfn j n is an integer and n is primeg o PRIME = n n is an integer and n is not a prime n o PRIME = COMPOSITE .
    [Show full text]
  • Succinctness of the Complement and Intersection of Regular Expressions Wouter Gelade, Frank Neven
    Succinctness of the Complement and Intersection of Regular Expressions Wouter Gelade, Frank Neven To cite this version: Wouter Gelade, Frank Neven. Succinctness of the Complement and Intersection of Regular Expres- sions. STACS 2008, Feb 2008, Bordeaux, France. pp.325-336. hal-00226864 HAL Id: hal-00226864 https://hal.archives-ouvertes.fr/hal-00226864 Submitted on 30 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 325-336 www.stacs-conf.org SUCCINCTNESS OF THE COMPLEMENT AND INTERSECTION OF REGULAR EXPRESSIONS WOUTER GELADE AND FRANK NEVEN Hasselt University and Transnational University of Limburg, School for Information Technology E-mail address: [email protected] Abstract. We study the succinctness of the complement and intersection of regular ex- pressions. In particular, we show that when constructing a regular expression defining the complement of a given regular expression, a double exponential size increase cannot be avoided. Similarly, when constructing a regular expression defining the intersection of a fixed and an arbitrary number of regular expressions, an exponential and double expo- nential size increase, respectively, can in worst-case not be avoided.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • CS 579: Computational Complexity. Lecture 2 Space Complexity
    CS 579: Computational Complexity. Lecture 2 Space complexity. Alexandra Kolla Today Space Complexity, L,NL Configuration Graphs Log- Space Reductions NL Completeness, STCONN Savitch’s theorem SL Turing machines, briefly (3-tape) Turing machine M described by tuple (Γ,Q,δ), where ◦ Γ is “alphabet” . Contains start and blank symbol, 0,1,among others (constant size). ◦ Q is set of states, including designated starting state and halt state (constant size). ◦ Transition function δ:푄 × Γ3 → 푄 × Γ2 × {퐿, 푆, 푅}3 describing the rules M uses to move. Turing machines, briefly (3-tape) NON-DETERMINISTIC Turing machine M described by tuple (Γ,Q,δ0,δ1), where ◦ Γ is “alphabet” . Contains start and blank symbol, 0,1,among others (constant size). ◦ Q is set of states, including designated starting state and halt state (constant size). ◦ Two transition functions δ0, δ1 :푄 × Γ3 → 푄 × Γ2 × {퐿, 푆, 푅}3. At every step, TM makes non- deterministic choice which one to Space bounded turing machines Space-bounded turing machines used to study memory requirements of computational tasks. Definition. Let 푠: ℕ → ℕ and 퐿 ⊆ {0,1}∗. We say that L∈ SPACE(s(n)) if there is a constant c and a TM M deciding L s.t. at most c∙s(n) locations on M’s work tapes (excluding the input tape) are ever visited by M’s head during its computation on every input of length n. We will assume a single work tape and no output tape for simplicity. Similarly for NSPACE(s(n)), TM can only use c∙s(n) nonblank tape locations, regardless of its nondeterministic choices Space bounded turing machines Read-only “input” tape.
    [Show full text]
  • NP As Games, Co-NP, Proof Complexity
    CS 6743 Lecture 9 1 Fall 2007 1 Importance of the Cook-Levin Theorem There is a trivial NP-complete language: k Lu = {(M, x, 1 ) | NTM M accepts x in ≤ k steps} Exercise: Show that Lu is NP-complete. The language Lu is not particularly interesting, whereas SAT is extremely interesting since it’s a well-known and well-studied natural problem in logic. After Cook and Levin showed NP-completeness of SAT, literally hundreds of other important and natural problems were also shown to be NP-complete. It is this abundance of natural complete problems which makes the notion of NP-completeness so important, and the “P vs. NP” question so fundamental. 2 Viewing NP as a game Nondeterministic computation can be viewed as a two-person game. The players are Prover and Verifier. Both get the same input, e.g., a propositional formula φ. Prover is all-powerful (but not trust-worthy). He is trying to convince Verifier that the input is in the language (e.g., that φ is satisfiable). Prover sends his argument (as a binary string) to Verifier. Verifier is computationally bounded algorithm. In case of NP, Verifier is a deterministic polytime algorithm. It is not hard to argue that the class NP of languages L is exactly the class of languages for which there is a pair (Prover, Verifier) with the property: For inputs in the language, Prover convinces Verifier to accept; for inputs not in the language, any string sent by Prover will be rejected by Verifier. Moreover, the string that Prover needs to send is of length polynomial in the size of the input.
    [Show full text]
  • Simple Doubly-Efficient Interactive Proof Systems for Locally
    Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 18 (2017) Simple doubly-efficient interactive proof systems for locally-characterizable sets Oded Goldreich∗ Guy N. Rothblumy September 8, 2017 Abstract A proof system is called doubly-efficient if the prescribed prover strategy can be implemented in polynomial-time and the verifier’s strategy can be implemented in almost-linear-time. We present direct constructions of doubly-efficient interactive proof systems for problems in P that are believed to have relatively high complexity. Specifically, such constructions are presented for t-CLIQUE and t-SUM. In addition, we present a generic construction of such proof systems for a natural class that contains both problems and is in NC (and also in SC). The proof systems presented by us are significantly simpler than the proof systems presented by Goldwasser, Kalai and Rothblum (JACM, 2015), let alone those presented by Reingold, Roth- blum, and Rothblum (STOC, 2016), and can be implemented using a smaller number of rounds. Contents 1 Introduction 1 1.1 The current work . 1 1.2 Relation to prior work . 3 1.3 Organization and conventions . 4 2 Preliminaries: The sum-check protocol 5 3 The case of t-CLIQUE 5 4 The general result 7 4.1 A natural class: locally-characterizable sets . 7 4.2 Proof of Theorem 1 . 8 4.3 Generalization: round versus computation trade-off . 9 4.4 Extension to a wider class . 10 5 The case of t-SUM 13 References 15 Appendix: An MA proof system for locally-chracterizable sets 18 ∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
    [Show full text]
  • Lecture 10: Space Complexity III
    Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Lecture 10: Space Complexity III Arijit Bishnu 27.03.2010 Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ). The class NPSPACE is an analog of the class NP. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ).
    [Show full text]
  • Complements of Nondeterministic Classes • from P
    Complements of Nondeterministic Classes ² From p. 133, we know R, RE, and coRE are distinct. { coRE contains the complements of languages in RE, not the languages not in RE. ² Recall that the complement of L, denoted by L¹, is the language §¤ ¡ L. { sat complement is the set of unsatis¯able boolean expressions. { hamiltonian path complement is the set of graphs without a Hamiltonian path. °c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 181 The Co-Classes ² For any complexity class C, coC denotes the class fL : L¹ 2 Cg: ² Clearly, if C is a deterministic time or space complexity class, then C = coC. { They are said to be closed under complement. { A deterministic TM deciding L can be converted to one that decides L¹ within the same time or space bound by reversing the \yes" and \no" states. ² Whether nondeterministic classes for time are closed under complement is not known (p. 79). °c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182 Comments ² As coC = fL : L¹ 2 Cg; L 2 C if and only if L¹ 2 coC. ² But it is not true that L 2 C if and only if L 62 coC. { coC is not de¯ned as C¹. ² For example, suppose C = ff2; 4; 6; 8; 10;:::gg. ² Then coC = ff1; 3; 5; 7; 9;:::gg. ¤ ² But C¹ = 2f1;2;3;:::g ¡ ff2; 4; 6; 8; 10;:::gg. °c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 183 The Quanti¯ed Halting Problem ² Let f(n) ¸ n be proper. ² De¯ne Hf = fM; x : M accepts input x after at most f(j x j) stepsg; where M is deterministic.
    [Show full text]
  • User's Guide for Complexity: a LATEX Package, Version 0.80
    User’s Guide for complexity: a LATEX package, Version 0.80 Chris Bourke April 12, 2007 Contents 1 Introduction 2 1.1 What is complexity? ......................... 2 1.2 Why a complexity package? ..................... 2 2 Installation 2 3 Package Options 3 3.1 Mode Options .............................. 3 3.2 Font Options .............................. 4 3.2.1 The small Option ....................... 4 4 Using the Package 6 4.1 Overridden Commands ......................... 6 4.2 Special Commands ........................... 6 4.3 Function Commands .......................... 6 4.4 Language Commands .......................... 7 4.5 Complete List of Class Commands .................. 8 5 Customization 15 5.1 Class Commands ............................ 15 1 5.2 Language Commands .......................... 16 5.3 Function Commands .......................... 17 6 Extended Example 17 7 Feedback 18 7.1 Acknowledgements ........................... 19 1 Introduction 1.1 What is complexity? complexity is a LATEX package that typesets computational complexity classes such as P (deterministic polynomial time) and NP (nondeterministic polynomial time) as well as sets (languages) such as SAT (satisfiability). In all, over 350 commands are defined for helping you to typeset Computational Complexity con- structs. 1.2 Why a complexity package? A better question is why not? Complexity theory is a more recent, though mature area of Theoretical Computer Science. Each researcher seems to have his or her own preferences as to how to typeset Complexity Classes and has built up their own personal LATEX commands file. This can be frustrating, to say the least, when it comes to collaborations or when one has to go through an entire series of files changing commands for compatibility or to get exactly the look they want (or what may be required).
    [Show full text]