SIRT2 Directs the Replication Stress Response Through CDK9 Deacetylation

Total Page:16

File Type:pdf, Size:1020Kb

SIRT2 Directs the Replication Stress Response Through CDK9 Deacetylation SIRT2 directs the replication stress response through CDK9 deacetylation Hui Zhanga,1, Seong-Hoon Parkb,1, Brooke G. Pantazidesa, Oleksandra Karpiukc, Matthew D. Warrena,ClaireW.Hardya, Duc M. Duongd, So-Jeong Park e, Hyun-Seok Kim e, Athanassios Vassilopoulos b,NicholasT.Seyfriedd,StevenA.Johnsenc, David Giusb,andDavidS.Yua,2 aDepartment of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322; bDepartment of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; cDepartment of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; dDepartment of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322; and eDepartment of Life Science, College of Natural Science, Ewha Womans University, Seoul 120-750, Korea Edited by Kevin Struhl, Harvard Medical School, Boston, MA, and approved July 1, 2013 (received for review January 23, 2013) Sirtuin 2 (SIRT2) is a sirtuin family deacetylase that directs acety- instability, and expression of fragile sites of mammalian chro- lome signaling, protects genome integrity, and is a murine tumor mosomes (22). ATR senses stalled replication forks that result suppressor. We show that SIRT2 directs replication stress re- from uncoupling that exposes replication protein A (RPA)- sponses by regulating the activity of cyclin-dependent kinase 9 bound single-stranded DNA (ssDNA) (23). Finally, RSR mobi- (CDK9), a protein required for recovery from replication arrest. lizes several activities necessary to maintain genome integrity, SIRT2 deficiency results in replication stress sensitivity, impairment including arresting the cell cycle, inhibiting the onset of mitosis, in recovery from replication arrest, spontaneous accumulation of stabilizing the stalled replication fork, and facilitating repli- replication protein A to foci and chromatin, and a G2/M checkpoint cation recovery. deficit. SIRT2 interacts with and deacetylates CDK9 at lysine 48 in Although cyclin-dependent kinase 9 (CDK9) is a well-char- response to replication stress in a manner that is partially depen- acterized component of the positive transcription elongation fac- dent on ataxia telangiectasia and Rad3 related (ATR) but not cyclin tor b complex with cyclin T or K (24, 25), it also has a direct role T or K, thereby stimulating CDK9 kinase activity and promoting in promoting RSR activities, which is functionally conserved in yeast (26–29). Loss of CDK9 activity increases spontaneous recovery from replication arrest. Moreover, wild-type, but not levels of DNA damage signaling in replicating cells and a de- acetylated CDK9, alleviates the replication stress response impair- creased ability to recover from a transient replication arrest. ment of SIRT2 deficiency. Collectively, our results define a function CDK9 localizes to chromatin to limit the amount of ssDNA after for SIRT2 in regulating checkpoint pathways that respond to rep- replication stress and interacts in a complex with ATR as well as lication stress through deacetylation of CDK9, providing insight other checkpoint signaling proteins. CDK9 also phosphorylates into how SIRT2 maintains genome integrity and a unique mecha- and activates ubiquitin-conjugating enzyme 2A (UBE2A) (30– nism by which SIRT2 may function, at least in part, as a tumor 32), which directs H2B and PCNA ubiquitination (33, 34). The suppressor protein. role for CDK9 in the RSR is independent of cyclin T (29), and we and others have shown that cyclin K also functions to main- DNA damage | cell cycle checkpoint | genome maintenance tain genome integrity (29, 35); however, recent evidence suggests that cyclin K functions primarily with CDK12 (35–37). Similar to + embers of the sirtuin NAD -dependent deacetylase family other RSR proteins, CDK9 activity is regulated by posttrans- Mregulate multiple biological processes, including genome lational modification, including acetylation (38). CDK9 is acet- maintenance, aging, tumorigenesis, differentiation, and metab- ylated on lysine 44 by the p300 acetyltransferase (39), which olism (1–3). There are seven mammalian homologs of yeast si- promotes its activity, and lysine 48 by the general control non- lent information regulator 2 (Sir2). Whereas sirtuin 1 (SIRT1) depressible 5 (GCN5) and P300/CBP-associated factor (P/CAF) and sirtuin 6 (SIRT6) have been linked directly to DNA repair or acetyltransferases (40), which inhibits its activity. Lysine 44 of DNA damage response (DDR) signaling pathways (4–12), the CDK9 is also deacetylated by histone deacetylase 3 (HDAC3) role for other sirtuin family members, including SIRT2, is less and histone deacetylase 1 (HDAC1) (39); however, the deace- clear. Mice deficient in Sirt2 develop breast, liver, and other tylase for lysine 48 of CDK9 is not known. It is also not known cancers (13, 14), and SIRT2 expression is decreased in human whether the acetylation status or kinase activity of CDK9 is breast and liver cancers (14), suggesting that SIRT2 is a tumor regulated by DNA damage. In this study, we show that SIRT2, suppressor protein (TSP). In support of a role for SIRT2 in the and by extension the cellular acetylome, has a role in promoting DDR, Sirt2 deficiency in mouse embryo fibroblasts (MEFs) replication stress response activities by regulating CDK9 activity results in a mitotic checkpoint deficit, increased DNA damage, via changes in lysine acetylation. and genomic instability (13). In addition, SIRT2 deficiency in chicken DT40 cells induces hypersensitivity to cisplatin (15). Results SIRT2 also deacetylates histone H3 lysine 56, a marker for Silencing SIRT2 Causes Sensitivity to Replication Stress. To inves- packaging of newly replicated and repaired DNA into chromatin tigate the role of SIRT2 in mediating recovery following replication (16), implying that SIRT2 may function in the maintenance of genome integrity during DNA replication. The replication stress response (RSR) is a subset of the DDR Author contributions: H.Z., S.-H.P., B.G.P., O.K., C.W.H., D.M.D., S.-J.P., H.-S.K., A.V., N.T.S., signaling network that recognizes challenges to DNA replication S.A.J., D.G., and D.S.Y. designed research; H.Z., S.-H.P., B.G.P., O.K., M.D.W., C.W.H., D.M.D., and mobilizes diverse DNA repair and cell cycle checkpoint S.-J.P., H.-S.K., A.V., N.T.S., and D.S.Y. performed research; H.Z., S.-H.P., B.G.P., O.K., M.D.W., pathways. The RSR is critical for the prevention of cancer by C.W.H., D.M.D., S.-J.P., H.-S.K., A.V., N.T.S., S.A.J., D.G., and D.S.Y. analyzed data; and H.Z. and D.S.Y. wrote the paper. acting as a barrier against genomic instability and tumorigenesis (17, 18). At the apex of the RSR signaling cascade is the ataxia- The authors declare no conflict of interest. telangiectasia and Rad3-related protein (ATR) checkpoint This article is a PNAS Direct Submission. kinase (19). ATR function is essential to stabilize stalled rep- 1H.Z. and S.-H.P. contributed equally to this work. lication forks and promote recovery. Disruption of ATR causes 2To whom correspondence should be addressed. E-mail: [email protected]. early embryonic lethality in mice (20), and cells lacking ATR have This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. defects associated with DNA replication (21), chromosomal 1073/pnas.1301463110/-/DCSupplemental. 13546–13551 | PNAS | August 13, 2013 | vol. 110 | no. 33 www.pnas.org/cgi/doi/10.1073/pnas.1301463110 Downloaded by guest on September 29, 2021 fork arrest, we measured the ability of U2OS human osteosar- analysis confirmed expression of the exogenously expressed fu- coma cells, silenced for SIRT2, to recover from a transient high sion proteins and efficiency of SIRT2 silencing (Fig. 1F). As a dose hydroxyurea (HU) exposure, a drug that stalls DNA rep- second measure for determining the significance of SIRT2 lication forks by inhibiting ribonucleotide reductase. U2OS cells deacetylase activity in the RSR, we generated mouse mammary were treated with or without HU for 24 h, allowed to recover for tumor Sirt2 knockout (MMT S2KO) cell lines (14), stably expressing 24 h, and assayed for cell viability using water soluble tetrazolium SIRT2 WT or SIRT2 H187Y (Fig. 1H) and assessed colony salt (WST)-1 reagent. siRNA knockdown of ATR or ATR- formation following a 24-h pulse of HU. SIRT2 WT but not interacting protein (ATRIP) caused HU hypersensitivity, com- SIRT2 H187Y significantly increased the percentage of surviving pared with nontargeting (NT) controls as has been previously colonies following HU treatment in a dose-dependent manner shown (30) (Fig. 1 A and E). Similarly, SIRT2 knockdown re- (Fig. 1G), confirming that the deacetylase activity of SIRT2 is sulted in HU hypersensitivity (Fig. 1 A and E). Western blot required for the RSR. analysis confirmed decreased levels of SIRT2 following siRNA knockdown (Fig. 1 B and F). The HU hypersensitivity of cells SIRT2 Is a Replication Stress Response Protein. The ability of SIRT2- after SIRT2 knockdown was observed between 24 and 72 h silenced cells to recover from transient replication fork arrest was following recovery from the HU challenge (Fig. S1A). SIRT2 assessed using cell cycle recovery by flow cytometry. Eight to 10 h silencing also caused hypersensitivity to gemcitabine, cisplatin, after removing HU, U2OS, telomerase immortalized human retinal and mitomycin C (Fig. S1 B–D), implying that SIRT2 responds pigment epithelium (hTERT RPE-1), and human colorectal carci- generally to replication stress. noma cell line HCT-116 cells treated with NT siRNA progressed As SIRT2 can affect the production of NADH, which is measured through S phase and accumulated 4N DNA content, whereas cells by WST-1 reagent, we also determined HU sensitivity of SIRT2- treated with ATR, ATRIP or SIRT2 siRNA exhibited delayed depleted cells using a colony formation assay. U2OS cells stably S-phase progression (Fig. 2 A and B and Fig. S2 A–D).
Recommended publications
  • T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin
    ORIGINAL ARTICLE T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin Signaling in the Liver to Regulate Gluconeogenesis Atsushi Fukushima,1 Kim Loh,1 Sandra Galic,1 Barbara Fam,2 Ben Shields,1 Florian Wiede,1 Michel L. Tremblay,3 Matthew J. Watt,4 Sofianos Andrikopoulos,2 and Tony Tiganis1 OBJECTIVE—Insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt signaling and interleukin-6 (IL-6)-instigated JAK/ STAT3-signaling pathways in the liver inhibit the expression of ype 2 diabetes has reached epidemic propor- gluconeogenic genes to decrease hepatic glucose output. The tions, afflicting roughly 170 million people world- insulin receptor (IR) and JAK1 tyrosine kinases and STAT3 can wide. Although the underlying genetic causes serve as direct substrates for the T-cell protein tyrosine phos- Tand the associated pathologic symptoms are phatase (TCPTP). Homozygous TCPTP-deficiency results in peri- heterogenous, a common feature is high blood glucose due natal lethality prohibiting any informative assessment of to peripheral insulin resistance. Circulating insulin re- TCPTP’s role in glucose homeostasis. Here we have used leased from ␤-cells in the pancreas serves to lower blood Ptpn2ϩ/Ϫ mice to investigate TCPTP’s function in glucose glucose by triggering the translocation of the facilitative homeostasis. GLUT4 to the plasma membrane in muscle and adipose RESEARCH DESIGN AND METHODS—We analyzed insulin tissue (1). Insulin also acts in the liver to promote glycogen sensitivity and gluconeogenesis in chow versus high-fat–fed synthesis and lipogenesis and to suppress hepatic glucose (HFF) Ptpn2ϩ/Ϫ and Ptpn2ϩ/ϩ mice and insulin and IL-6 production (HGP) by inhibiting gluconeogenesis and gly- signaling and gluconeogenic gene expression in Ptpn2ϩ/Ϫ and cogenolysis (1).
    [Show full text]
  • 1073 New Insight in Cdk9 Function: from Tat to Myod
    [Frontiers in Bioscience 6, d1073-1082, September 1, 2001] NEW INSIGHT IN CDK9 FUNCTION: FROM TAT TO MYOD Cristiano Simone, 1,2 and Antonio Giordano1 1Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA, 2Dept. of Internal Medicine and Public Medicine, Division of Medical Genetics, University of Bari, Bari 70124 Italy TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Cdk9-interacting proteins 4. Cdk9 and transcription 5. Cdk9 and HIV infection 6. Cdk9 and cellular differentiation 7. Conclusion 8. Acknowledgment 9. References 1. ABSTRACT Cdk9 is a serine-threonine cdc2-related kinase are the catalytic subunits of complexes whose regulatory and its activity is not cell cycle-regulated. Cdk9 function subunits are the cyclins. They are a family of proteins depends on its kinase activity and also on its regulatory named for their cyclic expression and degradation and they units: the T-family cyclins and cyclin K. Recently, several play an important role in regulating cell division. Cyclins studies confirmed the role of cdk9 in different cellular are synthesized immediately before they are used and their processes such as signal transduction, basal transcription, HIV- levels fall abruptly after their action because of degradation Tat- and MyoD-mediated transcription and differentiation. through ubiquitination (4). Interaction between the cyclins and the cdks occurs at specific stages of the cell cycle, and All the referred data strongly support the concept their activities are required for progression through the cell of a multifunctional protein kinase with specific cytoplasmic cycle. Unlike the cyclins, the protein levels of the cdks do and nuclear functions.
    [Show full text]
  • Sirt7 Promotes Adipogenesis in the Mouse by Inhibiting Autocatalytic
    Sirt7 promotes adipogenesis in the mouse by inhibiting PNAS PLUS autocatalytic activation of Sirt1 Jian Fanga,1, Alessandro Iannia,1, Christian Smolkaa,b, Olesya Vakhrushevaa,c, Hendrik Noltea,d, Marcus Krügera,d, Astrid Wietelmanna, Nicolas G. Simonete, Juan M. Adrian-Segarraa, Alejandro Vaqueroe, Thomas Brauna,2, and Eva Bobera,2 aDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; bMedizin III Kardiologie und Angiologie, Universitätsklinikum Freiburg, D-79106 Freiburg, Germany; cDepartment of Medicine, Hematology/Oncology, Goethe University, D-60595 Frankfurt am Main, Germany; dInstitute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Köln, Germany; and eCancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain Edited by C. Ronald Kahn, Section of Integrative Physiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and approved August 23, 2017 (received for review April 26, 2017) Sirtuins (Sirt1–Sirt7) are NAD+-dependent protein deacetylases/ adipogenesis and accumulation of lipids in 3T3-L1 adipocytes by ADP ribosyltransferases, which play decisive roles in chromatin deacetylation of FOXO1, which represses PPARγ (10). The role of silencing, cell cycle regulation, cellular differentiation, and metab- Sirt6 in the regulation of adipogenic differentiation is less clear olism. Different sirtuins control similar cellular processes, suggest- although it is known that Sirt6 knockout (KO) mice suffer from ing a coordinated mode of action but information about potential reduced adipose tissue stores, while Sirt6 overexpressing mice cross-regulatory interactions within the sirtuin family is still lim- are protected against high-fat diet-induced obesity (11, 12).
    [Show full text]
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • Upregulation of Cyclin T1/CDK9 Complexes During T Cell Activation
    Oncogene (1998) 17, 3093 ± 3102 ã 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Upregulation of cyclin T1/CDK9 complexes during T cell activation Judit Garriga1,2, Junmin Peng4, Matilde ParrenÄ o1,2, David H Price4, Earl E Henderson1,3 and Xavier GranÄ a*,1,2 1Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA; 2Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA; 3Microbiology and Immunology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, Pennsylvania 19140, USA and 4Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA Cyclin T1 has been identi®ed recently as a regulatory date in response to intracellular or extracellular signals subunit of CDK9 and as a component of the transcrip- in mammalian cells, although it has been shown that tion elongation factor P-TEFb. Cyclin T1/CDK9 com- the levels of cyclin C mRNA are stimulated by serum plexes phosphorylate the carboxy terminal domain and cytokines (Lew et al., 1991; Liu et al., 1998). All (CTD) of RNA polymerase II (RNAP II) in vitro. Here cyclin/CDK pairs involved in transcription are able to we report that the levels of cyclin T1 are dramatically phosphorylate the C-terminal domain (CTD) of RNA upregulated by two independent signaling pathways polymerase II (RNAP II) in vitro. Multiple kinases triggered respectively by PMA and PHA in primary seem to phosphorylate the CTD of RNAP II in vivo in human peripheral blood lymphocytes (PBLs).
    [Show full text]
  • A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets
    biomolecules Review A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets Rubayat Islam Khan †, Saif Shahriar Rahman Nirzhor † and Raushanara Akter * Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh; [email protected] (R.I.K.); [email protected] (S.S.R.N.) * Correspondence: [email protected]; Tel.: +880-179-8321-273 † These authors contributed equally to this work. Received: 10 June 2018; Accepted: 26 June 2018; Published: 29 June 2018 Abstract: Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings
    [Show full text]
  • Targeting the Gastrointestinal Tract to Treat Type 2 Diabetes
    230 3 P V BAUER and F A DUCA Gut treatment for diabetes 230:3 R95–R113 Review Targeting the gastrointestinal tract to treat type 2 diabetes Correspondence should be addressed 1,2 and 1 Paige V Bauer Frank A Duca to F A Duca 1Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, ON, Canada Email 2Department of Physiology, University of Toronto, Toronto, ON, Canada frank.duca@uhnres. utoronto.ca Abstract The rising global rates of type 2 diabetes and obesity present a significant economic and Key Words social burden, underscoring the importance for effective and safe therapeutic options. f gut The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 f metformin diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight f gut sensing the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, f gut microbiota recent evidence suggests that the gut plays a prominent role in the ability of metformin f bile acids to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. Endocrinology A better understanding of these pathways will lay the groundwork for novel of gut-targeted antidiabetic therapies, some of which have already shown initial promise. Journal of Endocrinology (2016) 230, R95–R113 Journal Introduction The incidence of type 2 diabetes has more than doubled Interestingly, this is not the only evidence for a since 1980, with over 382 million affected individuals therapeutic role of the gut in diabetes treatment.
    [Show full text]
  • The Sirtuin Family's Role in Aging and Age-Associated Pathologies
    The sirtuin family’s role in aging and age-associated pathologies Jessica A. Hall, … , Yoonjin Lee, Pere Puigserver J Clin Invest. 2013;123(3):973-979. https://doi.org/10.1172/JCI64094. Review Series The 7 mammalian sirtuin proteins compose a protective cavalry of enzymes that can be invoked by cells to aid in the defense against a vast array of stressors. The pathologies associated with aging, such as metabolic syndrome, neurodegeneration, and cancer, are either caused by or exacerbated by a lifetime of chronic stress. As such, the activation of sirtuin proteins could provide a therapeutic approach to buffer against chronic stress and ameliorate age- related decline. Here we review experimental evidence both for and against this proposal, as well as the implications that isoform-specific sirtuin activation may have for healthy aging in humans. Find the latest version: https://jci.me/64094/pdf Review series The sirtuin family’s role in aging and age-associated pathologies Jessica A. Hall, John E. Dominy, Yoonjin Lee, and Pere Puigserver Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA. The 7 mammalian sirtuin proteins compose a protective cavalry of enzymes that can be invoked by cells to aid in the defense against a vast array of stressors. The pathologies associated with aging, such as metabolic syndrome, neuro- degeneration, and cancer, are either caused by or exacerbated by a lifetime of chronic stress. As such, the activation of sirtuin proteins could provide a therapeutic approach to buffer against chronic stress and ameliorate age-related decline.
    [Show full text]
  • Analysis of Sirtuin 1 Expression Reveals a Molecular Explanation of IL-2–Mediated Reversal of T-Cell Tolerance
    Analysis of sirtuin 1 expression reveals a molecular explanation of IL-2–mediated reversal of T-cell tolerance Beixue Gao, Qingfei Kong, Kyeorda Kemp, Yuan-Si Zhao, and Deyu Fang1 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Edited by Arthur Weiss, University of California, San Francisco, CA, and approved December 8, 2011 (received for review November 9, 2011) The type III histone deacetylase sirtuin 1 (Sirt1) is a suppressor of both ably allowing accelerated T-cell proliferation and differentiation. innate and adoptive immune responses. We have recently found that Because Sirt1 is required for maintaining and IL-2 reverses T-cell Sirt1 expression is highly induced in anergic T cells. However, the peripheral tolerance, our findings here provide a possible explana- transcriptional program to regulate Sirt1 expression in T cells remains tion about the IL-2–mediated switch from anergy to activation. uncharacterized. Here we report that the early responsive genes 2 and 3, which can be up-regulated by T-cell receptor-mediated activa- Results tion of nuclear factor of activated T-cell transcription factors and are Differential Sirt1 Expression in Mouse Primary T Cells. We have re- involved in peripheral T-cell tolerance, bind to the sirt1 promoter to cently reported that sirt1 gene transcription is induced by TCR- transcript sirt1 mRNA. In addition, the forkhead transcription factor, mediated anergic signaling, and this increased Sirt1 expression is FoxO3a, interacts with early responsive genes 2/3 on the sirt1 pro- required to maintain peripheral T-cell tolerance (9). To further moter to synergistically regulate Sirt1 expression.
    [Show full text]
  • Omega-3 Fatty Acids Upregulate SIRT1/3, Activate PGC-1Α Via Deacetylation, and Induce Nrf1 Production in 5/6 Nephrectomy Rat Model
    marine drugs Article Omega-3 Fatty Acids Upregulate SIRT1/3, Activate PGC-1α via Deacetylation, and Induce Nrf1 Production in 5/6 Nephrectomy Rat Model Sung Hyun Son 1,† , Su Mi Lee 2,† , Mi Hwa Lee 3, Young Ki Son 2, Seong Eun Kim 2 and Won Suk An 2,* 1 Department of Internal Medicine, BHS Han Seo Hospital, Busan 48253, Korea; [email protected] 2 Department of Internal Medicine, Dong-A University, Busan 49201, Korea; [email protected] (S.M.L.); [email protected] (Y.K.S.); [email protected] (S.E.K.) 3 Department of Anatomy and Cell Biology, Dong-A University, Busan 49201, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-51-240-2811 † These authors contributed equally to this work. Abstract: Mitochondrial dysfunction contributes to the pathogenesis of kidney injury related with cardiovascular disease. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC- 1α) protects renal tubular cells by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2). AMP- activated protein kinase (pAMPK)-mediated phosphorylation and sirtuin 1/3 (SIRT1/3)-mediated deacetylation are required for PGC-1α activation. In the present study, we aimed to investigate whether omega-3 fatty acids (FAs) regulate the expression of mediators of mitochondrial biogenesis in 5/6 nephrectomy (Nx) rats. Male Sprague-Dawley rats were assigned to the following groups: sham control, Nx, and Nx treated with omega-3 FA. The expression of PGC-1α, phosphorylated PGC- Citation: Son, S.H.; Lee, S.M.; Lee, 1α (pPGC-1α), acetylated PGC-1α, and factors related to mitochondrial biogenesis was examined M.H.; Son, Y.K.; Kim, S.E.; An, W.S.
    [Show full text]
  • The Soluble Adenylyl Cyclase Inhibitor LRE1 Prevents Hepatic Ischemia/Reperfusion Damage Through Improvement of Mitochondrial Function
    International Journal of Molecular Sciences Article The Soluble Adenylyl Cyclase Inhibitor LRE1 Prevents Hepatic Ischemia/Reperfusion Damage Through Improvement of Mitochondrial Function João S. Teodoro 1,2,* , João A. Amorim 1,3,4 , Ivo F. Machado 1,2 , Ana C. Castela 1,2, Clemens Steegborn 5, David A. Sinclair 4,6, Anabela P. Rolo 1,2 and Carlos M. Palmeira 1,2,* 1 Center for Neurosciences and Cell Biology of the University of Coimbra, 3004-504 Coimbra, Portugal; [email protected] (J.A.A.); [email protected] (I.F.M.); [email protected] (A.C.C.); [email protected] (A.P.R.) 2 Department of Life Sciences of the University of Coimbra, 3000-456 Coimbra, Portugal 3 IIIUC—Institute of Interdisciplinary Research of the University of Coimbra, 3030-789 Coimbra, Portugal 4 Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; [email protected] 5 Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany; [email protected] 6 Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney 2052, Australia * Correspondence: [email protected] (J.S.T.); [email protected] (C.M.P.); Tel.: +351-239-240-700 (J.S.T. & C.M.P.) Received: 13 May 2020; Accepted: 5 July 2020; Published: 11 July 2020 Abstract: Hepatic ischemia/reperfusion (I/R) injury is a leading cause of organ dysfunction and failure in numerous pathological and surgical settings. At the core of this issue lies mitochondrial dysfunction.
    [Show full text]
  • Sirtuins Transduce Stacs Signals Through Steroid Hormone Receptors Henry K
    www.nature.com/scientificreports OPEN Sirtuins transduce STACs signals through steroid hormone receptors Henry K. Bayele SIRT1 protects against several complex metabolic and ageing-related diseases (MARDs), and is therefore considered a polypill target to improve healthy ageing. Although dietary sirtuin- activating compounds (dSTACs) including resveratrol are promising drug candidates, their clinical application has been frustrated by an imprecise understanding of how their signals are transduced into increased healthspan. Recent work indicates that SIRT1 and orthologous sirtuins coactivate the oestrogen receptor/ER and the worm steroid receptor DAF-12. Here they are further shown to ligand-independently transduce dSTACs signals through these receptors. While some dSTACs elicit ER subtype-selectivity in the presence of hormone, most synergize with 17β-oestradiol and dafachronic acid respectively to increase ER and DAF-12 coactivation by the sirtuins. These data suggest that dSTACs functionally mimic gonadal steroid hormones, enabling sirtuins to transduce the cognate signals through a conserved endocrine pathway. Interestingly, resveratrol non-monotonically modulates sirtuin signalling, suggesting that it may induce hormesis, i.e. “less is more”. Together, the fndings suggest that dSTACs may be informational molecules that use exploitative mimicry to modulate sirtuin signalling through steroid receptors. Hence dSTACs’ intrinsic oestrogenicity may underlie their proven ability to impart the health benefts of oestradiol, and also provides a mechanistic insight into how they extend healthspan or protect against MARDs. Among the seven human sirtuins, SIRT1 (silent information regulator 2 homologue 1) has received the most attention because of its many roles including gene regulation, genomic stability and energy metabolism1,2. SIRT1 is also of enormous interest as a viable drug target because it protects against several conditions including obesity, type 2 diabetes, cancer and cardiovascular and neurodegenerative diseases3,4.
    [Show full text]