Acidification, Eutrophication and Ground-Level Ozone in the UK NEGTAP 2001
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What's in the Air Gets Around Poster
Air pollution comes AIR AWARENESS: from many sources, Our air contains What's both natural & manmade. a combination of different gasses: OZONE (GOOD) 78% nitrogen, 21% oxygen, in the is a gas that occurs forest fires, vehicle exhaust, naturally in the upper plus 1% from carbon dioxide, volcanic emissions smokestack emissions atmosphere. It filters water vapor, and other gasses. the sun's ultraviolet rays and protects AIRgets life on the planet from the Air moves around burning Around! when the wind blows. rays. Forests can be harmed when nutrients are drained out of the soil by acid rain, and trees can't Air grow properly. pollution ACID RAIN Water The from one place can forms when sulfur cause problems oxides and nitrogen oxides falls from 1 air is in mix with water vapor in the air. constant motion many miles from clouds that form where it Because wind moves the air, acid in the air. Pollutants around the earth (wind). started. rain can fall hundreds of miles from its AIR MONITORING: and tiny bits of soil are As it moves, it absorbs source. Acid rain can make lakes so acidic Scientists check the quality of carried with it to the water from lakes, rivers that plants and animals can't live in the water. our air every day and grade it using the Air Quality Index (AQI). ground below. and oceans, picks up soil We can check the daily AQI on the from the land, and moves Internet or from local 2 pollutants in the air. news sources. Greenhouse gases, sulfur oxides and Earth's nitrogen oxides are added to the air when coal, oil and natural gas are CARS, TRUCKS burned to provide Air energy. -
HEAVY T-1ETAL ANALYSIS of LAKE SEDJ:I
HEAVYT-1ETAL ANALYSIS OF LAKE SEDJ:i:.IENTSAS AN INDICATOR OF ElfVIRONME:i:rTALCONTAl'•LmATION: A1'f SXAHPLE FROMROUND LOCH OF GLENEEAD, SOUTH r:lEST SCOTLAND. 7 ·- --l l - l Aclmowledgements I would like to thank Dro Rick Battarbee, Dr. Brian Rippey, John Anderson and Vivienne Jones for their help and encouragement through - out the preparation and writing of this project. 7 -, - - - J Contents. Page Abstract Introduction 3 Literature Review (a) Source 4 (b) Transport 6 (c) Deposition 7 (d) Sinks 1. Lake sediments 8 2. Temporary catchment sinks 13 Diagenesis and remobilization of heavy metals 15 Site Description 17 Methods (i) Core extraction 20 (ii) Sediment digestion 21 (iii) Analysis of the digested sediment 21 (iv) Analytical Quality Control 25 Core correlation 25 Results (i) Heavy metal analysis 27 (ii) Analytical Quality Control 35 Discussion Introduction 41 Section 1 (1) Comments on the methodology 41 (2) Heavy metal analysis as an indicator of contamination 43 (3) Discussion of individual profiles 45 Zinc 45 Lead 49 Copper 51 Contents cont. Section? -, (i) Transport and deposition of Zn, Pb and - Cu in Round Loch of Glenhead 51 (ii) Diagenesis and remobilization in Round Loch of Glenhead 53 -·- (iii) Catchment factors 54 (iv) A comparison of Round Loch with other - Northern Hemisphere studies 57 Conclusion 62 Bibliography 64 Appendix 70 - J _..., .u~a v .y 1•1i= l,a.L .ana.1ys is or .La.ke ::::.ectiments as an Indicator of Environmental Contamination: An Example from Round Loch of Glenhead 1 South West Scotland. ,... Abstract. The technique of heavy metal analysis was used to determine the zinc, lead and copper concentrations in a single core (RLGH3) from Round Loch of Glenhead, Galloway. -
Bryophytes: Indicators and Monitoring Agents of Pollution
NeBIO (2010) Vol. 1(1) Govindapyari et al . 35-41 GENERAL ARTICLE Bryophytes: indicators and monitoring agents of pollution H. Govindapyari, M. Leleeka, M. Nivedita and P. L. Uniyal Department of Botany, University of Delhi, Delhi – 110 007 Author for correspondence: [email protected], [email protected] Received: 17 September 2009; Revised and Accepted: 2 January 2010 ABSTRACT Bryophyte proves to be a potential bio-indicator of air pollution. The habitat diversity, structural simplicity, totipotency, rapid rate of multiplication and high metal accumulation capacity make bryophytes an ideal organism for pollution studies. The decline and absence of bryophyte populations especially epiphytes is a phenomenon primarily induced by air pollution caused by gaseous and particulate pollutants. Bryophytes are reliable indicators and monitors of air pollution as they are easy to handle and show a vast range of specific sensitivity and visible symptoms to pollutants greatly exceeding that of higher plants. KEY WORDS: Bryophyte, bio-indicator, air pollution, pollutants. Bryophytes are green land plants which lack a • which have the capacity to absorb and retain vascular system and are simple both morpho- pollutants in quantities much higher than those logically and anatomically. The growth potential in absorbed by other plant groups growing in the bryophytes is not as highly polarized as vascular same habitat. These plants trap and prevent plants. Bryophytes grow in a variety of habitats recycling of such pollutants in the ecosystem especially in moist places on soil, rocks, trunks and for different periods of time. Analysis of such branches of trees and fallen log. They obtain plants gives a fair idea about the degree of nutrients directly from substances dissolved in metal pollution. -
Global Environmental Issues and Its Remedies
International Journal of Sustainable Energy and Environment Vol. 1, No. 8, September 2013, PP: 120 - 126, ISSN: 2327- 0330 (Online) Available online at www.ijsee.com Research article Global Environmental Issues and its Remedies Dr. MD. Zulfequar Ahmad Khan* Address Present. Permanent Address for Correspondence *Dr. Md Zulfequar Ahmad Khan 21-B, Lane No 3, Associate Professor Jamia Nagar, Zakir Nagar, Department of Geography & Environmental Studies New Delhi-110025 Arba Minch University INDIA Arba Minch, Ethiopia. Mobile No.: +919718502867 Mobile No: +251 923934234 E-mail: [email protected] _____________________________________________________________________________________________ Abstract To the surprise of many out-spoken environmentalists, it, in fact, turns out mankind and technology actually aren’t the only significant causes of global environmental problems. However, before we start to get too comfortable and confidently assume that we as human beings are officially “off the hook,” the fact remains that several “man-made” causes play a significant role in our current, global problems trend. Many human actions affect what people value. One way in which the actions that cause global change are different from most of these is that the effects take decades to centuries to be realized. This fact causes many concerned people to consider taking action now to protect the values of those who might be affected by global environmental change in years to come. But because of uncertainty about how global environmental systems work, and because the people affected will probably live in circumstances very much different from those of today and may have different values, it is hard to know how present-day actions will affect them. -
The Cloud Cycle and Acid Rain
gX^\[`i\Zk\em`ifed\ekXc`dgXZkjf]d`e`e^Xkc`_`i_`^_jZ_ffcYffbc\k(+ ( K_\Zcfl[ZpZc\Xe[XZ`[iX`e m the mine ke fro smo uld rain on Lihir? Co e acid caus /P 5IJTCPPLMFUXJMM FYQMBJOXIZ K_\i\Xjfe]fik_`jYffbc\k K_\i\`jefXZ`[iX`efeC`_`i% `jk_Xkk_\i\_XjY\\ejfd\ K_`jYffbc\k\ogcX`ejk_\jZ`\eZ\ d`jle[\ijkXe[`e^XYflkk_\ Xe[Z_\d`jkipY\_`e[XZ`[iX`e% \o`jk\eZ\f]XZ`[iX`efeC`_`i% I\X[fekfÔe[flkn_pk_\i\`jef XZ`[iX`efeC`_`i55 page Normal rain cycle and acid rain To understand why there is no acid rain on Lihir we will look at: 1 How normal rain is formed 2 2 How humidity effects rain formation 3 3 What causes acid rain? 4 4 How much smoke pollution makes acid rain? 5 5 Comparing pollution on Lihir with Sydney and China 6 6 Where acid rain does occur 8–9 7 Could acid rain fall on Lihir? 10–11 8 The effect of acid rain on the environment 12 9 Time to check what you’ve learnt 13 Glossary back page Read the smaller text in the blue bar at the bottom of each page if you want to understand the detailed scientific explanations. > > gX^\) ( ?fnefidXciX`e`j]fid\[ K_\eXkliXcnXk\iZpZc\ :cfl[jXi\]fid\[n_\e_\Xk]ifdk_\jleZXlj\jk_\nXk\i`e k_\fZ\Xekf\mXgfiXk\Xe[Y\Zfd\Xe`em`j`Yc\^Xj% K_`j^Xji`j\j_`^_`ekfk_\X`in_\i\Zffc\ik\dg\iXkli\jZXlj\ `kkfZfe[\ej\Xe[Y\Zfd\k`epnXk\i[ifgc\kj%N_\edXepf] k_\j\nXk\i[ifgc\kjZfcc`[\kf^\k_\ik_\pdXb\Y`^^\inXk\i [ifgj#n_`Z_Xi\kff_\XmpkfÕfXkXifle[`ek_\X`iXe[jfk_\p ]Xcc[fneXjiX`e%K_`jgifZ\jj`jZXcc\[gi\Z`g`kXk`fe% K_\eXkliXcnXk\iZpZc\ _\Xk]ifd k_\jle nXk\imXgflijZfe[\ej\ kfZi\Xk\Zcfl[j gi\Z`g`kXk`fe \mXgfiXk`fe K_\jZ`\eZ\Y\_`e[iX`e K_\_\Xk]ifdk_\jleZXlj\jnXk\i`ek_\ -
Acid Rain and Transported Air Pollutants: Implications for Public Policy
Acid Rain and Transported Air Pollutants: Implications for Public Policy May 1984 NTIS order #PB84-222967 Recommended Citation: Acid Rain and Transported Air Pollutants: Implications for Public Policy (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA-O-204, June 1984). Library of Congress Catalog Card Number 84-601073 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, D.C. 20402 Foreword Transported air pollutants have been the topic of much debate during the Clean Air Act delibera- tions of the 97th and 98th Congresses. The current controversy over acid rain—the most publicized example of transported pollutants—focuses on the risks to our environment and ourselves versus the costs of cleanup. Since 1980, the committees responsible for reauthorizing the Clean Air Act—the House Committee on Energy and Commerce and the Senate Committee on Environment and Public Works—have called on OTA many times for information about the movements, fate, and effects of airborne pollutants, the risks that these transported air pollutants pose to sensitive resources, and the likely costs of various proposals to control them. Over the course of the debate, OTA has provided extensive testimony and staff memoranda to the requesting committees, and published a two-volume technical analysis, The Regional Implications of Transported Air Pollutants, in July 1982. This report synthesizes OTA’s technical analyses of acid rain and other transported pollut- ants, and presents policy alternatives for congressional consideration. OTA’s work over the last several years has enabled us to forecast with reasonable accuracy the cost of controlling pollutant emissions, and, for each of the many pending legislative proposals, who will pay those costs. -
Air Quality Terms and Abbreviations
Air Quality Terms and Abbreviations Air Quality Conformity – Conformity demonstrates that future transportation projects created emissions will be less than the budget or baseline. Conformity is a series of calculations, using transportation data and EPA’s emissions model (currently MOVES_2010b). Air Quality Index (AQI) – An index for reporting daily air quality that characterizes air pollution levels and associated health effects that might be of concern. EPA calculates the AQI for five criteria pollutants. AQI values range from 0 to 500; the higher the AQI value, the greater the level of air pollution and the greater the health concern. AQI values below 100 are generally thought of as good to moderate. When AQI values are above 100, air quality is considered to be unhealthy. When AQI values are above 300, air quality is considered to be hazardous. Attainment Area – A geographic area in which levels of a criteria air pollutant meet or exceed the health-based primary standard (national ambient air quality standard, or NAAQS). Any area may have an acceptable level for one air pollutant, but may have unacceptable levels for others. Baseline – The year designated by EPA to be used as a comparison for future conformity analysis. The 2008 8-hour ozone standard uses 2011 as the baseline year. The 1997 PM2.5 standard uses 2002 as the baseline year. Carbon Monoxide (CO) – A criteria air pollutant. A colorless, odorless, poisonous gas, produced by incomplete burning of carbon- based fuels, including gasoline, oil, and wood. Clean Air Act (CAA) – The Clean Air Act was initially passed in 1963, but current national air pollution control program is based on the 1970 version of the law. -
Revised Air Quality Standards for Particle Pollution and Updates to the Air Quality Index (Aqi)
The National Ambient Air Quality Standards for Particle Pollution REVISED AIR QUALITY STANDARDS FOR PARTICLE POLLUTION AND UPDATES TO THE AIR QUALITY INDEX (AQI) On Dec. 14, 2012 the U.S. Environmental Protection Agency (EPA) strengthened the nation’s air quality standards for fine particle pollution to improve public health protection by revising the 3 primary annual PM2.5 standard to 12 micrograms per cubic meter (µg/m ) and retaining the 24- hour fine particle standard of 35 µg/m3. Exposure to fine particle pollution can cause premature death and harmful cardiovascular effects such as heart attacks and strokes, and is linked to a variety of other significant health problems. Particle pollution also harms public welfare, including causing haze in cities and some of our nation’s most treasured national parks. EPA has issued a number of rules that will make significant strides toward reducing fine particle pollution (PM2.5). These rules will help the vast majority of U.S. counties meet the revised PM2.5 standard without taking additional action to reduce emissions. AIR QUALITY STANDARDS The Clean Air Act requires EPA to set two types of outdoor air quality standards: primary standards, to protect public health, and secondary standards, to protect the public against adverse environmental effects. The law requires that primary standards be “requisite to protect public health with an adequate margin of safety,” including the health of people most at risk from PM exposure. These include people with heart or lung disease, children, older adults and people of lower socioeconomic status. Secondary standards must be “requisite to protect the public welfare” from both known and anticipated adverse effects. -
Critical Loads for Vegetation
, '‘`a , 1 e-'-: , % ' , - 7 * liV V$ V 0 , ,„, ' . , 1 4, k. 0. • 4 ' t .r.,.. l'i ,r4' Rat . ' $ i • 11:',11 "P• 1 1, • e á h3A IFISTMAE OF11TRIESTIOL ECOIAGV BUS,- ESTATE. PENICUIK MIDLOTHIAN \ Institute of EH26 OQB Terrestrial 7 Ecology Critical loads: concept and applications ITE symposium no. 28 Proceedings of a Conference held on 12-14 February 1992 in Grange-over-Sands, under the auspices of the British Ecological Society Industrial Ecology Group and the Natural Environment Research Council, and partly sponsored by the National Power/PowerGen Joint Environmental Programme. Edited by M Hornung and R A Skeffington London : HMSO Crown.Copyright 1993 Applications for reproduction should be made to HMSO First published 1993 ISBN 0 11 701666 7 The Institute of Terrestrial Ecology (ITE) is a component research organisation within the Natural Environment Research 'Council. The Institute is part of the Terrestrial and Freshwater Sciences Directorate, and was established in 1973 by the merger of the research stations of the Nature Conservancy with the Institute of Tree Biology. It has been at the forefront of ecological research ever since. The six research stations of the Institute provide a ready access to sites and to environmental and ecological problems in any part of Britain. In addition to the broad environmental knowledge and experience expected of the modern ecologist, each station has a range of special expertise and facilities. Thus, the Institute is able to provide unparallelled opportunities for long-term, multidisciplinary studies of complex environmental and ecological problems. ITE undertakes specialist ecological research on subjects ranging from micro- organisms to trees and mammals, from coastal habitats to uplands, from derelict land to air pollution. -
Acid Rain and Transported Air Pollutants: Implications for Public Policy
Appendix B Effects of Transported Pollutants B.1 AQUATIC RESOURCES AT RISK (p. 207) B.2 TERRESTRIAL RESOURCES AT RISK (p. 217) B.3 MATERIALS AT RISK (p. 239) B.4 VISIBILITY IMPAIRMENT (p. 244) B.5 HUMAN HEALTH RISKS (p. 255) B.6 ECONOMIC SECTORS AT GREATEST RISK FROM CONTROLLING OR NOT CONTROLLING TRANSPORTED POLLUTANTS (p. 261) B. 1 AQUATIC RESOURCES AT RISK Extent of Resources at Risk* Because of the large area of a typical watershed, most of the acid ultimately deposited in lakes and streams Scientists are concerned that acid deposition may be comes from water that runs off or percolates through damaging substantial numbers of U. S. and Canadian the surrounding land mass, rather than from precipita- lakes and streams. As part of its assessment of trans- tion falling directly on water bodies. The amount of ported air pollutants, OTA contracted with The Insti- acidifying material that actually enters a given lake or tute of Ecology (TIE) to: stream is determined primarily by the soil and geologic ● describe mechanisms by which acid deposit ion conditions of the surrounding watershed. Whcn the two may be affecting sensitive 1akes and streams; major chemical components of’ acid rain-nitric acid and ● providc an inventory of Eastern U.S. lakes and sulfuric acid—reach the ground, they may react with streams considered to be sensitive to acid depo- soils is a variety of ways. * * For example, soils can neu- sit ion; tralize the acids, exchange nutrients and trace metals ● estimate the number of lakes and streams in these for components of the acids, and/or hold sulfuric acid. -
A Novel Bioremediation Method for Shallow Layers of Soil Polluted by Pesticides
Chapter 12 A Novel Bioremediation Method for Shallow Layers of Soil Polluted by Pesticides Naofumi Shiomi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/56153 1. Introduction Excess amounts of pesticide have often been used to enhance the yield of agricultural products, and simultanously causing serious problems by polluting the soil and groundwater all over the world. For example, in the United States, large amounts of atrazine were used as a weed killer. The excessive atrazine sprayed by planes polluted rivers and soil near the farms, and this eventually was transferred to urban areas. The soil pollution in China is even more serious. Many agricultural fields and groundwater supplies are no longer used because of their contamination with pesticides and chemical fertilizers. An investigation by the FAO/ UNEP/WHO suggested that 1-5 million patients develop pesticide poisoning every year, and several thousand patients die [1]. As a result, many countries have passed laws about the remediation and conservation of soil. In the United States, the remediation and monitoring of polluted soil must be done based on the federal Superfund Act. In Germany, a law about the preservation of water and soil was passed in 1997. The remediation of soil is carried out according to these laws in these countries. Among the various processes used for the remediation of soil, bioremediation has been remarkable because it is high safety and inexpensive running cost compared to the physical and chemical methods, such as burning and adsorption. Bioremediation methods can be classified into two broad classes (in situ and ex situ bioremediation), and in situ bioremediation processes employs the treatment method without moving the polluted soil. -
Atmospheric Dust and Acid Rain Ed Areas of Europe and North America
or the past several decades, sci- Atmospheric Dust entists have been studying acid F rain and how it affects the envi- ronment. As the harmful consequences of acidic air pollutants became increas- and Acid Rain ingly clear, governments in North Amer- ica and Europe began to regulate emis- sions of these compounds. Countries in Emissions of acidic air pollutants have fallen the European Union enacted a variety of laws to control the release of sulfur dramatically. Why is acid rain still a problem? dioxide and nitrogen oxides; the Clean Air Act imposed similar regulations in Atmospheric dust may be part of the answer the U.S. Policymakers expected these reductions to rejuvenate forests, lakes and streams in many regions. In some by Lars O. Hedin and Gene E. Likens respects, the issue seemed wrapped up. NEUTRALIZATION LOWERS ACIDIC EMISSIONS ACIDITY OF RAIN DUST EMISSIONS NEUTRALIZED PARTICLES OR CLOUD DROPLETS 88 Scientific American December 1996 Copyright 1996 Scientific American, Inc. But the problem of acid rain has not found that all the attention given to acid- juice and beer; ammonia, baking soda gone away. Why is the rain falling on ic compounds in the atmosphere has ob- and antacid tablets are all bases. Most parts of Europe and North America still scured the fact that emissions of bases of the bases in the atmosphere can be acidic, despite tighter controls on pollu- have also decreased. A number of fac- found in airborne particles referred to tion? And why do some natural ecosys- tors seem to be diminishing the level of as atmospheric dust.