Fundamental Process and System Design Issues in CO2 Vapor Compression Systems Man-Hoe Kima,*, Jostein Pettersenb, Clark W
Total Page:16
File Type:pdf, Size:1020Kb
Progress in Energy and Combustion Science 30 (2004) 119–174 www.elsevier.com/locate/pecs Fundamental process and system design issues in CO2 vapor compression systems Man-Hoe Kima,*, Jostein Pettersenb, Clark W. Bullardc aDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Science Town, Daejeon 305-701, South Korea bDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway cDepartment of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA Received 25 February 2003; accepted 15 September 2003 Abstract This paper presents recent developments and state of the art for transcritical CO2 cycle technology in various refrigeration, air-conditioning and heat pump applications. The focus will be on fundamental process and system design issues, including discussions of properties and characteristics of CO2, cycle fundamentals, methods of high-side pressure control, thermodynamic losses, cycle modifications, component/system design, safety factors, and promising application areas. The article provides a critical review of literature, and discusses important trends and characteristics in the development of CO2 technology in refrigeration, air-conditioning and heat pump applications. Advanced cycle design options are also introduced suggesting possible performance improvements of the basic cycle. q 2003 Published by Elsevier Ltd. Keywords: Natural refrigerant; CO2 (R-744); Transcritical cycle; Vapor compression system; COP; Air-conditioning; Heat pump; Compressor; Heat exchanger Contents 1. Introduction ................................................................... 120 1.1. Background ............................................................... 120 1.2. The history and reinvention of CO2 ............................................. 122 1.3. Structure of paper .......................................................... 123 2. Properties of CO2 ............................................................... 123 2.1. Thermodynamic properties .................................................... 124 2.2. Transport properties ......................................................... 127 3. Transcritical vapor compression cycle ................................................ 128 3.1. Fundamentals of transcritical cycle .............................................. 128 3.2. Methods of high-side pressure control............................................ 129 3.2.1. Systems with high-side charge control...................................... 129 3.2.2. Systems with high-side volume control ..................................... 130 3.3. Thermodynamic losses ....................................................... 131 3.4. Transcritical cycles in heat pumps and systems with heat recovery....................... 131 3.4.1. Temperature glide in heat rejection ........................................ 131 3.4.2. Heating capacity and COP characteristics . ................................. 131 3.5. Approach temperature and its importance ......................................... 132 * Corresponding author. Tel.: þ82-42-869-3089; fax: þ82-42-869-3210. E-mail address: [email protected] (M.-H. Kim). 0360-1285/$ - see front matter q 2003 Published by Elsevier Ltd. doi:10.1016/j.pecs.2003.09.002 120 M.-H. Kim et al. / Progress in Energy and Combustion Science 30 (2004) 119–174 3.6. Analysis of transcritical system energy efficiency . ................................. 132 4. Modified cycles ................................................................ 133 4.1. Internal heat exchange cycle................................................... 133 4.2. Expansion with work recovery ................................................. 134 4.3. Two-stage cycle............................................................ 135 4.4. Flash gas bypass ........................................................... 136 5. Heat transfer and fluid flow........................................................ 137 5.1. Supercritical-flow heat transfer and pressure drop . ................................. 137 5.2. Flow vaporization heat transfer and pressure drop . ................................. 138 5.3. Two-phase flow patterns...................................................... 138 6. Issues related to high operating pressure .............................................. 139 6.1. High pressure compression .................................................... 139 6.2. High pressure heat transfer .................................................... 139 6.3. Compactness of equipment .................................................... 139 6.4. High-pressure safety issues.................................................... 140 6.4.1. Explosion energy ..................................................... 140 6.4.2. Boiling liquid explosion ................................................ 141 7. Component design .............................................................. 142 7.1. Compressors .............................................................. 142 7.2. Heat exchangers............................................................ 144 7.2.1. Gas coolers ......................................................... 146 7.2.2. Evaporators ......................................................... 148 7.2.3. Internal heat exchangers ................................................ 149 7.3. Other components .......................................................... 150 7.3.1. Lubricants .......................................................... 150 7.3.2. Elastomers .......................................................... 150 7.3.3. Valves and controls ................................................... 150 8. Application areas ............................................................... 150 8.1. Automotive air conditioning ................................................... 151 8.2. Automotive heating ......................................................... 154 8.3. Residential cooling.......................................................... 155 8.4. Residential heating.......................................................... 156 8.4.1. Direct air heating ..................................................... 157 8.4.2. Hydronic heating ..................................................... 159 8.5. Water heating ............................................................. 160 8.6. Environmental control units ................................................... 162 8.7. Transport refrigeration ....................................................... 163 8.8. Commercial refrigeration ..................................................... 163 8.9. Dryers ................................................................... 164 9. Concluding remarks ............................................................. 165 Acknowledgements ................................................................ 169 Pressure–enthalpy diagram and saturation properties for CO2 ................................. 169 References ....................................................................... 169 1. Introduction applications. The HFC refrigerants that were once expected to be acceptable permanent replacement fluids are now on 1.1. Background the list of regulated substances due to their impact on climate change [1], and there is growing concern about Over the last decades, the refrigeration, air conditioning future use. The global warming potential (GWP) is an index and heat pump industry has been forced through major that relates the potency of a greenhouse gas to the CO2 changes caused by restrictions on refrigerants The change- emission over a 100-year period. As shown in Table 1, the over to ‘ozone-friendly’ chlorine-free substances is not GWPs of the HFCs (R-134a, R-407C, R-410A) are in the finished yet, as the HCFC fluids still need to be replaced, order of 1300–1900 related to CO2 with GWP ¼ 1; and mostly involving R-22 in air-conditioning and heat pump the HFCs are included in the greenhouse gases covered by M.-H. Kim et al. / Progress in Energy and Combustion Science 30 (2004) 119–174 121 Nomenclature Teai evaporator air inlet temperature, 8C T refrigerant temperature at the exit of gas COP coefficient of performance ex cooler, 8C c specific heat, kJ/kg K p T evaporating temperature, 8C F compressor torque, N m 0 c TEWI total equivalent warming impact G mass flux, kg/m2 s V volume, m3 GWP global warming potential V outdoor air flow rate, m3/min h enthalpy, kJ/kg c V indoor air flow rate, m3/min HPF heating performance factor e v specific volume, m3/kg HSPF heating seasonal performance factor w specific compressor work, kJ/kg HX heat exchanger x quality IHX internal heat exchanger (suction-line liquid-line 1 effectiveness heat exchanger) h isentropic efficiency L internal heat exchanger length, m is k thermal conductivity, W/m K LMTD log mean temperature difference, 8CorK l volumetric efficiency m refrigerant charge, kg m viscosity, kg/m s m refrigerant mass flow rate, g/s r p pressure ratio NTU number of transfer unit r density, kg/m3 ODP ozone depletion potential s surface tension, N/m P pressure, bar or MPa pm mean effective pressure, bar Pr Prandtl number Subscripts Q capacity, kW q heat flux, kW/m2 f liquid g vapor q0 specific refrigeration capacity, kW/kg 3 max maximum qv volumetric refrigeration capacity, kJ/m RH relative humidity, % opt optimum s entropy, kJ/kg K pseudo pseudocritical state SPF seasonal performance factor ref