Gravity and the Flea 5.1

Total Page:16

File Type:pdf, Size:1020Kb

Gravity and the Flea 5.1 Gravity and the flea A gravitational approach to the measurement problem Loek van Rossem Bachelor Thesis in Mathematics and Physics & Astronomy Supervisor: Prof. dr. N.P. Landsman Radboud University Nijmegen The Netherlands August 20, 2018 Abstract In this text we study some possible solutions to the measurement problem in quantum mechanics. This problem is about an inherent contradiction between the Schr¨odinger equation and the Born postulate: the Schr¨odingerequation tells us how a system evolves, yet when it is applied to a measurement it does not reproduce the Born postulate. Alt- hough many solutions to the measurement problem have been proposed, to this day the problem remains unsolved. We first look at \the flea on Schr¨odinger'scat", which is based on the idea that small perturbations can have a large influence on macroscopic quantum mechanical systems. Therefore, the randomness in the Born postulate could be explained as a lack of knowledge about these perturbations. Some problems with this method are discussed, and an attempt will be made to address them. Then we will have a look at the Penrose approach, which tries to use gravity to solve the measurement problem. Inspired by the problems of these two solutions, we will try to combine them into a single hybrid solution, in an attempt to solve the issues. Page 2 Contents 1 Introduction 4 2 The measurement problem 5 2.1 A contradiction in quantum mechanics . 5 2.2 Interpreting measurements . 6 3 The flea on Schr¨odinger'scat 8 3.1 Instability of large quantum systems . 8 3.2 The measurement process . 10 3.3 Born probabilities . 12 3.4 Tunneling times . 13 3.5 Energy conservation . 14 3.6 Stability of outcomes . 15 3.7 Entanglement and locality . 16 4 The Penrose interpretation 18 4.1 Superpositions in space-time . 18 4.2 The Schr¨odinger-Newtonequation . 19 4.3 Collapse from the Schr¨odinger-Newtonequation . 21 5 Gravity and the flea 23 5.1 The measurement process 2.0 . 23 5.2 Applicability of the Schr¨odinger-Newtonequation . 25 5.3 Born probabilities . 27 5.4 Tunneling times . 31 5.5 Entanglement and locality . 32 6 Conclusion 33 References 33 Page 3 Chapter 1 Introduction The measurement problem is one of the oldest problems in quantum mechanics, and has been around since its discovery. Records of it go as far back as 1926, when Born questioned whether or not the outcomes of measurements in quantum mechanics are determined by hidden properties. The measurement problem is about a discrepancy between quantum mechanics and classical mechanics. Quantum mechanics predicts superpositions, even at the macroscopic scale, yet such things are completely absent in classical mechanics. The most famous formulation of the measurement problem is probably Schr¨odinger'scat, where quantum mechanics paradoxically predicts a cat to be in a superposition of being both alive and dead at the same time. Many solutions have been proposed over the years, such as the many-worlds interpretation, pilot wave theory, and Ghirardi-Rimini-Weber theory. Still, to this day, no completely satisfying solution has been found, despite the fundamental nature of the measurement problem. The aim of this text is to explore and discuss some of the solutions to the measurement problem. In chapter 2 we provide the mathematical details of the measurement problem and give a few examples of well known solutions. In chapter 3 we take a look at a more recent solution to the measurement problem: \the flea on Schr¨odinger'scat". We also discuss some of the issues it has and possible approaches to solving them. In chapter 4 we will look at a solution proposed by Penrose which claims that gravity is the crucial component causing wave function collapse. Finally, in chapter 5 we will propose a solution which makes use of ideas from both \the flea on Schr¨odinger'scat" and Penrose's solution. Page 4 Chapter 2 The measurement problem The measurement problem may be described as the failure of quantum theory to reproduce the macroscopic classical world.1 To put it briefly, quantum mechanics predicts macrosco- pic superpositions, yet none are ever observed. Despite the measurement problem being almost as old as quantum mechanics itself, no satisfying solution has been found. 2.1 A contradiction in quantum mechanics In quantum mechanics, states evolve according to the Schr¨odingerequation: @ i¯h j (t)i = H j (t)i : (2.1) @t On the other hand, measurements occur according to the Born postulate, which says that the possible measurement outcomes for measuring an observable A are its eigenvectors, and the probability pφ of obtaining such an eigenvector jφi as an outcome is 2 pφ = j hφj i j ; (2.2) where j i is the state before the measurement. After the measurement, the state of the system has been reduced to jφi, and we say the wave function has collapsed. Using these postulates, most of modern day physics can be derived, yet they also lead to a contradiction. After all, measurement apparatuses are physical objects, and so they too will evolve according to the Schr¨odingerequation. Thus we can also use the Schr¨odingerequation to see what the outcome of a measurement is. In general, this does not lead to the same anwser as the Born postulate. For instance, consider the spin of an electron in the following superposition: 1 p (j"i + j#i): (2.3) 2 Here j"i represents the state where the spin is in the positive z direction (i.e. σz j"i = j"i), and is j#i the state where the spin is in the negative z direction (σz j#i = − j#i). If we measure the spin in the z direction, then according to the Born postulate there is a 50% chance of getting the outcome spin up and a 50% chance of getting spin down. Now we investigate what should happen according to the Schr¨odingerequation. Let j0iA be the state initially describing the measurement apparatus. Then our total initial state is: 1 j (0)i = p (j"i + j#i) ⊗ j0i : (2.4) 2 A 1Many different formulations of the measurement problem are possible [5]. Page 5 CHAPTER 2. THE MEASUREMENT PROBLEM 2.2 The Schr¨odingerequation says that time evolution is a unitary operator U(t), so 1 j (t)i = U(t) p (j"i + j#i) ⊗ j0i 2 A 1 1 = p U(t)(j"i ⊗ j0i ) + p U(t)(j#i ⊗ j0i ) : (2.5) 2 A 2 A Since the measurement apparatus measures the spin, we have U(T )(j"i ⊗ j0iA) = j"i ⊗ j"iA ; U(T )(j#i ⊗ j0iA) = j#i ⊗ j#iA ; (2.6) where j"iA is the state of the measurement apparatus indicating spin up, j#iA is the state of the measurement apparatus indicating spin down, and T is a point in time large enough such that the measurement can be considered complete. Combining (2.5) and (2.6), we obtain 1 1 j (T )i = p j"i ⊗ j"i + p j#i ⊗ j#i : (2.7) 2 A 2 A So instead of collapsing the superposition of the electron, the measurement apparatus joins the electron in the superposition. This is in contradiction with the Born postulate; we now have a 100% chance of getting the state p1 j"i ⊗ j"i + p1 j#i ⊗ j#i instead of a 2 A 2 A 50% chance of getting j"i ⊗ j"iA and a 50% chance of getting j#i ⊗ j#iA. This paradox is probably best known in the form of Schr¨odinger'scat. There, a scientist puts a cat in a box, along with a radioactive atom. The box is set up so that it will release a deadly poison if the atom decays. Since the atom is a quantum system, it will enter a superposition of being decayed and not decayed. This will result in the cat being in a superposition of dead and alive, which is not the expected macroscopic behavior. Here, the atom plays the role of the electron and the cat plays the role of the measurement apparatus. 2.2 Interpreting measurements This paradox is known as the measurement problem. The different ways of resolving it correspond to the interpretations of quantum mechanics. We will now give a few examples of these interpretations. One of the better known interpretations is the many-worlds interpretation, also known as the Everett interpretation. According to this, the Schr¨odingerequation always gives the correct outcome. Thus, when a measurement takes place, a macroscopic superposition like (2.7) really does occur physically. The interpretation says that the two parts of the wave function each represent their own branch of the universe, one in which the outcome was spin up and the device registered spin up, and one in which the outcome was spin down and the device registered spin down. An observer would read off spin up or spin down, so it would appear to him that the wave function collapsed. Another interpretation is the pilot wave theory, or de Broglie{Bohm theory. In pilot wave theory the particle and its wave function are separate entities. The wave function guides the behavior of the particle according to the so called guiding equation. This equation is constructed in such a way as to recover standard quantum mechanics. The particle always has a well-defined position (as opposed to a superposition), so no collapse happens during a measurement. Finally, there is Ghirardi{Rimini{Weber theory. Ghirardi{Rimini{Weber theory is an example of an objective collapse theory, which means that wave function collapse is a Page 6 CHAPTER 2.
Recommended publications
  • Mathematical Undecidability, Quantum Nonlocality And
    MATHEMATICAL UNDECIDABILITY, QUANTUM NONLOCALITY AND THE QUESTION OF THE EXISTENCE OF GOD MATHEMATICAL UNDECIDABILITY, QUANTUM NONLOCALITY AND THE QUESTION OF THE EXISTENCE OF GOD Edited by ALFRED DRIESSEN Department ofApplied Physics, University ofTwente, Enschede, the Netherlands and ANTOINE SUAREZ The Institute for Interdisciplinary Studies, Geneva and Zurich, Switzerland SPRINGER SCIENCE+BUSINESS MEDIA, B.V. Library ofCongress Cataloging-in-Publication Data MatheMatlcal undecldabl1lty, quantuN nonlocallty and the quest Ion of the exlstence of God I Alfred Drlessen, Antolne Suarez, editors. p. cm. Includes blbliographlcal references and Index. ISBN 978-94-010-6283-1 ISBN 978-94-011-5428-4 (eBook) DOI 10.1007/978-94-011-5428-4 1. PhYS1CS--Phl1osophy. 2. Mathe.atlcs--Phl1osophy. 3. Ouantu. theory. 4. Gud--PfQ~f, Ontologieai. I. Drlessen, Alfred. II. Suarez, Antolne. OC6.M357 1997 530' .01--dc20 96-36621 ISBN 978-94-010-6283-1 Printed on acid-free paper All rights reserved © 1997 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1997 Softcover reprint of the hardcover 1st edition 1997 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, inc1uding photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. TABLE OF CONTENTS A. DRIESSEN and A. SUAREZ / Preface vii A. DRIESSEN and A. SUAREZ / Introduction Xl PART I: MATHEMATICS AND UNDECIDABILITY 1. H.-C. REICHEL / How can or should the recent developments in mathematics influence the philosophy of mathematics? 3 2. G.J. CHAITIN / Number and randomness: algorithmic information theory - new results on the foundations of mathematics 15 3.
    [Show full text]
  • Consequences of Theoretically Modeling the Mind As a Computer
    PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE PSICOLOGIA´ CONSEQUENCES OF THEORETICALLY MODELING THE MIND AS A COMPUTER ESTEBAN HURTADO LEON´ Thesis submitted to the Office of Research and Graduate Studies in partial fulfillment of the requirements for the degree of Doctor in Psychology Advisor: CARLOS CORNEJO ALARCON´ Santiago de Chile, August 2017 c MMXVII, ESTEBAN HURTADO PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE PSICOLOGIA´ CONSEQUENCES OF THEORETICALLY MODELING THE MIND AS A COMPUTER ESTEBAN HURTADO LEON´ Members of the Committee: CARLOS CORNEJO ALARCON´ DIEGO COSMELLI SANCHEZ LUIS DISSETT VELEZ JAAN VALSINER ......... Thesis submitted to the Office of Research and Graduate Studies in partial fulfillment of the requirements for the degree of Doctor in Psychology Santiago de Chile, August 2017 c MMXVII, ESTEBAN HURTADO To Carmen and Fulvio ACKNOWLEDGEMENTS I would like to thank the School of Psychology at Pontificia Universidad Catolica´ de Chile for taking me in and walking me through the diversity of the study of the mind. I am in debt to all the teachers who kindly and passionately shared their knowledge with me, and very specially to the kind and helpful work of the administrative staff. I took my first steps in theoretical computer science at the School of Engineering of the same university, with Dr. Alvaro´ Campos, who is no longer with us. His passion for knowledge, dedication and warmth continue to inspire those of us who where lucky enough to cross paths with him. The generous and theoretically profound support of the committee members has been fundamental to the production of this text. I am deeply thankful to all of them.
    [Show full text]
  • Shadows of the Mind: a Search for the Missing Science of Consciousness Pdf
    FREE SHADOWS OF THE MIND: A SEARCH FOR THE MISSING SCIENCE OF CONSCIOUSNESS PDF Roger Penrose | 480 pages | 03 Oct 1995 | Vintage Publishing | 9780099582113 | English | London, United Kingdom Shadows of the Mind - Wikipedia Skip to search form Skip to main content You are currently Shadows of the Mind: A Search for the Missing Science of Consciousness. Some features of the site may not work correctly. Penrose Published Psychology, Computer Science. From the Publisher: A New York Times bestseller when it appeared inRoger Penrose's The Emperor's New Mind was universally hailed as a marvelous survey of modern physics as well as a brilliant reflection on the human mind, offering a new perspective on the scientific landscape and a visionary glimpse of the possible future of science. Save to Library. Create Alert. Launch Research Feed. Share This Paper. Penrose Computational Complexity: A Modern Approach. Arora, B. Barak Capra, P. Luisi Figures and Topics from this paper. Citation Type. Has PDF. Publication Type. More Filters. On Gravity's role in Quantum State Reduction. Open Access. Research Feed. Consciousness and Complexity. View 1 excerpt, cites background. Artificial Intelligence: A New Synthesis. Can quantum probability provide a new direction for cognitive modeling? The Newell Test for a theory of cognition. Dynamical Cognitive Science. View 4 excerpts, cites background. References Publications referenced by this paper. Minds, Brains, and Programs. Highly Influential. View 4 excerpts, references background. A logical calculus of the ideas immanent in nervous activity. Simulating physics with computers. Neural networks and physical systems with Shadows of the Mind: A Search for the Missing Science of Consciousness collective computational abilities.
    [Show full text]
  • Arxiv:1708.01170V2 [Quant-Ph]
    The Algebra of the Pseudo-Observables II: The Measurement Problem Edoardo Piparo‡ Liceo Scientifico Statale “Archimede”, Viale Regina Margherita 3, I-98121 Messina, Italy E-mail: [email protected] Abstract. In this second paper, we develop the full mathematical structure of the algebra of the pseudo-observables, in order to solve the quantum measurement problem. Quantum state vectors are recovered but as auxiliary pseudo-observables storing the information acquired in a set of observations. The whole process of measurement is deeply reanalyzed in the conclusive section, evidencing original aspects. The relation of the theory with some popular interpretations of Quantum Mechanics is also discussed, showing that both Relational Quantum Mechanics and Quantum Bayesianism may be regarded as compatible interpretations of the theory. A final discussion on reality, tries to bring a new insight on it. Keywords: Quantum measurement problem, interpretation of quantum mechanics, relational quantum mechanics, quantum bayesianism PACS numbers: 03.65.Ta arXiv:1708.01170v2 [quant-ph] 10 Sep 2017 ‡ A.I.F. Associazione per l’Insegnamento della Fisica - Gruppo Storia della Fisica: http://www.lfns.it/STORIA/index.php/it/chi-siamo The Algebra of the Pseudo-Observables II 2 1. Introduction 1.1. Measurement in Quantum Mechanics Quantum measurement theory in standard textbooks is expressed in term of the Copenhagen interpretation, that can be summarized in the following essential points: (i) A state vector gives a complete description of the state of a physical system. It determines the probability distribution of the measure outcomes of any observable quantity. (ii) Our knowledge of the physical reality cannot be expressed but by means of the language of the “Classical Physics”.
    [Show full text]
  • On the Algebraic Representation of Causation Giving Mathematical Form to Philosophical Decisions Part I Dr
    On The Algebraic Representation of Causation Giving Mathematical Form to Philosophical Decisions Part I Dr. Roy Lisker Ferment Press 8 Liberty Street#306 Middletown, CT 06457 <http://www.fermentmagazine.org> On The Algebraic Representation of Causation Roy Lisker, PhD Ferment Press 8 Liberty Street #306 Middletown, CT 06457 [email protected] TABLE OF CONTENTS Part I I. Introduction ...................................... Page 1 II. Causal Function Algebras....................... 5 (a) The Extrinsic Structure ............. 6 (b) The Intrinsic Structure ............. 11 Example I:“Every effect is a cause” 14 (i) Multi-Agents ..... 16 (ii) Causal Chains ... 17 (iii) Feedback Loops.. 18 (iv) Vector Fields ..... 19 Example II: Additivity ................. 20 (i)Magnitude Algebras 21 (ii) Concatenation Algebras ......... 22 (iii) Superposition Principles ....... 23 Example III: StrictDeterminism ..........25 Example IV: Temporal Invariance .... 26 (c) The 3 Temporal Modes.................... 30 Modal Predicates.............. 31 Modal Calculi I. Possibility vs. Necessity...32 II. The Knowable, Unknowable and Unknown..................34 III. The Possible and Conceivable.................. 37 (d) Appendix: Algebraic Structure of Causation in Quantum Theory: 4 Formalisms (i) Heisenberg ...... 39 (ii) Schrodinger..... 41 (iii) Dirac............. 41 (iv) von Neumann.... 42 III.The Lagrange/Hamilton Paradigm (a) Unpacking the Instant ................... 43 (b) Difficulties of Leibniz/Kant: (i) Cancellation Points ........ 48 (ii) Singularities .................
    [Show full text]
  • Spacetime Paths As a Whole
    quantum reports Article Spacetime Paths as a Whole Sky Nelson-Isaacs Theiss Research; P.O. Box 127, La Jolla, CA 92038; [email protected] Abstract: The mathematical similarities between non-relativistic wavefunction propagation in quantum mechanics and image propagation in scalar diffraction theory are used to develop a novel understanding of time and paths through spacetime as a whole. It is well known that Feynman’s original derivation of the path integral formulation of non-relativistic quantum mechanics uses time-slicing to calculate amplitudes as sums over all possible paths through space, but along a definite curve through time. Here, a 3+1D spacetime wave distribution and its 4-momentum dual are formally developed which have no external time parameter and therefore cannot change or evolve in the usual sense. Time is thus seen “from the outside”. A given 3+1D momentum representation of a system encodes complete dynamical information, describing the system’s spacetime behavior as a whole. A comparison is made to the mathematics of holograms, and properties of motion for simple systems are derived. Keywords: wavefunction propagation; holography; path integral; scalar diffraction theory; Fourier optics; interpretations of quantum mechanics; theories of time; perturbation theory 1. Introduction In this proposal, the well-developed connection between image propagation in scalar diffraction theory (SDT) and non-relativistic quantum wavefunction propagation (QWP) Citation: Nelson-Isaacs, S. Spacetime will be used to develop a 3+1D formulation of QWP and interpret the result. (Throughout Paths as a Whole. Quantum Rep. 2021, this paper, 3+1D or “four-dimensional” refers to the usual three spatial dimensions and one 1, 1–31.
    [Show full text]
  • Spacetime Paths As a Whole
    quantum reports Article Spacetime Paths as a Whole Sky Nelson-Isaacs Theiss Research, P.O. Box 127, La Jolla, CA 92038, USA; [email protected] Abstract: The mathematical similarities between non-relativistic wavefunction propagation in quan- tum mechanics and image propagation in scalar diffraction theory are used to develop a novel understanding of time and paths through spacetime as a whole. It is well known that Feynman’s original derivation of the path integral formulation of non-relativistic quantum mechanics uses time-slicing to calculate amplitudes as sums over all possible paths through space, but along a definite curve through time. Here, a 3+1D spacetime wave distribution and its 4-momentum dual are formally developed which have no external time parameter and therefore cannot change or evolve in the usual sense. Time is thus seen “from the outside”. A given 3+1D momentum representation of a system encodes complete dynamical information, describing the system’s spacetime behavior as a whole. A comparison is made to the mathematics of holograms, and properties of motion for simple systems are derived. Keywords: wavefunction propagation; holography; path integral; scalar diffraction theory; Fourier optics; interpretations of quantum mechanics; theories of time; perturbation theory 1. Introduction In this proposal, the well-developed connection between image propagation in scalar diffraction theory (SDT) and non-relativistic quantum wavefunction propagation (QWP) will be used to develop a 3+1D formulation of QWP and interpret the result. (Throughout this paper, 3+1D or “four-dimensional” refers to the usual three spatial dimensions and one temporal dimension of spacetime, or the three wavenumber dimensions (kx, ky, kz) Citation: Nelson-Isaacs, S.
    [Show full text]
  • Quantum Nonequilibrium in De Broglie-Bohm Theory and Its Effects in Black Holes and the Early Universe
    Clemson University TigerPrints All Dissertations Dissertations December 2020 Quantum Nonequilibrium in De Broglie-Bohm Theory and its Effects in Black Holes and the Early Universe Adithya Pudukkudi Kandhadai Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Kandhadai, Adithya Pudukkudi, "Quantum Nonequilibrium in De Broglie-Bohm Theory and its Effects in Black Holes and the Early Universe" (2020). All Dissertations. 2742. https://tigerprints.clemson.edu/all_dissertations/2742 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Quantum Nonequilibrium in De Broglie-Bohm Theory and its Effects in Black Holes and the Early Universe A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Physics by Adithya P. Kandhadai December 2020 Accepted by: Dr. Murray Daw, Committee Chair Dr. Antony Valentini Dr. Sumanta Tewari Dr. Dieter Hartmann Abstract Quantum mechanics is a highly successful fundamental theory which has passed every ex- perimental test to date. Yet standard quantum mechanics fails to provide an adequate description of measurement processes, which has long been rationalized with operationalist and positivist philo- sophical arguments but is nevertheless a serious shortfall in a fundamental theory. In this dissertation we introduce quantum mechanics with a discussion of the measurement problem. We then review the de Broglie-Bohm pilot-wave formulation, a nonlocal hidden-variables theory where the state of a quantum system is described by a configuration (independent of measurements) in addition to the wave function, and we apply it to fundamental problems concerning black holes and the early universe.
    [Show full text]
  • The Algebra of the Pseudo-Observables I: Why
    The Algebra of the Pseudo-Observables I: Why Quantum Mechanics is the ultimate description of Reality Edoardo Piparo‡ Liceo Scientifico Statale “Archimede”, Viale Regina Margherita 3, I-98121 Messina, Italy E-mail: [email protected] Abstract. This paper is the first of several parts introducing a new powerful algebra: the algebra of the pseudo-observables. This is a C*-algebra whose set is formed by formal expressions involving observables. The algebra is constructed by applying the Occam’s razor principle, in order to obtain the minimal description of physical reality. Proceeding in such a manner, every aspect of quantum mechanics acquires a clear physical interpretation or a logical explanation, providing, for instance, in a natural way the reason for the structure of complex algebra and the matrix structure of Werner Heisenberg’s formulation of quantum mechanics. Last but not least, the very general hypotheses assumed, allow one to state that quantum mechanics is the unique minimal description of physical reality. Keywords: Foundations of quantum mechanics, interpretation of quantum mechanics, quantum measurement problem PACS numbers: 03.65.Ta arXiv:1707.05633v3 [quant-ph] 14 Aug 2017 ‡ A.I.F. Associazione per l’Insegnamento della Fisica - Gruppo Storia della Fisica: http://www.lfns.it/STORIA/index.php/it/chi-siamo The Algebra of the Pseudo-Observables I 2 1. Introduction 1.1. A brief historical background After a long and hard working, started from the formula proposed by Planck in 1900 for the black- body radiation and Einstein’s ideas on light quanta and those of Bohr on the constitution of atoms, quantum mechanics suddenly arises between 1925 and 1927, thanks to some brilliant scientists such as Heisenberg, Born, Jordan, Schrödinger, Dirac, Pauli.
    [Show full text]
  • Abstracts of Papers Presented in Columbus, OH Abstracts of Papers Presented At
    August 3–6, 2016 Abstracts of Papers Presented in Columbus, OH Abstracts of Papers Presented at MathFest 2016 Columbus, OH August 3 – 6, 2016 Published and Distributed by The Mathematical Association of America ii Contents Invited Addresses 1 Earle Raymond Hedrick Lecture Series by Hendrik Lenstra . 1 Lecture 1: The Group Law on Elliptic Curves Thursday, August 4, 10:30–11:20 AM, Regency Ballroom . 1 Lecture 2: The Combinatorial Nullstellensatz Friday, August 5, 9:30–10:20 AM, Regency Ballroom . 1 Lecture 3: Profinite Number Theory Saturday, August 6, 9:30–10:20 AM, Regency Ballroom . 1 AMS-MAA Joint Invited Address . 1 Understanding Geometry (and Arithmetic) through Cutting and Pasting by Ravi Vakil Thursday, August 4, 9:30–10:20 AM, Regency Ballroom . 1 MAA Invited Addresses . 2 Mathematical Sense and Nonsense outside the Classroom: How Well Are We Preparing Our Students to Tell the Difference? Network Science: From the Online World to Cancer Genomics by Robert Megginson Thursday, August 4, 8:30–9:20 AM, Regency Ballroom . 2 Magical Mathematics by Arthur Benjamin Friday, August 5, 10:30–11:20 AM, Regency Ballroom . 2 Immersion in Mathematics via Digital Art by Judy Holdener Saturday, August 6, 10:30–11:20 AM, Regency Ballroom . 2 James R.C. Leitzel Lecture . 2 Inquiry, Encouragement, Home Cooking (And Other Boundary Value Problems) by Annalisa Crannell Saturday, August 6, 8:30–9:20 AM, Regency Ballroom . 2 AWM-MAA Etta Z. Falconer Lecture . 3 Harmonic Analysis and Additive Combinatorics on Fractals by Izabella Laba Friday, August 5, 8:30–9:20 AM, Regency Ballroom .
    [Show full text]
  • Least Squares Properties of Generalized Inverses 1 Introduction
    Commun. Math. Res. Vol. 37, No. 4, pp. 421-447 doi: 10.4208/cmr.2021-0011 November 2021 Least Squares Properties of Generalized Inverses Predrag S. Stanimirovi´c1,∗, Dijana Mosi´c1 and Yimin Wei2 1 Faculty of Sciences and Mathematics, University of Niˇs, Viˇsegradska 33, 18000 Niˇs, Serbia. 2 School of Mathematical Sciences & Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai 200433, P.R. China. Received 25 January 2021; Accepted 8 April 2021 Dedicated to Prof. Roger Penrose for his 90th Birthday Abstract. The aim of this paper is to systematize solutions of some systems of linear equations in terms of generalized inverses. As a significant application of the Moore-Penrose inverse, the best approximation solution to linear matrix equations (i.e. both least squares and the minimal norm) is considered. Also, characterizations of least squares solution and solution of minimum norm are given. Basic properties of the Drazin-inverse solution and the outer-inverse so- lution are present. Motivated by recent research, important least square prop- erties of composite outer inverses are collected. AMS subject classifications: 15A09, 15A24, 65F05 Key words: Outer inverse, Moore-Penrose inverse, DMP inverse, core-EP inverse. 1 Introduction Roger Penrose is a famous English mathematical physicist, mathematician, philo- sopher of science. Penrose has made fundamental contributions to physics, ma- ∗Corresponding author. Email addresses: [email protected] (P.S. Stanimirovi´c), dijana@ pmf.ni.ac.rs (D. Mosi´c), [email protected] (Y. Wei) 422 P.S. Stanimirovi´c, D. Mosi´cand Y. Wei / Commun. Math. Res., 37 (2021), pp.
    [Show full text]
  • Interpretations of Quantum Mechanics and the Nature of Reality by Scott Hagan
    archived as http://www.stealthskater.com/Documents/Consciousness_03.pdf more related articles at http://www.stealthskater.com/Conscousness.htm note: because important web-sites are frequently "here today but gone tomorrow", the following was archived from http://www.consciousness.arizona.edu/quantum/Library/qmlecture2.htm on May 21, 2003. This is NOT an attempt to divert readers from the aforementioned website. Indeed, the reader should only read this back-up copy if the updated original cannot be found at the original author's site. Lecture 2 Interpretations of Quantum Mechanics and the Nature of Reality by Scott Hagan Classical physics -- as it had developed up to the end of the 19th Century -- saw that there are 2 basic kinds of entities in the Universe -- particles and fields. The particles were thought to follow Newton's laws of motion, while the fields where thought to obey Maxwell's equations for the electromagnetic field. Lord Kelvin said that physics was pretty much finished except that there were 2 small clouds in the horizon: the negative results of the Michelson-Morley experiment (the search for "ether") and the failure of Rayleigh-Jeans law to predict black-body radiation. Lord Kelvin chose his clouds well, for the former gave rise to Relativity and the latter to the Quantum Theory. The ontologically essential lesson of the Quantum Theory was that the classical idea of particles and fields was wrong. The electromagnetic field turned out to have a particle aspect. And particles like the electron turned out to have a field aspect. The most fundamental ontological feature of the Quantum Theory then is that each manifestation of matter and energy can have 2 possible aspects -- that of a wave and that of a particle.
    [Show full text]