7 Jun 2018 Deep Bayesian Regression Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linear Models for Classification
CS480 Introduction to Machine Learning Linear Models for Classification Edith Law Based on slides from Joelle Pineau Probabilistic Framework for Classification As we saw in the last lecture, learning can be posed a problem of statistical inference. The premise is that for any learning problem, if we have access to the underlying probability distribution D, then we could form a Bayes optimal classifier as: f (BO)(x)̂ = arg max D(x,̂ y)̂ y∈̂ Y But since we don't have access to D, we can instead estimate this distribution from data. The probabilistic framework allows you to choose a model to represent your data, and develop algorithms that have inductive biases that are closer to what you, as a designer, believe. 2 Classification by Density Estimation The most direct way to construct such a probability distribution is to select a family of parametric distributions. For example, we can select a Gaussian (or Normal) distribution. Gaussian is parametric: its parameters are its mean and variance. The job of learning is to infer which parameters are “best” in terms of describing the observed training data. In density estimation, we assume that the sample data is drawn independently from the same distribution D. That is, your nth sample (xn, yn) from D does not depend on the previous n-1 samples. This is called the i.i.d. (independently and identically distributed) assumption. 3 Consider the Problem of Flipping a Biased Coin You are flipping a coin, and you want to find out if it is biased. This coin has some unknown probability of β of coming up Head (H), and some probability ( 1 − β ) of coming up Tail (T). -
A Toolbox for Nonlinear Regression in R: the Package Nlstools
JSS Journal of Statistical Software August 2015, Volume 66, Issue 5. http://www.jstatsoft.org/ A Toolbox for Nonlinear Regression in R: The Package nlstools Florent Baty Christian Ritz Sandrine Charles Cantonal Hospital St. Gallen University of Copenhagen University of Lyon Martin Brutsche Jean-Pierre Flandrois Cantonal Hospital St. Gallen University of Lyon Marie-Laure Delignette-Muller University of Lyon Abstract Nonlinear regression models are applied in a broad variety of scientific fields. Various R functions are already dedicated to fitting such models, among which the function nls() has a prominent position. Unlike linear regression fitting of nonlinear models relies on non-trivial assumptions and therefore users are required to carefully ensure and validate the entire modeling. Parameter estimation is carried out using some variant of the least- squares criterion involving an iterative process that ideally leads to the determination of the optimal parameter estimates. Therefore, users need to have a clear understanding of the model and its parameterization in the context of the application and data consid- ered, an a priori idea about plausible values for parameter estimates, knowledge of model diagnostics procedures available for checking crucial assumptions, and, finally, an under- standing of the limitations in the validity of the underlying hypotheses of the fitted model and its implication for the precision of parameter estimates. Current nonlinear regression modules lack dedicated diagnostic functionality. So there is a need to provide users with an extended toolbox of functions enabling a careful evaluation of nonlinear regression fits. To this end, we introduce a unified diagnostic framework with the R package nlstools. -
An Efficient Nonlinear Regression Approach for Genome-Wide
An Efficient Nonlinear Regression Approach for Genome-wide Detection of Marginal and Interacting Genetic Variations Seunghak Lee1, Aur´elieLozano2, Prabhanjan Kambadur3, and Eric P. Xing1;? 1School of Computer Science, Carnegie Mellon University, USA 2IBM T. J. Watson Research Center, USA 3Bloomberg L.P., USA [email protected] Abstract. Genome-wide association studies have revealed individual genetic variants associated with phenotypic traits such as disease risk and gene expressions. However, detecting pairwise in- teraction effects of genetic variants on traits still remains a challenge due to a large number of combinations of variants (∼ 1011 SNP pairs in the human genome), and relatively small sample sizes (typically < 104). Despite recent breakthroughs in detecting interaction effects, there are still several open problems, including: (1) how to quickly process a large number of SNP pairs, (2) how to distinguish between true signals and SNPs/SNP pairs merely correlated with true sig- nals, (3) how to detect non-linear associations between SNP pairs and traits given small sam- ple sizes, and (4) how to control false positives? In this paper, we present a unified framework, called SPHINX, which addresses the aforementioned challenges. We first propose a piecewise linear model for interaction detection because it is simple enough to estimate model parameters given small sample sizes but complex enough to capture non-linear interaction effects. Then, based on the piecewise linear model, we introduce randomized group lasso under stability selection, and a screening algorithm to address the statistical and computational challenges mentioned above. In our experiments, we first demonstrate that SPHINX achieves better power than existing methods for interaction detection under false positive control. -
Confidence Intervals for Probabilistic Network Classifiers
Computational Statistics & Data Analysis 49 (2005) 998–1019 www.elsevier.com/locate/csda Confidence intervals for probabilistic network classifiersଁ M. Egmont-Petersena,∗, A. Feeldersa, B. Baesensb aUtrecht University, Institute of Information and Computing Sciences, P. O. Box 80.089, 3508, TB Utrecht, The Netherlands bUniversity of Southampton, School of Management, UK Received 12 July 2003; received in revised form 28 June 2004 Available online 25 July 2004 Abstract Probabilistic networks (Bayesian networks) are suited as statistical pattern classifiers when the feature variables are discrete. It is argued that their white-box character makes them transparent, a requirement in various applications such as, e.g., credit scoring. In addition, the exact error rate of a probabilistic network classifier can be computed without a dataset. First, the exact error rate for probabilistic network classifiers is specified. Secondly, the exact sampling distribution for the conditional probability estimates in a probabilistic network classifier is derived. Each conditional probability is distributed according to the bivariate binomial distribution. Subsequently, an approach for computing the sampling distribution and hence confidence intervals for the posterior probability in a probabilistic network classifier is derived. Our approach results in parametric bootstrap confidence intervals. Experiments with general probabilistic network classifiers, the Naive Bayes classifier and tree augmented Naive Bayes classifiers (TANs) show that our approximation performs well. Also simulations performed with the Alarm network show good results for large training sets. The amount of computation required is exponential in the number of feature variables. For medium and large-scale classification problems, our approach is well suited for quick simulations.A running example from the domain of credit scoring illustrates how to actually compute the sampling distribution of the posterior probability. -
Model Selection, Transformations and Variance Estimation in Nonlinear Regression
Model Selection, Transformations and Variance Estimation in Nonlinear Regression Olaf Bunke1, Bernd Droge1 and J¨org Polzehl2 1 Institut f¨ur Mathematik, Humboldt-Universit¨at zu Berlin PSF 1297, D-10099 Berlin, Germany 2 Konrad-Zuse-Zentrum f¨ur Informationstechnik Heilbronner Str. 10, D-10711 Berlin, Germany Abstract The results of analyzing experimental data using a parametric model may heavily depend on the chosen model. In this paper we propose procedures for the ade- quate selection of nonlinear regression models if the intended use of the model is among the following: 1. prediction of future values of the response variable, 2. estimation of the un- known regression function, 3. calibration or 4. estimation of some parameter with a certain meaning in the corresponding field of application. Moreover, we propose procedures for variance modelling and for selecting an appropriate nonlinear trans- formation of the observations which may lead to an improved accuracy. We show how to assess the accuracy of the parameter estimators by a ”moment oriented bootstrap procedure”. This procedure may also be used for the construction of confidence, prediction and calibration intervals. Programs written in Splus which realize our strategy for nonlinear regression modelling and parameter estimation are described as well. The performance of the selected model is discussed, and the behaviour of the procedures is illustrated by examples. Key words: Nonlinear regression, model selection, bootstrap, cross-validation, variable transformation, variance modelling, calibration, mean squared error for prediction, computing in nonlinear regression. AMS 1991 subject classifications: 62J99, 62J02, 62P10. 1 1 Selection of regression models 1.1 Preliminary discussion In many papers and books it is discussed how to analyse experimental data estimating the parameters in a linear or nonlinear regression model, see e.g. -
Nonlinear Regression, Nonlinear Least Squares, and Nonlinear Mixed Models in R
Nonlinear Regression, Nonlinear Least Squares, and Nonlinear Mixed Models in R An Appendix to An R Companion to Applied Regression, third edition John Fox & Sanford Weisberg last revision: 2018-06-02 Abstract The nonlinear regression model generalizes the linear regression model by allowing for mean functions like E(yjx) = θ1= f1 + exp[−(θ2 + θ3x)]g, in which the parameters, the θs in this model, enter the mean function nonlinearly. If we assume additive errors, then the parameters in models like this one are often estimated via least squares. In this appendix to Fox and Weisberg (2019) we describe how the nls() function in R can be used to obtain estimates, and briefly discuss some of the major issues with nonlinear least squares estimation. We also describe how to use the nlme() function in the nlme package to fit nonlinear mixed-effects models. Functions in the car package than can be helpful with nonlinear regression are also illustrated. The nonlinear regression model is a generalization of the linear regression model in which the conditional mean of the response variable is not a linear function of the parameters. As a simple example, the data frame USPop in the carData package, which we load along with the car package, has decennial U. S. Census population for the United States (in millions), from 1790 through 2000. The data are shown in Figure 1 (a):1 library("car") Loading required package: carData brief(USPop) 22 x 2 data.frame (17 rows omitted) year population [i] [n] 1 1790 3.9292 2 1800 5.3085 3 1810 7.2399 .. -
Bayesian Learning
SC4/SM8 Advanced Topics in Statistical Machine Learning Bayesian Learning Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/ Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 1 / 14 Bayesian Learning Review of Bayesian Inference The Bayesian Learning Framework Bayesian learning: treat parameter vector θ as a random variable: process of learning is then computation of the posterior distribution p(θjD). In addition to the likelihood p(Djθ) need to specify a prior distribution p(θ). Posterior distribution is then given by the Bayes Theorem: p(Djθ)p(θ) p(θjD) = p(D) Likelihood: p(Djθ) Posterior: p(θjD) Prior: p(θ) Marginal likelihood: p(D) = Θ p(Djθ)p(θ)dθ ´ Summarizing the posterior: MAP Posterior mode: θb = argmaxθ2Θ p(θjD) (maximum a posteriori). mean Posterior mean: θb = E [θjD]. Posterior variance: Var[θjD]. Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 2 / 14 Bayesian Learning Review of Bayesian Inference Bayesian Inference on the Categorical Distribution Suppose we observe the with yi 2 f1;:::; Kg, and model them as i.i.d. with pmf π = (π1; : : : ; πK): n K Y Y nk p(Djπ) = πyi = πk i=1 k=1 Pn PK with nk = i=1 1(yi = k) and πk > 0, k=1 πk = 1. The conjugate prior on π is the Dirichlet distribution Dir(α1; : : : ; αK) with parameters αk > 0, and density PK K Γ( αk) Y p(π) = k=1 παk−1 QK k k=1 Γ(αk) k=1 PK on the probability simplex fπ : πk > 0; k=1 πk = 1g. -
Bayesian Machine Learning
Advanced Topics in Machine Learning: Bayesian Machine Learning Tom Rainforth Department of Computer Science Hilary 2020 Contents 1 Introduction 1 1.1 A Note on Advanced Sections . .3 2 A Brief Introduction to Probability 4 2.1 Random Variables, Outcomes, and Events . .4 2.2 Probabilities . .4 2.3 Conditioning and Independence . .5 2.4 The Laws of Probability . .6 2.5 Probability Densities . .7 2.6 Expectations and Variances . .8 2.7 Measures [Advanced Topic] . 10 2.8 Change of Variables . 12 3 Machine Learning Paradigms 13 3.1 Learning From Data . 13 3.2 Discriminative vs Generative Machine Learning . 16 3.3 The Bayesian Paradigm . 20 3.4 Bayesianism vs Frequentism [Advanced Topic] . 23 3.5 Further Reading . 31 4 Bayesian Modeling 32 4.1 A Fundamental Assumption . 32 4.2 The Bernstein-Von Mises Theorem . 34 4.3 Graphical Models . 35 4.4 Example Bayesian Models . 38 4.5 Nonparametric Bayesian Models . 42 4.6 Gaussian Processes . 43 4.7 Further Reading . 52 5 Probabilistic Programming 53 5.1 Inverting Simulators . 54 5.2 Differing Approaches . 58 5.3 Bayesian Models as Program Code [Advanced Topic] . 62 5.4 Further Reading . 73 Contents iii 6 Foundations of Bayesian Inference and Monte Carlo Methods 74 6.1 The Challenge of Bayesian Inference . 74 6.2 Deterministic Approximations . 77 6.3 Monte Carlo . 79 6.4 Foundational Monte Carlo Inference Methods . 83 6.5 Further Reading . 93 7 Advanced Inference Methods 94 7.1 The Curse of Dimensionality . 94 7.2 Markov Chain Monte Carlo . 97 7.3 Variational Inference . -
Fitting Models to Biological Data Using Linear and Nonlinear Regression
Fitting Models to Biological Data using Linear and Nonlinear Regression A practical guide to curve fitting Harvey Motulsky & Arthur Christopoulos Copyright 2003 GraphPad Software, Inc. All rights reserved. GraphPad Prism and Prism are registered trademarks of GraphPad Software, Inc. GraphPad is a trademark of GraphPad Software, Inc. Citation: H.J. Motulsky and A Christopoulos, Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. 2003, GraphPad Software Inc., San Diego CA, www.graphpad.com. To contact GraphPad Software, email [email protected] or [email protected]. Contents at a Glance A. Fitting data with nonlinear regression.................................... 13 B. Fitting data with linear regression..........................................47 C. Models ....................................................................................58 D. How nonlinear regression works........................................... 80 E. Confidence intervals of the parameters ..................................97 F. Comparing models................................................................ 134 G. How does a treatment change the curve?..............................160 H. Fitting radioligand and enzyme kinetics data ....................... 187 I. Fitting dose-response curves .................................................256 J. Fitting curves with GraphPad Prism......................................296 3 Contents Preface ........................................................................................................12 -
Agnostic Bayes
Agnostic Bayes Thèse Alexandre Lacoste Doctorat en informatique Philosophiæ doctor (Ph.D.) Québec, Canada © Alexandre Lacoste, 2015 Résumé L’apprentissage automatique correspond à la science de l’apprentissage à partir d’exemples. Des algorithmes basés sur cette approche sont aujourd’hui omniprésents. Bien qu’il y ait eu un progrès significatif, ce domaine présente des défis importants. Par exemple, simplement sélectionner la fonction qui correspond le mieux aux données observées n’offre aucune ga- rantie statistiques sur les exemples qui n’ont pas encore été observées. Quelques théories sur l’apprentissage automatique offrent des façons d’aborder ce problème. Parmi ceux-ci, nous présentons la modélisation bayésienne de l’apprentissage automatique et l’approche PAC- bayésienne pour l’apprentissage automatique dans une vue unifiée pour mettre en évidence d’importantes similarités. Le résultat de cette analyse suggère que de considérer les réponses de l’ensemble des modèles plutôt qu’un seul correspond à un des éléments-clés pour obtenir une bonne performance de généralisation. Malheureusement, cette approche vient avec un coût de calcul élevé, et trouver de bonnes approximations est un sujet de recherche actif. Dans cette thèse, nous présentons une approche novatrice qui peut être appliquée avec un faible coût de calcul sur un large éventail de configurations d’apprentissage automatique. Pour atteindre cet objectif, nous appliquons la théorie de Bayes d’une manière différente de ce qui est conventionnellement fait pour l’apprentissage automatique. Spécifiquement, au lieu de chercher le vrai modèle à l’origine des données observées, nous cherchons le meilleur modèle selon une métrique donnée. Même si cette différence semble subtile, dans cette approche, nous ne faisons pas la supposition que le vrai modèle appartient à l’ensemble de modèles explorés. -
Nonlinear Regression and Nonlinear Least Squares
Nonlinear Regression and Nonlinear Least Squares Appendix to An R and S-PLUS Companion to Applied Regression John Fox January 2002 1 Nonlinear Regression The normal linear regression model may be written yi = xiβ + εi where xi is a (row) vector of predictors for the ith of n observations, usually with a 1 in the first position representing the regression constant; β is the vector of regression parameters to be estimated; and εi is a random error, assumed to be normally distributed, independently of the errors for other observations, with 2 expectation 0 and constant variance: εi ∼ NID(0,σ ). In the more general normal nonlinear regression model, the function f(·) relating the response to the predictors is not necessarily linear: yi = f(β, xi)+εi As in the linear model, β is a vector of parameters and xi is a vector of predictors (but in the nonlinear 2 regression model, these vectors are not generally of the same dimension), and εi ∼ NID(0,σ ). The likelihood for the nonlinear regression model is n y − f β, x 2 L β,σ2 1 − i=1 i i ( )= n/2 exp 2 (2πσ2) 2σ This likelihood is maximized when the sum of squared residuals n 2 S(β)= yi − f β, xi i=1 is minimized. Differentiating S(β), ∂S β ∂f β, x ( ) − y − f β, x i ∂β = 2 i i ∂β Setting the partial derivatives to 0 produces estimating equations for the regression coefficients. Because these equations are in general nonlinear, they require solution by numerical optimization. As in a linear model, it is usual to estimate the error variance by dividing the residual sum of squares for the model by the number of observations less the number of parameters (in preference to the ML estimator, which divides by n). -
Part III Nonlinear Regression
Part III Nonlinear Regression 255 Chapter 13 Introduction to Nonlinear Regression We look at nonlinear regression models. 13.1 Linear and Nonlinear Regression Models We compare linear regression models, Yi = f(Xi; ¯) + "i 0 = Xi¯ + "i = ¯ + ¯ Xi + + ¯p¡ Xi;p¡ + "i 0 1 1 ¢ ¢ ¢ 1 1 with nonlinear regression models, Yi = f(Xi; γ) + "i where f is a nonlinear function of the parameters γ and Xi1 γ0 . Xi = 2 . 3 γ = 2 . 3 q£1 p£1 6 Xiq 7 6 γp¡1 7 4 5 4 5 In both the linear and nonlinear cases, the error terms "i are often (but not always) independent normal random variables with constant variance. The expected value in the linear case is 0 E Y = f(Xi; ¯) = X ¯ f g i and in the nonlinear case, E Y = f(Xi; γ) f g 257 258 Chapter 13. Introduction to Nonlinear Regression (ATTENDANCE 12) Exercise 13.1(Linear and Nonlinear Regression Models) Identify whether the following regression models are linear, intrinsically linear (nonlinear, but transformed easily into linear) or nonlinear. 1. Yi = ¯0 + ¯1Xi1 + "i This regression model is linear / intrinsically linear / nonlinear 2. Yi = ¯0 + ¯1pXi1 + "i This regression model is linear / intrinsically linear / nonlinear because Yi = ¯0 + ¯1 Xi1 + "i p0 = ¯0 + ¯1Xi1 + "i 3. ln Yi = ¯0 + ¯1Xi1 + "i This regression model is linear / intrinsically linear / nonlinear because ln Yi = ¯0 + ¯1 Xi1 + "i 0 p0 Yi = ¯0 + ¯1Xi1 + "i 0 where Yi = ln Yi 4. Yi = γ0 + γ1Xi1 + γ2Xi2 + "i This regression model1 is linear / intrinsically linear / nonlinear 5.