Fractal Dimension and Space Filling Curve Information Systems And

Total Page:16

File Type:pdf, Size:1020Kb

Fractal Dimension and Space Filling Curve Information Systems And Fractal Dimension and Space Filling Curve Approximate Space-filling Curve Ana Karina Tavares da Moura Gomes Dissertation submitted to obtain the Master Degree in Information Systems and Computer Engineering Supervisor: Prof. Dr. Andreas Wichert Examination Committee Chairperson: Prof. Dr. Mário Jorge Costa Gaspar da Silva Supervisor: Prof. Dr. Andreas Miroslaus Wichert Member of the Committee: Prof. Dr. Pável Pereira Calado June 2015 ii Dedicated to my beloved son Enzo. You were my greatest motivation to finish the course and not give up, regardless of the difficulties. I love you so much Zo!ˆ iii iv Acknowledgments First of all, I would like to thank my mother Ju´ and my sister Carol for all the support they gave me. I have special thanks to Carol who so many times listened me without understand anything just to help me think out loud. Thank you for all the love and care. Love you sis! I would like to thank my advisor for the patience and for the advices, but mainly for help me growing as a student and future professional allowing me to think and decide for my own head. Thank you! I would like to thank my mother-in-law Cristina for taking care of my child allowing me to work on the afternoons. I would like to thank my closest friends Ana Silva and Jose´ Leira for all the support. Thank you for soften the worst days of work. You are one of the greatest wealth that I gained from this course. Ana, thank you for not giving up on me and for being an angel! Ze,´ thank you for being my thesis partner and for listening all my endless doubts. Finally, I have a special thanks to my husband Tiago. Thanks for not judge me, for believe in me (even when I didn’t) and for your endless patience. There are no words to describe how grateful I am for having you in my life. Thank you for all the love, all the support and comprehension during all this years. Love you! v vi Resumo Curvas preenchedoras de espac¸o sao˜ fractais gerados por computador que podem ser usadas para indexar espac¸os de baixas dimensoes.˜ Existem estudos anteriores que as usam como metodo´ de acesso nestes cenarios,´ contudo sao˜ muito conservadores usando-as apenas em espac¸os ate´ quatro dimensoes.˜ Adicionalmente, os metodos´ alternativos tendem a apresentar um desempenho pior do que uma pesquisa linear quando os espac¸os ultrapassam as dez di- mensoes.˜ Deste modo, no contexto da minha tese, estudo as curvas preenchedoras de espac¸o e as suas propriedades assim como os desafios apresentados pelos dados multidimensionais. Eu proponho o uso destas, especificamente da curva de Hilbert, como um metodo´ de acesso para indexar pontos multidimensionais ate´ trinta dimensoes.˜ Eu comec¸o por mapear os pontos para a curva de Hilbert gerando os seus h-values. Em seguida, desenvolvo tresˆ heuristicas para procurar vizinhos aproximadamente mais proximos´ de um dado ponto de pesquisa com o objec- tivo de testar o desempenho da curva. Duas heur´ısticas usam a curva com metodo´ de acesso direto e a restante usa a curva como chave secundaria´ combinada com uma variante da B-tree. Estas resultam de um processo iterativo que basicamente consiste no planeamento, concepc¸ao˜ e teste da heur´ıstica. De acordo com os resultados do teste, a heur´ıstica e´ alterada ou e´ criada uma nova. Os resultados experimentais com as tresˆ heur´ısticas provam que a curva de Hilbert pode ser usada como metodo´ de acesso e que esta consegue funcionar pelo menos em espac¸os ate´ trinta e seis dimensoes.˜ Palavras-chave: Fractais, Curva de Hilbert Preenchedora de Espac¸o, Indexac¸ao˜ de Baixas Dimensoes,˜ Vizinho Aproximadamente Mais Proximo´ vii viii Abstract Space-filling curves are computer generated fractals that can be used to index low-dimensional spaces. There are previous studies using them as an access method in these scenarios, although they are very conservative only applying them up to four-dimensional spaces. Additionally, the alternative access methods tend to present worse performance than a linear search when the spaces surpass the ten dimensions. Therefore, in the context of my thesis, I study the space-filling curves and their properties as well as challenges presented by multidimensional data. I propose their use, specifically the Hilbert curve, as an access method for indexing multidimensional points up to thirty dimensions. I start by mapping the points to the Hilbert curve generating their h-values. Then, I develop three heuristics to search for approximate nearest neighbors of a given query point with the aim of testing the performance of the curve. Two of the heuristics use the curve as a direct access method and the other uses the curve as a secondary key retrieval combined with a B-tree variant. These result from an iterative process that basically consists of planning, conceiving and testing the heuristic. According to the test results, the heuristic is adjusted or a new one is created. Experimental results with the three heuristics prove that the Hilbert curve can be used as an access method, and that it can operate at least in spaces up to thirty-six dimensions. Keywords: Fractals, Hilbert Space-Filling Curve, Low-Dimensional Indexing, Approximate Nearest Neighbor ix x Contents Acknowledgments..............................................v Resumo................................................... vii Abstract................................................... ix List of Tables................................................ xiii List of Figures................................................ xvi 1 Introduction 1 1.1 Hypothesis and Methodology.....................................2 1.2 Main contributions..........................................2 1.3 Document Outline...........................................3 2 Multidimensional Data 5 2.1 Introduction..............................................5 2.2 Multidimensional Relations......................................6 2.3 Vector Space.............................................7 2.4 Multidimensional Query.......................................9 2.4.1 Range Query.........................................9 2.4.2 Nearest Neighbor Query...................................9 2.5 Multidimensional Index........................................ 10 2.5.1 R-tree............................................. 11 2.5.2 Kd-tree............................................ 12 2.6 Summary............................................... 13 3 Fractals 15 3.1 Introduction.............................................. 15 3.2 The Hausdorff Dimension...................................... 16 3.3 Space-Filling Curves......................................... 18 3.3.1 Z-Curve............................................ 18 3.3.2 Hilbert Curve......................................... 20 3.4 Higher Dimensions.......................................... 24 3.5 Clustering Property.......................................... 28 3.6 Fractals: An Access Method..................................... 30 xi 3.6.1 Secondary Key Retrieval................................... 30 3.6.2 Direct Access Index..................................... 32 3.7 Summary............................................... 34 4 Approximate Space-Filling Curve 35 4.1 Motivation............................................... 35 4.2 Methodology............................................. 36 4.3 Data Description........................................... 37 4.4 Mapping System........................................... 39 4.5 Dataset Analysis based on a Linear Search.............................. 40 4.6 Experiment 1: Hypercube Zoom Out................................. 43 4.7 Experiment 2: Enzo Full Space.................................... 46 4.8 Experiment 3: Enzo Reduced Space................................. 48 4.9 Summary............................................... 52 5 Conclusions 55 5.1 Contributions............................................. 56 5.2 Future Work.............................................. 57 Bibliography 62 A Appendix 63 A.1 Chapter: Fractals........................................... 63 A.2 Chapter: Approximate Space-Filling Curve............................. 65 xii List of Tables 4.1 Datasets Description......................................... 40 4.2 Neighbor Distance to Query Point per Dimension.......................... 41 4.3 HZO Runtime Results......................................... 44 4.4 HZO Approximate Nearest Neighbors Results............................ 45 4.5 Enzo FS Runtime Results....................................... 47 4.6 Enzo FS Approximate Nearest Neighbors Results.......................... 47 4.7 Enzo RS Runtime Results....................................... 49 4.8 Enzo RS Relative Error........................................ 51 A.1 Gray Code............................................... 63 A.2 Enzo RS Results........................................... 65 xiii xiv List of Figures 2.1 Examples of Multidimensional Data.................................7 2.2 Example of Unit Circles for L1, L2 and L1 Norms.........................8 2.3 R-tree Planar and Directory Representation............................. 11 2.4 Kd-tree Planar and Directory Representation............................. 12 3.1 Ratio Similarity Example 1...................................... 16 3.2 Ratio Similarity Example 2...................................... 16 3.3 Hausdorff Dimension Analysis.................................... 17 3.4 Z-curve................................................ 19 3.5 Z-curve Bit Shuffling......................................... 19 3.6 Z-curve Query Example......................................
Recommended publications
  • Harmonious Hilbert Curves and Other Extradimensional Space-Filling Curves
    Harmonious Hilbert curves and other extradimensional space-filling curves∗ Herman Haverkorty November 2, 2012 Abstract This paper introduces a new way of generalizing Hilbert's two-dimensional space-filling curve to arbitrary dimensions. The new curves, called harmonious Hilbert curves, have the unique property that for any d0 < d, the d-dimensional curve is compatible with the d0-dimensional curve with respect to the order in which the curves visit the points of any d0-dimensional axis-parallel space that contains the origin. Similar generalizations to arbitrary dimensions are described for several variants of Peano's curve (the original Peano curve, the coil curve, the half-coil curve, and the Meurthe curve). The d-dimensional harmonious Hilbert curves and the Meurthe curves have neutral orientation: as compared to the curve as a whole, arbitrary pieces of the curve have each of d! possible rotations with equal probability. Thus one could say these curves are `statistically invariant' under rotation|unlike the Peano curves, the coil curves, the half-coil curves, and the familiar generalization of Hilbert curves by Butz and Moore. In addition, prompted by an application in the construction of R-trees, this paper shows how to construct a 2d-dimensional generalized Hilbert or Peano curve that traverses the points of a certain d-dimensional diagonally placed subspace in the order of a given d-dimensional generalized Hilbert or Peano curve. Pseudocode is provided for comparison operators based on the curves presented in this paper. 1 Introduction Space-filling curves A space-filling curve in d dimensions is a continuous, surjective mapping from R to Rd.
    [Show full text]
  • Redalyc.Self-Similarity of Space Filling Curves
    Ingeniería y Competitividad ISSN: 0123-3033 [email protected] Universidad del Valle Colombia Cardona, Luis F.; Múnera, Luis E. Self-Similarity of Space Filling Curves Ingeniería y Competitividad, vol. 18, núm. 2, 2016, pp. 113-124 Universidad del Valle Cali, Colombia Available in: http://www.redalyc.org/articulo.oa?id=291346311010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ingeniería y Competitividad, Volumen 18, No. 2, p. 113 - 124 (2016) COMPUTATIONAL SCIENCE AND ENGINEERING Self-Similarity of Space Filling Curves INGENIERÍA DE SISTEMAS Y COMPUTACIÓN Auto-similaridad de las Space Filling Curves Luis F. Cardona*, Luis E. Múnera** *Industrial Engineering, University of Louisville. KY, USA. ** ICT Department, School of Engineering, Department of Information and Telecommunication Technologies, Faculty of Engineering, Universidad Icesi. Cali, Colombia. [email protected]*, [email protected]** (Recibido: Noviembre 04 de 2015 – Aceptado: Abril 05 de 2016) Abstract We define exact self-similarity of Space Filling Curves on the plane. For that purpose, we adapt the general definition of exact self-similarity on sets, a typical property of fractals, to the specific characteristics of discrete approximations of Space Filling Curves. We also develop an algorithm to test exact self- similarity of discrete approximations of Space Filling Curves on the plane. In addition, we use our algorithm to determine exact self-similarity of discrete approximations of four of the most representative Space Filling Curves.
    [Show full text]
  • Fractal Initialization for High-Quality Mapping with Self-Organizing Maps
    Neural Comput & Applic DOI 10.1007/s00521-010-0413-5 ORIGINAL ARTICLE Fractal initialization for high-quality mapping with self-organizing maps Iren Valova • Derek Beaton • Alexandre Buer • Daniel MacLean Received: 15 July 2008 / Accepted: 4 June 2010 Ó Springer-Verlag London Limited 2010 Abstract Initialization of self-organizing maps is typi- 1.1 Biological foundations cally based on random vectors within the given input space. The implicit problem with random initialization is Progress in neurophysiology and the understanding of brain the overlap (entanglement) of connections between neu- mechanisms prompted an argument by Changeux [5], that rons. In this paper, we present a new method of initiali- man and his thought process can be reduced to the physics zation based on a set of self-similar curves known as and chemistry of the brain. One logical consequence is that Hilbert curves. Hilbert curves can be scaled in network size a replication of the functions of neurons in silicon would for the number of neurons based on a simple recursive allow for a replication of man’s intelligence. Artificial (fractal) technique, implicit in the properties of Hilbert neural networks (ANN) form a class of computation sys- curves. We have shown that when using Hilbert curve tems that were inspired by early simplified model of vector (HCV) initialization in both classical SOM algo- neurons. rithm and in a parallel-growing algorithm (ParaSOM), Neurons are the basic biological cells that make up the the neural network reaches better coverage and faster brain. They form highly interconnected communication organization. networks that are the seat of thought, memory, con- sciousness, and learning [4, 6, 15].
    [Show full text]
  • Efficient Neighbor-Finding on Space-Filling Curves
    Universitat¨ Stuttgart Efficient Neighbor-Finding on Space-Filling Curves Bachelor Thesis Author: David Holzm¨uller* Degree: B. Sc. Mathematik Examiner: Prof. Dr. Dominik G¨oddeke, IANS Supervisor: Prof. Dr. Miriam Mehl, IPVS October 18, 2017 arXiv:1710.06384v3 [cs.CG] 2 Nov 2019 *E-Mail: [email protected], where the ¨uin the last name has to be replaced by ue. Abstract Space-filling curves (SFC, also known as FASS-curves) are a useful tool in scientific computing and other areas of computer science to sequentialize multidimensional grids in a cache-efficient and parallelization-friendly way for storage in an array. Many algorithms, for example grid-based numerical PDE solvers, have to access all neighbor cells of each grid cell during a grid traversal. While the array indices of neighbors can be stored in a cell, they still have to be computed for initialization or when the grid is adaptively refined. A fast neighbor- finding algorithm can thus significantly improve the runtime of computations on multidimensional grids. In this thesis, we show how neighbors on many regular grids ordered by space-filling curves can be found in an average-case time complexity of (1). In 풪 general, this assumes that the local orientation (i.e. a variable of a describing grammar) of the SFC inside the grid cell is known in advance, which can be efficiently realized during traversals. Supported SFCs include Hilbert, Peano and Sierpinski curves in arbitrary dimensions. We assume that integer arithmetic operations can be performed in (1), i.e. independent of the size of the integer.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • Fractal Dimension and Space Filling Curve
    Fractal Dimension and Space Filling Curve Ana Karina Gomes [email protected] Instituto Superior T´ecnico,Lisboa, Portugal May 2015 Abstract Space-filling curves are computer generated fractals that can be used to index low-dimensional spaces. There are previous studies using them as an access method in these scenarios, although they are very conservative only applying them up to four-dimensional spaces. Additionally, the alternative access methods tend to present worse performance than a linear search when the spaces surpass the ten dimensions. Therefore, in the context of my thesis, I study the space-filling curves and their properties as well as challenges presented by multidimensional data. I propose their use, specifically the Hilbert curve, as an access method for indexing multidimensional points up to thirty dimensions. I start by mapping the points to the Hilbert curve generating their h-values. Then, I develop three heuristics to search for approximate nearest neighbors of a given query point with the aim of testing the performance of the curve. Two of the heuristics use the curve as a direct access method and the other uses the curve as a secondary key retrieval combined with a B-tree variant. These result from an iterative process that basically consists of planning, conceiving and testing the heuristic. According to the test results, the heuristic is adjusted or a new one is created. Experimental results with the three heuristics prove that the Hilbert curve can be used as an access method, and that it can operate at least in spaces up to thirty-six dimensions.
    [Show full text]
  • Algorithms for Scientific Computing
    Algorithms for Scientific Computing Space-Filling Curves in 2D and 3D Michael Bader Technical University of Munich Summer 2016 Classification of Space-filling Curves Definition: (recursive space-filling curve) A space-filling curve f : I ! Q ⊂ Rn is called recursive, if both I and Q can be divided in m subintervals and sudomains, such that (µ) (µ) • f∗(I ) = Q for all µ = 1;:::; m, and • all Q(µ) are geometrically similar to Q. Definition: (connected space-filling curve) A recursive space-filling curve is called connected, if for any two neighbouring intervals I(ν) and I(µ) also the corresponding subdomains Q(ν) and Q(µ) are direct neighbours, i.e. share an (n − 1)-dimensional hyperplane. Michael Bader j Algorithms for Scientific Computing j Space-Filling Curves in 2D and 3D j Summer 2016 2 Connected, Recursive Space-filling Curves Examples: • all Hilbert curves (2D, 3D, . ) • all Peano curves Properties: connected, recursive SFC are • continuous (more exact: Holder¨ continuous with exponent 1=n) • neighbourship-preserving • describable by a grammar • describable in an arithmetic form (similar to that of the Hilbert curve) Related terms: • face-connected, edge-connected, node-connected, . • also used for the induced orders on grid cells, etc. Michael Bader j Algorithms for Scientific Computing j Space-Filling Curves in 2D and 3D j Summer 2016 3 Approximating Polygons of the Hilbert Curve Idea: Connect start and end point of iterate on each subcell. Definition: The straight connection of the 4n + 1 points h(0); h(1 · 4−n); h(2 · 4−n);:::; h((4n − 1)
    [Show full text]
  • The Fractal Construction by Iterated Function Systems
    THE FRACTAL CONSTRUCTION BY ITERATED FUNCTION SYSTEMS Elvira Goga Polytechnic University of Tirana, Sheshi Nënë Tereza, Tirana, [email protected] Abstract This paper presents the theory and algorithms for computing fractals from Iterated Function Systems ( IFS ). The algorithms presented are the Deterministic Algorithm and the Random Iteration Algorithm in the space ( ) with the Hausdorff metric. The Hausdorff metric is the most natural metric in comparing objects in an ideal geometric space, like the fractal objects illustrated in the paper. These algorithmℝ =s 2will illustrate through visual means. The fundamental property of an Iterated Function System is that each IFS determines a unique attractor, which is typically a fractal. Any set of affine transformations and an associated set of probabilities determines an Iterated Function System. These probabilities play an important role in the computation of images of the attractor of an Iterated Function System using the Random Iteration Algorithm. They play no role in the Deterministic Algorithm. One of the advantages of using an Iterated Function System is that the dimension of the attractor is often relatively easy to estimate in terms of the defining contractions. A dimension contains much informacion about the geometrical properties of a set. This paper discusses about the Hausdorff dimension and box dimension of the attractor of an Iterated Function System consisting of contractions that are similarities. Finally, this paper gives construction of some fractals by Iterated Function Systems and finds the Hausdorff and box dimensions of some self-similar fractals. Keywords: fractal, iteration, deterministic algorithm, random algorithm, dimension 1. Introduction The fractal, as a mathematical phenomenon, dates back to the Weierstrass nowhere differentiable continuous function (Figure 7), to the classic Cantor set (Figure 8), to the Hilbert space filling curve (Figure 9), and even beyond.
    [Show full text]
  • Fractint Formula for Overlaying Fractals
    Journal of Information Systems and Communication ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012, pp.-347-352. Available online at http://www.bioinfo.in/contents.php?id=45 FRACTINT FORMULA FOR OVERLAYING FRACTALS SATYENDRA KUMAR PANDEY1, MUNSHI YADAV2 AND ARUNIMA1 1Institute of Technology & Management, Gorakhpur, U.P., India. 2Guru Tegh Bahadur Institute of Technology, New Delhi, India. *Corresponding Author: Email- [email protected], [email protected] Received: January 12, 2012; Accepted: February 15, 2012 Abstract- A fractal is generally a rough or fragmented geometric shape that can be split into parts, each of which is a reduced-size copy of the whole a property called self-similarity. Because they appear similar at all levels of magnification, fractals are often considered to be infi- nitely complex approximate fractals are easily found in nature. These objects display self-similar structure over an extended, but finite, scale range. Fractal analysis is the modelling of data by fractals. In general, fractals can be any type of infinitely scaled and repeated pattern. It is possible to combine two fractals in one image. Keywords- Fractal, Mandelbrot Set, Julia Set, Newton Set, Self-similarity Citation: Satyendra Kumar Pandey, Munshi Yadav and Arunima (2012) Fractint Formula for Overlaying Fractals. Journal of Information Systems and Communication, ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, pp.-347-352. Copyright: Copyright©2012 Satyendra Kumar Pandey, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Amplification Matrix Iteration Algorithm to Generate the Hilbert Peano Curve
    Transactions on Computer Science and Technology June 2014, Volume 3, Issue 2, PP.41-47 Amplification Matrix Iteration Algorithm to Generate the Hilbert-Peano Curve Zhengwen Peng, Xin Lu# Department of Mathematics and Computer Science, Nanchang Normal University, 330032, China #Corresponding author: [email protected] Abstract The methods to construct the Hilbert-Peano curve are recursive and non-recursive; methods of L-grammar system, different methods have different characteristics. In this document, from the prospective of non-recursive to analyze the characteristics of Hilbert-Peano curve, adopt the amplification curve characteristic matrix iteration algorithm constructs the Hilbert-Peano curve, compares the algorithm with the non-recursive algorithm in time-space-consuming. Prove that this algorithm has more advantages on large scale than L-system of non-recursive algorithm. Keywords: Hilbert-Peano Curve; Fractal; Iteration Matrix 1 INTRODUCTION For Euclidean geometry, consider a one-dimensional only line or line segment, the two-dimensional nature belongs to the plane. In 1890, however, mathematicians G.Peano studying G.Cantor set in an attempt to use the curve to fill on the basis of two-dimensional plane, mathematician Hilbert subsequently proved feasible in 1891, and found the famous two-dimensional Hilbert-Peano plane filling curve [1], as shown in Fig. 1. FIG. 1 THE HILBERT-PEANO CURVE GENERATED ITERATION 3 TIMES In environment at that time, mathematicians realized plane filling curve for just stay on the level of questioning curiosity, thought by the seemingly simple structure of the line can constitute a complex curve, and uninterrupted don't repeat to fill the whole plane, that curve was of no use Euclidean geometry to explain and measure it, more can't imagine after one hundred will be widely used in computer graphics, image processing technology.
    [Show full text]
  • Interactive Evolutionary 3D Fractal Modeling
    Interactive Evolutionary 3D Fractal Modeling PANG,Wenjun A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy Mechanical and Automation Engineering The Chinese University of Hong Kong September 2009 im s <• •广t ; • •产Villis. •- :. •• . ., r. »> I Thesis / Assessment Committee Professor Ronald Chung (Chair) Professor K.C. Hui (Thesis Supervisor) Professor Charlie C.L. Wang (Committee Member) ACKNOWLEDGEMENTS My sincere appreciation goes to my supervisor, Professor Kinchuen Hui, who continuously orients my research towards the right direction, provides full academic and spiritual support and corrects my English in thesis writing. Without his constant guidance and encouragement, this work would not have been finished successfully. I would also express my deep gratitude to Professor Charlie C. L. Wang for his valuable advices and support to my research. All the fellow members in Computer-Aided Design Lab and staffs in the Department General Office deserve my appreciation for making my life easier and happier during my study. I would like to express special thanks to Wang Chengdong, whose selfless help and encouragement give me so much confidence in my life and research. I am thankful to Yuki for helping me with her ideas that improved my understanding of the scope of my work. Ill ABSTRACT Research on art fractal has captured wide attention and gained considerable achievement in the past two decades. Most related works focus on developing two dimensional fractal art, and the fractal art tools usually just assist in the creation process, but cannot perform an automatic generation associated with aesthetic evaluation. The percentage of visually attractive fractals generated by fractal art construction formula, such as Iterated Function Systems, is not high.
    [Show full text]
  • Space-Filling Curves
    Chapter 2 Space-Filling Curves Summary. We begin with an example of a space-filling curve and demon- strate how it can be used to find a short tour through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. We then consider the space-filling curve heuristic for the traveling salesperson problem and show how a corresponding order of the points can be computed fast, in particular in a probabilistic setting. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks. 2.1 Introduction 2.1.1 Example: Heuristic for Traveling Salesperson Problem A space-filling curve maps a 1-dimensional space onto a higher-dimensional space, e.g., the unit interval onto the unit square. We will use space-filling curves in the form of the space-filling curve heuristic for the NP-hard Euclidean traveling salesperson problem [67]. The Euclidean traveling salesperson problem is the problem of finding the shortest closed tour through a set of points. Figure 2.1 shows a point set, tours through the point set constructed using the space-filling curve heuristic with two different space-filling curves, and the shortest tour through the point set. We demonstrate the space-filling curve heuristic for this task by the example of the two-dimensional Hilbert curve [78]. Consider the following construction (a) Point set (b) Heuristic using (c) Heuristic using (d) Shortest tour Moore curve Sierpi´nskicurve Figure 2.1: Short tours through a point set.
    [Show full text]