Metazoan Parasite Communities of Two Deep-Sea Elasmobranchs

Total Page:16

File Type:pdf, Size:1020Kb

Metazoan Parasite Communities of Two Deep-Sea Elasmobranchs Parasite 25, 53 (2018) Ó J.F. Espínola-Novelo et al., published by EDP Sciences, 2018 https://doi.org/10.1051/parasite/2018054 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Metazoan parasite communities of two deep-sea elasmobranchs: the southern lanternshark, Etmopterus granulosus, and the largenose catshark, Apristurus nasutus, in the Southeastern Pacific Ocean Juan F. Espínola-Novelo1, Rubén Escribano2,3, and Marcelo E. Oliva3,4,* 1 Programa de Doctorado en Ciencias Aplicadas, mención Sistemas Marinos Costeros, Universidad de Antofagasta, P.O. Box 179, Antofagasta, Chile 2 Departamento Oceanografía, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile 3 Millennium Institute of Oceanography (IMO), Universidad de Concepción, P.O. Box 160-C, Concepción, Chile 4 Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, P.O. Box 170, Antofagasta, Chile Received 3 April 2018, Accepted 29 October 2018, Published online 20 November 2018 Abstract – Two deep-sea shark species were obtained as by-catch of the local fishery of the Patagonian toothfish, Dissostichus eleginoides, at depths ranging from 1000 to 2200 m off central and northern Chile. A total of 19 parasite taxa were found in 133 specimens of the southern lanternshark, Etmopterus granulosus,(n = 120) and largenose catshark, Apristurus nasutus, (n = 13). Fourteen taxa (four Monogenea, one Digenea, four Cestoda, one Nematoda, two Copepoda, one Annelida and one Thecostraca) were found in E. granulosus, whereas five taxa (one Monogenea, two Cestoda and two Nematoda) were found in A. nasutus. Representatives of Cestoda showed higher values of preva- lence and a greater intensity of infection; this pattern is consistent with reports for elasmobranchs, but the monoge- nean richness was higher than that previously reported for related deep-sea sharks. Regarding E. granulosus,a positive and significant correlation between host length and abundance was found for six (four ectoparasites, one mesoparasite, and one endoparasite) of the 14 taxa recorded, but prevalence was significantly correlated with host length only for the monogenean Asthenocotyle sp. Although the sample size for A. nasutus was limited, we compared richness, abundance, diversity and evenness at the infracommunity and component community levels. All of these variables were higher for E. granulosus, but at the infracommunity level, abundance was higher for A. nasutus. All the parasite taxa (except two) represent new host and geographical records. Key words: Deep-sea sharks, metazoan parasites, biodiversity, Southeastern Pacific Ocean. Résumé – Communautés des parasites métazoaires de deux élasmobranches de mer profonde, Etmopterus granulosus et Apristurus nasutus, dans le sud-est de l’océan Pacifique. Deux espèces de requins des grands fonds ont été obtenues comme prises accessoires de la pêcherie locale de Légine australe, Dissostichus eleginoides, à des profondeurs allant de 1000 à 2200 m, au large du centre et du nord du Chili. Au total, 19 taxons de parasites ont été trouvés dans 133 spécimens du Sagre long nez Etmopterus granulosus (n = 120) et du Holbiche cyrano Apristurus nasutus (n = 13). Quatorze taxons (quatre Monogenea, un Digenea, quatre Cestoda, un Nematoda, deux Copepoda, un Annelida et un Thecostraca) ont été trouvés chez E. granulosus, tandis que cinq taxons (un Monogenea, deux Cestoda et deux Nematoda) ont été trouvés chez A. nasutus. Les représentants des Cestoda ont montré des valeurs de prévalence plus élevées et une plus grande intensité d’infection; ce schéma concorde bien avec ce qui a été rapporté pour les élasmobranches, mais la richesse des Monogenea était supérieure à celle précédemment rapportée pour les requins de profondeur apparentés. En ce qui concerne E. granulosus, une corrélation positive et significative entre la longueur de l’hôte et l’abondance a été constatée pour six des 14 taxons répertoriés (quatre ectoparasites, un mésoparasite et un endoparasite), mais la prévalence était significativement corrélée à la longueur de l’hôte uniquement pour le Monogène Asthenocotyle sp. Bien que la taille de l’échantillon d’A. nasutus soit limitée, nous avons comparé la richesse, l’abondance, la diversité et la régularité aux niveaux infracommunautaire et communautaire. Toutes ces variables étaient plus élevées pour E. granulosus, mais au niveau infracommunautaire, l’abondance était supérieure pour A. nasutus. Tous les taxons parasites, à l’exception de deux, représentent de nouvelles mentions géographiques et de nouveaux hôtes. *Corresponding author: [email protected] This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2 J.F. Espínola-Novelo et al.: Parasite 2018, 25,53 Introduction Materials and methods The deep-sea (>200 m depth) is the habitat for 10–15% of A total of 133 specimens (E. granulosus =120, the global ichthyofauna [29, 30]. Despite its limited primary A. nasutus = 13) of deep-sea sharks were obtained during production, important marine resources inhabit this environ- 2015–2017 (see Supplementary material) from the by-catch ment [3]; consequently, as coastal fisheries have collapsed, the of the local fishery of the Patagonian toothfish (D. eleginoides) deep-sea region may offer new resources [41]. Accordingly, along the northern (22°160S70°380W–23°260S70°430W) and we need not only clear and adequate knowledge of these poten- central (35°50S–72°530W) Chilean coasts at depths ranging tial new resources but also a sound understanding of the biodi- from1000to2200m(Fig. 1) using a deep-sea longline. The versity of these ecosystems [3, 29]. Parasites are an important sharks were captured, stored in bags and immediately frozen component of any ecosystem, not only because of the number (À18 °C) on board and transported to the laboratory for para- of species (which is higher than the number of free-living spe- sitological analyses. cies) but also because of the role they play in the trophic web After thawing, the sharks were measured (total length to the [16, 31]. Deep-sea fish parasites have often been neglected, nearest 1.0 cm), dissected and examined for metazoan parasites although they are an essential part of marine biodiversity (both ectoparasites and endoparasites). Parasites were recorded [29]. Moreover, through the study of parasites, it is possible by species and abundance for each shark, fixed in AFA (alcohol: to obtain information about their hosts, such as their diet, migra- formalin: acetic acid), and then preserved in 70% alcohol. tory movements and population structures, and the biodiversity Nematoda were cleared with Amann lactophenol. Digenea, and human impacts in the ecosystems where they coexist [34, Monogenea and Cestoda were stained (acetic carmine) and 56, 59]. Consequently, parasites can provide crucial clues about cleared with clove oil (Sigma-Aldrich) and then mounted in the features of the ecosystems inhabited by their hosts. Eukitt medium (O. Kindler GmbH, Germany) [42]. Copepoda Knowledge of the parasite fauna harboured by deep-sea and Thecostraca were stored in ethanol (70%) and dissected fishes is available for less than 10% of the ichthyofauna that for taxonomic purposes. Parasites were identified to the lowest inhabit these ecosystems [29, 30]. This is due to the economic taxonomic level possible. The prevalence and mean intensity of and logistical difficulties in accessing the hosts that inhabit infection were calculated [8]. these ecosystems in comparison with fishes of commercial The quantitative analysis was carried out at the infracom- importance or those that inhabit coastal areas [30]; an alterna- munity and community component levels. For the infracommu- tive is to study hosts from the by-catch of deep-sea commercial nity level, we calculated the richness (number of parasite species. Knowledge regarding the parasites of sharks is scarce species per examined host), abundance (number of parasite [9], and it is even scarcer for the species that inhabit the deep- individuals per examined host) and diversity (Brillouin index) sea. Of the 509 species of sharks known to date, no fewer than using PRIMER v6, parasite species accumulation curves were 250 are considered deep-sea species [58]. Parasitological stud- constructedusingthe‘‘vegan’’packageinRfreeware[44]. ies of species that inhabit these ecosystems focus on the taxo- The Berger-Parker dominance index was calculated as the num- nomic description of some species or new host records, but few ber of individuals of the most abundant parasite species divided include the analysis of the parasite community [14, 15, 25, 28]. by the total number of parasites in a given fish host as indicated For the Southeastern Pacific Ocean (SEPO herein and after), by Dallarés et al. [14]. The descriptors Shannon, Simpson and the same scenario is evident. Of the 68 shark species that have Inverse Simpson diversity index were calculated at the commu- been reported, at least 33 are considered deep-sea sharks [17]. nity component level using the ‘‘vegan’’ package in R freeware. Only five studies have been carried out on the parasites of Because the sample size for A. nasutus was small, the charac- deep-sea sharks for the SEPO [11, 23, 32, 53, 54]. These teristics were described but not compared, as 38% of the spec- papers focus on the taxonomic description
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
    FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines.
    [Show full text]
  • Western Spotted Catshark, Asymbolus Occiduus
    Published Date: 1 March 2019 Western Spotted Catshark, Asymbolus occiduus Report Card Sustainable assessment IUCN Red List IUCN Red List Australian Endemic to Australia Global Least Concern Assessment Assessment Assessors Simpfendorfer, C. & Heupel, M.R. Report Card Remarks Little known shark with limited fishing across its range Summary The Western Spotted Catshark is a small, little known temperate catshark. It is endemic to southern Australia and has a reasonably large geographic and depth range. The species is unlikely to Source: CSIRO National Fish Collection. License: CC BY Attribution be negatively affected by commercial fisheries because there is limited fishing throughout its range. Therefore, it is assessed as Least Concern (IUCN) and Sustainable (SAFS). Distribution The Western Spotted Catshark is distributed along the southern and western coasts of Australia from Fowlers Bay (South Australia) to Perth (Western Australia) (Last and Stevens 2009). Stock structure and status There is currently no information on population size, structure, or trend for the species. Fisheries The Western Spotted Catshark is caught incidentally and very infrequently in the Southern and Eastern Scalefish and Shark Fishery (SESSF). An estimated 69 kg of the species were caught and discarded annually from 2000 to 2006 (Walker and Gason 2007). Habitat and biology The Western Spotted Catshark is found at depths of 98 to 400 m and is most abundant on the outer continental shelf and common off the Western Australian coast. The biology of the species is almost entirely unknown. Adults and juveniles differ significantly in their colour patterns and the association between the two forms was only made recently (Last and Stevens 2009).
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • Abstract Book
    Abstract Book Sharks International Conference UNIVERSIDADE FEDERAL DA PARAÍBA Reitora MARGARETH DE FÁTIMA FORMIGA MELO DINIZ Vice-Reitora BERNARDINA MARIA JUVENAL FREIRE DE OLIVEIRA Pró-Reitora de Pós-graduação MARIA LUIZA PEREIRA DE ALENCAR MAYER FEITOSA EDITORA DA UFPB Diretora IZABEL FRANÇA DE LIMA Supervisão de Administração GEISA FABIANE FERREIRA CAVALCANTE Supervisão de Editoração ALMIR CORREIA DE VASCONCELLOS JUNIOR Supervisão de Produção JOSÉ AUGUSTO DOS SANTOS FILHO CONSELHO EDITORIAL ADAILSON PEREIRA DE SOUZA (CIÊNCIAS AGRÁRIAS) ELIANA VASCONCELOS DA SILVA ESVAEL (LINGUÍSTICA, LETRAS E ARTES) FABIANA SENA DA SILVA (INTERDISCIPLINAR) GISELE ROCHA CÔRTES (CIÊNCIAS SOCIAIS APLICADAS) ILDA ANTONIETA SALATA TOSCANO (CIÊNCIAS EXATAS E DA TERRA) LUANA RODRIGUES DE ALMEIDA (CIÊNCIAS DA SAÚDE) MARIA DE LOURDES BARRETO GOMES (ENGENHARIAS) MARIA PATRÍCIA LOPES GOLDFARB (CIÊNCIAS HUMANAS) MARIA REGINA VASCONCELOS. BARBOSA (CIÊNCIAS BIOLÓGICAS) Edited by Cyntia Rafaela Ferreira de Moraes Vicente Vieira Faria Fernanda Andreoli Rolim Charles F. Cotton Otto Bismarck Fazzano Gadig Ricardo S. Rosa Abstract Book Sharks International Conference Editora UFPB João Pessoa 2018 Abstracts for the 2018 Sharks International Conference SBEEL – Sociedade Brasileira para o Estudo de Elasmobrânquios AES – American Elasmobranch Society Squalus - Fundación colombiana para la investigación y conservación de tiburones y rayas João Pessoa, Brazil 3-8 June 2018 Sharks International Conference 2018 34th Annual Meeting of the American Elasmobranch Society X Reunião da Sociedade Brasileira para o Estudo de Elasmobrânquios VI Encuentro Colombiano sobre Condrictios Edited by Cyntia Rafaela Ferreira de Moraes Vicente Vieira Faria Fernanda Andreoli Rolim Charles F. Cotton Otto Bismarck Fazzano Gadig Ricardo S. Rosa COMMITTEES Organizing Committee Ramón Bonfil Ricardo de Souza Rosa Océanos Vivientes A.
    [Show full text]
  • 1 an Annotated Checklist of the Chondrichthyans of South Africa 1 2 3
    1 An annotated checklist of the chondrichthyans of South Africa 2 3 4 DAVID A. EBERT1, 2, 3, 6, SABINE P. WINTNER4 & PETER M. KYNE5 5 6 1 Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, 7 USA 8 2 South African Institute for Aquatic Biodiversity, Grahamstown, South Africa 9 3 Department of Ichthyology, California Academy of Sciences, San Francisco, USA 10 4 University of KwaZulu-Natal, School of Life Sciences, Durban, South Africa 11 5 Research Institute for the Environment and Livelihoods, Charles Darwin University, 12 Darwin, Australia 13 14 6 Corresponding author: E-mail: [email protected] 15 16 David A. Ebert ORCID ID 0000-0003-4604-8192 17 Sabine P. Wintner ORCID ID 0000-0001-7350-5999 18 Peter M. Kyne ORCID ID 0000-0003-4494-2625 19 20 21 1 1 Abstract 2 3 An annotated checklist of chondrichthyan fishes (sharks, batoids, and chimaeras) 4 occurring in South African waters is presented. The checklist is the result of decades of 5 research and on-going systematic revisions of the regional fauna. The chondrichthyan 6 fauna of South Africa is one of the richest in the world with 191 species, comprising 50 7 families and 103 genera. It consists of 30 families, 64 genera, and 111 species of sharks; 8 17 families, 36 genera, and 72 species of batoids; and, 3 families, 5 genera, and 8 species 9 of chimaeras. The most species-rich shark families are the whaler sharks Carcharhinidae 10 with 20 species followed by the deepwater catsharks Pentanchidae with 13 species.
    [Show full text]
  • With Comments on the Interrelationships of Gurgesiellidae and Pseudorajidae (Pisces, Rajoidei)
    BULLETIN OF MARINE SCIENCE, 29(4): 530-553, 1979 A FURTHER DESCRIPTION OF GURGES/ELLA FURVESCENS WITH COMMENTS ON THE INTERRELATIONSHIPS OF GURGESIELLIDAE AND PSEUDORAJIDAE (PISCES, RAJOIDEI) John D. McEachran and Leonard J. V. Compagno ABSTRACT Additional specimens of Gurgesiella furveseens are used to supplement the original de- scription which was based solely on the holotype. The clasper, neurocranium, pectoral girdle, and pelvic girdle of this species are described and compared with those of the only known congener, G. at/antiea, and with Pseudorajajiseheri. Comparisons support Hulley's (1972b) removal of G. atlantica from Pseudoruja to Gurgesiella. Gurgesiella and Pseudo/'aja share many character states which are considered to be derived within Rajoidei, negating the hypothesis that their resemblances are due to synplesiomorphies. Gurges;eJ/a resembles Allacanlhobalis and Cruriraja in clasper morphology and AllaCtlllthobatis, Cruriruja, Raja (Rioraja) and R. (At/an/oruja) in the structure of its scapulocoracoid. The scapulocoracoid of Pseudvraja resembles those of some Psammobalis species. Both genera possess reduced rostra, that of Gurgesiella was probably derived from an ancestor with a stout or partially reduced rostrum, while the rostrum of Pseudoraja is too reduced 10 determine if it was derived from the Gurgesiella type or from a more slender Iype. However, Gurgesiella and Pseudvruja share five derived characlers, which according to our present knowledge, are unique within Rajoidei. Thus, Gurgesiella and Pseudoraja appear to be a monophyletic group and their resemblances to other taxa can be explained by secondary relationships, parallelisms and retension of primilive character states. Similarilies in shared derived char- acter states implies that separate families for Gurgesie//a and Pseudoraja arc unwarranted and Gurgesiellidae is merged with Pseudorajidae.
    [Show full text]
  • Southern Lanternshark, Etmopterus Baxteri
    Published Date: 1 March 2019 Southern Lanternshark, Etmopterus baxteri Report Card Sustainable assessment IUCN Red List IUCN Red List Refer to Global Australian Global Least Concern Assessment Assessment Assessment Assessors Kyne, P.M. & Paul, L.J. Long lived deepwater shark taken as bycatch but currently with some Report Card Remarks refuge from fishing pressure, although bycatch should be monitored Summary The Southern Lanternshark is a moderately Source: CSIRO Marine and Atmospheric Research 2015 common, deepwater shark that occurs off southern Australia and New Zealand. The species is a common bycatch of Orange Roughy (Hoplostethus atlanticus) and Oreo deepwater fisheries. Most areas of southern Australia below 700 m depth are closed to deepwater fishing, offering it refuge from incidental capture. The species currently has refuge from fishing pressure in areas. Therefore, the species is assessed as Least Concern (IUCN) and in Australia, Sustainable (SAFS). Distribution The Southern Lanternshark occurs in Australia off southern New South Wales, Victoria and Tasmania, including seamounts to the south (Last and Stevens 2009). In New Zealand it is abundant on the south Chatham Rise, east of New Zealand (Dunn et al. 2013). Distribution records from anywhere other than Australia and New Zealand are based on a former misidentification of Etmopterus granulosus (also called Southern Lanternshark) (Ebert et al. 2013). Stock structure and status There is currently no information on population size, structure, or trend for the species. Fisheries In Australia, it was a moderate bycatch in some deepwater fisheries because its depth range coincided, in part, with that of some commercially important teleosts such as Orange Roughy.
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • First Report of the Whitesaddled Catshark Scyliorhinus Hesperius
    Hacohen-Domené et al. Marine Biodiversity Records (2016) 9:101 DOI 10.1186/s41200-016-0103-9 MARINE RECORD Open Access First report of the whitesaddled catshark Scyliorhinus hesperius (Springer 1966) in Guatemala’s Caribbean Sea Ana Hacohen-Domené1* , Francisco Polanco-Vásquez1 and Rachel T. Graham2 Abstract Background: The present study represents the first record of Scyliorhinus hesperius in Guatemala’s Caribbean Sea. Methods: Five male whitesaddled catsharks, S. hesperius, were captured in 200 m deep waters of Guatemala’s Caribbean coast. Results and Conclusion: All specimens were male with total lengths ranging from 420 mm to 510 mm. These fish represent the first record of mature male S. hesperius, the first record for this species in Guatemalan territorial waters,andarangeextensionintheWesternCentralAtlantic. Keywords: Deep-water chondrichthyans, First record, Range extension, Caribbean, Background (TL). Additionally Springer (1966) examined 12 specimens, Scyliorhinidae (catsharks) constitute the largest shark sex not specified, ranging in total length from 177–460 mm. family with at least 160 species distributed across 17 All specimens were captured between 274 m and 530 m genera (Ebert et al. 1996). These species are broadly depth in the Western Caribbean near Jamaica and distributed throughout temperate and tropical waters, Honduras and southward towards Panama and Columbia inhabiting the bottom of shallow and deep waters over (Springer 1966). Later, Ross and Quattrini (2009) reported 100 m (Nakaya 1975). Catsharks are small, demersal sightings of three individual sharks S. hesperius resting on species, and relatively poor swimmers (Compagno et al. thick coral rubble between 580–604 m depth, off of 2005). Jacksonville, Florida, while conducting deep water dives The genus Scyliorhinus Blainville 1816, is comprised on deep reefs along the southeastern US continental of 16 species distributed in cold, subtemperate to shelf slope.
    [Show full text]
  • Apristurus Manocheriani (Carcharhiniformes: Pentanchidae), a New Species of Catshark from the Southwest Indian Ocean
    Journal of the Ocean Science Foundation 2021, Volume 38 Apristurus manocheriani (Carcharhiniformes: Pentanchidae), a new species of catshark from the Southwest Indian Ocean JUSTIN A. CORDOVA Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA https://orcid.org/0000-0002-5138-8629 E-mail: [email protected] DAVID A. EBERT Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA Research Associate, Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA. 94118, USA Research Associate, South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa https://orcid.org/0000-0003-4604-8192 E-mail: [email protected] Abstract A new species of catshark, Apristurus manocheriani n. sp., is described from 8 specimens collected from seamounts in the southwest Indian Ocean (SWIO). The new species is placed in the Apristurus spongiceps subgroup and is only the second known species in this subgroup occurring in the western Indian Ocean. Geographically, A. manocheriani is known only from the SWIO, while its two closest congeners are from distant locations: Apristurus albisoma Nakaya & Séret, 1999 occurs in the southwest Pacific Ocean and Apristurus aphyodes Nakaya & Stehmann, 1998 in the northeast Atlantic. Key words: taxonomy, ichthyology, Chondrichthyes, elasmobranch, seamounts, Southwest Indian Ridge. Citation: Cordova, J.A. & Ebert, D.A. (2021) Apristurus manocheriani (Carcharhiniformes:
    [Show full text]