Atmospheric Circulation-II

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Circulation-II Atmospheric Circulation-II GEOL 1350: Introduction To Meteorology 1 Overview Primary Cause of the General Circulation Three Cell Circulation Important Large-scale Atmospheric Circulation Inter-tropical Convergence Zone (ITCZ) Jet Stream Walker Circulation El Nino and Southern Oscillation North Atlantic Oscillation 2 Atmospheric General Circulation (global circulation) – averaged wind patterns around the globe (Actual winds at any given place and any given time may vary considerably from this average) 3 Primary Cause of the General Circulation • Unequal heating of the earth’s surface • Temperature gradients --- Pressure gradients --- Winds 4 Primary Cause of the General Circulation This build-up of heat around the equator and depletion in polar regions is responsible for the poleward flow (transport) of heat energy to equalize the total energy distribution. That is one of the driving forces in the circulation patterns. 5 Primary Cause of the General Circulation Jan Jul • The geographical distribution of temperature and its seasonal variability closely follows the geographical distribution of solar radiation. 6 Primary Cause of the General Circulation • Temperature plays a direct role in determining the climate of every region. • Temperature differences are also key in driving the global atmospheric circulation. • Warm air tends to rise because it is light, while cold air tends to sink because it is dense, this leads to motion in the atmosphere. • The tropical circulation is a good example of this. 7 Primary Cause of the General Circulation • Surface air converges and rises at the equator, spreads laterally toward the poles, descends and flows back toward equator at the surface. 8 Three Cells Circulation • A thermally direct circulation in the tropics (Hadley Cell), with rising motion around the equator and sinking motion at about 30 latitude. • A thermally indirect circulation in the middle latitudes (Ferrel Cell), with rising motion at 60 and sinking motion along with the Hadley cell at about 30. • Another weaker direct circulation in the polar regions (polar cell) with rising motion at about 60 and sinking motion over the pole. 9 Global Air Circulation http://www.emc.maricopa.edu/faculty/farabee/biobk/deserts.gif 10 11 Dividing the global into several latitude bands 12 Definition of the key terms 13 Intertropical convergence zone (ITCZ) – the boundary where the northeasterly trade winds in NH converge with the southeasterly trade winds in the SH Polar Front – a semi permanent front that separates tropical air masses from polar air masses Subpolar low – a zone of low pressure near the polar front Polar Easterlies – shallow layer of northeasterly flows formed when the southward moving cold polar air behind the polar front is deflected by the Coriolis force to the right of its path. 14 Weak winds near equatorial region and 30o latitude belt Easterly winds dominate from equator to 30o (Trade winds) from pole to 60o (Polar easterly) Westerly winds predominate between 30 to 60o 15 (mid-latitude) Key features of the Three-Cell Model Polar high Ferrel cell Subpolar low Subtropical high Tropical low 16 Jet Streams – . very strong winds concentrated within a narrow band in the atmosphere . may be thousands of kilometers long, a few hundred meters wide, and a few kilometers thick . are usually found at the tropopause between 10 and 15 km . the region of the greatest wind within the jet stream is called the jet streak . typically find two jet streams in the NH – polar front jet stream and the subtropical jet stream 17 Jet Streams • North polar jet stream meanders with movement of polar front – In winter may extend as far south as 30o N – In summer average position is 50o N – Because of this migration described as mid-latitude jet stream • Semi-permanent jet stream forms over tropics in winter – Slower than polar jet stream – Centered at about 25o N 18 rst.gsfc.nasa.gov/Sect14/Sect14_1c.html What produces Jet Streams? Rapid changes in pressure in a relative narrow region sets up a steep pressure gradient that intensifies the wind speed and causes the jet stream 19 20 Pressure and wind patterns in the real world • The presence of continents, mountains, and ice fields alters the general circulation from the ideal 3-cell model. • Semi-permanent high and low pressure systems persist throughout large periods of the year – During winter, highs form over land; lows over oceans. Vice versa during summer. • The major pressure systems, wind belts, ITCZ shift toward south in January and toward north in July. 21 22 23 Intertropical Convergence Zone (ITCZ) Source: NOAA GOES-11 & NASA Earth Observatory • Inter-tropical Convergence Zone (ITCZ): The east-west oriented band of intense convection located over the warmest regions of the tropics. • Inside ITCZ, the deep convection is supported by the release of latent heat when moisture condenses. 24 Intertropical Convergence Zone (ITCZ) • ITCZ moves back and forth across equator following the sun’s zenith point. • Variation in the ITCZ locations affect rainfall in the tropics. 25 Four semi-permanent pressure systems: Bermudar high and Pacific high (near latitude at 30o), Icelandic low and Aleutian low (between 40 – 65o) Other highs and lows that are not permanent in nature (change significantly during the course of the year): Siberian high (becomes thermal low in July), intense, responsible for Indian monsoons Canadian high (becomes a thermal low in July), less intense, responsible for Mexico monsoons 26 27 28 Walker Circulation 29 El Nino 30 El Niño • Spanish for ‘Christ Child’ • Originally used by fishermen along the coast of Peru and Ecuador in referring to a warm ocean current appearing near Christmas and lasting a few months • Fish are less abundant during these warm periods because there is less ‘upwelling’ of cold nutrient-rich water • During some years, however, the water remains especially warm and the break in the fishing season extends into May • The term ‘El Niño’ has become reserved for these extreme events 31 El Niño’s economic impact • Economic impact on Peruvian fishing is negative • Seabirds that feed on fish also suffer, along with other parts of the coastal ecosystem Rough estimate of damage around the globe during 1982-83 El Nino. 32 El Niño Conditions • Once every few years, the normal pattern ‘breaks down’ • Pressure decreases in the eastern high and pressure increases in the western low 33 The Southern Oscillation Index • Mean pressure is lower at Darwin than Tahiti • The SOI measures the strength of the Pacific Walker circulation 34 El Niño Southern Oscillation Index 35 El Niño Conditions • The easterly trade winds weaken (or even reverse) • The warm waters of the western tropical Pacific come back to the east because the trade winds are too weak to sustain the tilted sea level 36 El Niño Conditions • The upwelling or rising of the cold nutrient-rich waters off the South American coast ceases • The upward motion, clouds and precipitation moves eastward into the central and eastern Pacific 37 38 Sea-Saw of sea level pressure associated with El Niño and La Niña is shown. During an El Niño the sea level pressure in the east Pacific decrease while that over west Pacific and Indonesia increases. In a La Niña it is higher pressure in the east and lower pressure in the west. 39 40 El Nino has global consequences • Droughts in Australia and Indonesia • Warm, rainy weather in the eastern Pacific and South America 41 Droughts in Australia Flooding in California 42 El Nino has global consequences • Droughts in Australia and Indonesia • Warm, rainy weather in the eastern Pacific and South America 43 La Niña • Opposite to El Niño • Higher than average pressure in the eastern Pacific and lower than average pressure in the western Pacific 44 La Niña • Stronger than normal easterly trade winds • Colder than normal ocean temperatures off of South America • Flooding in Australia and Indonesia 45 The North Atlantic Oscillation • The NAO is the dominant mode of winter climate variability in the North Atlantic region ranging from central North America to Europe and much into Northern Asia. • The NAO is a large scale seesaw in atmospheric mass between the subtropical high and the polar low. The corresponding index varies from year to year, but also exhibits a tendency to remain in one phase for intervals lasting several years. 46 The North Atlantic Oscillation • When the NAO is in its positive phase, low pressure anomalies over the Icelandic region and throughout the Arctic combine with high-pressure anomalies across the subtropical Atlantic to produce stronger-than-average westerlies across middle latitudes 47 The Positive NAO index • phase shows a stronger than usual subtropical high pressure center and a deeper than normal Icelandic low. • The increased pressure difference results in more and stronger winter storms crossing the Atlantic Ocean on a more northerly track. • This results in warm and wet winters in Europe and in cold and dry winters in northern Canada and Greenland • The eastern US experiences mild and wet winter conditions 48 The negative NAO index • phase shows a weak subtropical high and a weak Icelandic low. • The reduced pressure gradient results in fewer and weaker winter storms crossing on a more west-east pathway. • They bring moist air into the Mediterranean and cold air to northern Europe • The US east coast experiences more cold air outbreaks and hence snowy weather conditions. • Greenland, however, will have milder winter temperatures 49 SUMMARY 1. The largest pattern of winds that persists around the globe is called the general circulation. 2. At the surface in both hemispheres, winds tend to blow from east in the tropics, from the west in the middle latitudes, and from the east in polar regions. 3. Where upper-level westerly winds tend to concentrate into narrow bands, we find jet streams.
Recommended publications
  • Responses of the Hydrological Cycle to Solar Forcings
    1 Responses of the hydrological cycle to solar forcings Jane Smyth Advised by Dr. Trude Storelvmo Second Reader Dr. William Boos May 6, 2016 A Senior Thesis presented to the faculty of the Department of Geology and Geophysics, Yale University, in partial fulfillment of the Bachelor’s Degree. In presenting this thesis in partial fulfillment of the Bachelor’s Degree from the Department of Geology and Geophysics, Yale University, I agree that the department may make copies or post it on the departmental website so that others may better understand the undergraduate research of the de- partment. I further agree that extensive copying of this thesis is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes or financial gain is not allowed without my written consent. Jane Elizabeth Smyth, 6 May, 2016 RESPONSESOFTHE HYDROLOGICALCYCLETOjane smyth SOLARFORCINGS Senior Thesis advised by dr. trude storelvmo 1 Chapter I: Solar Geoengineering 4 contents1.1 Abstract . 4 1.2 Introduction . 5 1.2.1 Solar Geoengineering . 5 1.2.2 The Hydrological Cycle . 5 1.3 Models & Methods . 7 1.4 Results and Discussion . 9 1.4.1 Thermodynamic Scaling of Net Precipitation . 9 1.4.2 Dynamically Driven Precipitation . 12 1.4.3 Relative Humidity . 12 1.5 Conclusions . 14 1.6 Appendix . 16 2 Chapter II: Orbital Precession 22 2.1 Abstract . 22 2.2 Introduction . 23 2.3 Experimental Design & Methods . 24 2.3.1 Atmospheric Heat Transport . 25 2.3.2 Hadley Circulation . 25 2.3.3 Gross Moist Stability .
    [Show full text]
  • How the Ocean Affects Weather & Climate
    Ocean in Motion 6: How does the Ocean Change Weather and Climate? A. Overview 1. The Ocean in Motion -- Weather and Climate In this program we will tie together ideas from previous lectures on ocean circulation. The students will also learn about the similarities and interactions between the atmosphere and the ocean. 2. Contents of Packet Your packet contains the following activities: I. A Sea of Words B. Program Preparation 1. Focus Points OThe oceans and the atmosphere are closely linked 1. the sun heats the atmosphere as well as the oceans 2. water evaporates from the ocean into the atmosphere a. forms clouds and precipitation b. movement of any fluid (gas or liquid) due to heating creates convective currents OWeather and climate are two different things. 1. Winds a. Uneven heating and cooling of the atmosphere creates wind b. Global ocean surface current patterns are similar to global surface wind patterns c. wind patterns are analogous to ocean currents 2. Four seasons OAtmospheric motion 1. weather and air moves from high to low pressure areas 2. the earth's rotation also influences air and weather patterns 3. Atmospheric winds move surface ocean currents. ©1998 Project Oceanography Spring Series Ocean in Motion 1 C. Showtime 1. Broadcast Topics This broadcast will link into discussions on ocean and atmospheric circulation, wind patterns, and how climate and weather are two different things. a. Brief Review We know the modern reason for studying ocean circulation is because it is a major part of our climate. We talked about how the sun provides heat energy to the world, and how the ocean currents circulate because the water temperatures and densities vary.
    [Show full text]
  • Basic Concepts in Oceanography
    Chapter 1 XA0101461 BASIC CONCEPTS IN OCEANOGRAPHY L.F. SMALL College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America Abstract Basic concepts in oceanography include major wind patterns that drive ocean currents, and the effects that the earth's rotation, positions of land masses, and temperature and salinity have on oceanic circulation and hence global distribution of radioactivity. Special attention is given to coastal and near-coastal processes such as upwelling, tidal effects, and small-scale processes, as radionuclide distributions are currently most associated with coastal regions. 1.1. INTRODUCTION Introductory information on ocean currents, on ocean and coastal processes, and on major systems that drive the ocean currents are important to an understanding of the temporal and spatial distributions of radionuclides in the world ocean. 1.2. GLOBAL PROCESSES 1.2.1 Global Wind Patterns and Ocean Currents The wind systems that drive aerosols and atmospheric radioactivity around the globe eventually deposit a lot of those materials in the oceans or in rivers. The winds also are largely responsible for driving the surface circulation of the world ocean, and thus help redistribute materials over the ocean's surface. The major wind systems are the Trade Winds in equatorial latitudes, and the Westerly Wind Systems that drive circulation in the north and south temperate and sub-polar regions (Fig. 1). It is no surprise that major circulations of surface currents have basically the same patterns as the winds that drive them (Fig. 2). Note that the Trade Wind System drives an Equatorial Current-Countercurrent system, for example.
    [Show full text]
  • Hadley Cell and the Trade Winds of Hawai'i: Nā Makani
    November 19, 2012 Hadley Cell and the Trade Winds of Hawai'i Hadley Cell and the Trade Winds of Hawai‘i: Nā Makani Mau Steven Businger & Sara da Silva [email protected], [email protected] Iasona Ellinwood, [email protected] Pauline W. U. Chinn, [email protected] University of Hawai‘i at Mānoa Figure 1. Schematic of global circulation Grades: 6-8, modifiable for 9-12 Time: 2 - 10 hours Nā Honua Mauli Ola, Guidelines for Educators, No Nā Kumu: Educators are able to sustain respect for the integrity of one’s own cultural knowledge and provide meaningful opportunities to make new connections among other knowledge systems (p. 37). Standard: Earth and Space Science 2.D ESS2D: Weather and Climate Weather varies day to day and seasonally; it is the condition of the atmosphere at a given place and time. Climate is the range of a region’s weather over one to many years. Both are shaped by complex interactions involving sunlight, ocean, atmosphere, latitude, altitude, ice, living things, and geography that can drive changes over multiple time scales—days, weeks, and months for weather to years, decades, centuries, and beyond for climate. The ocean absorbs and stores large amounts of energy from the sun and releases it slowly, moderating and stabilizing global climates. Sunlight heats the land more rapidly. Heat energy is redistributed through ocean currents and atmospheric circulation, winds. Greenhouse gases absorb and retain the energy radiated from land and ocean surfaces, regulating temperatures and keep Earth habitable. (A Framework for K-12 Science Education, NRC, 2012) Hawai‘i Content and Performance Standards (HCPS) III http://standardstoolkit.k12.hi.us/index.html 1 November 19, 2012 Hadley Cell and the Trade Winds of Hawai'i STRAND THE SCIENTIFIC PROCESS Standard 1: The Scientific Process: SCIENTIFIC INVESTIGATION: Discover, invent, and investigate using the skills necessary to engage in the scientific process Benchmarks: SC.8.1.1 Determine the link(s) between evidence and the Topic: Scientific Inquiry conclusion(s) of an investigation.
    [Show full text]
  • Chapter 7 100 Years of the Ocean General Circulation
    CHAPTER 7 WUNSCH AND FERRARI 7.1 Chapter 7 100 Years of the Ocean General Circulation CARL WUNSCH Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts RAFFAELE FERRARI Massachusetts Institute of Technology, Cambridge, Massachusetts ABSTRACT The central change in understanding of the ocean circulation during the past 100 years has been its emergence as an intensely time-dependent, effectively turbulent and wave-dominated, flow. Early technol- ogies for making the difficult observations were adequate only to depict large-scale, quasi-steady flows. With the electronic revolution of the past 501 years, the emergence of geophysical fluid dynamics, the strongly inhomogeneous time-dependent nature of oceanic circulation physics finally emerged. Mesoscale (balanced), submesoscale oceanic eddies at 100-km horizontal scales and shorter, and internal waves are now known to be central to much of the behavior of the system. Ocean circulation is now recognized to involve both eddies and larger-scale flows with dominant elements and their interactions varying among the classical gyres, the boundary current regions, the Southern Ocean, and the tropics. 1. Introduction physical regimes, understanding of the ocean until relatively recently greatly lagged that of the atmo- In the past 100 years, understanding of the general sphere. As in almost all of fluid dynamics, progress circulation of the ocean has shifted from treating it as an in understanding has required an intimate partnership essentially laminar, steady-state, slow, almost geological, between theoretical description and observational or flow, to that of a perpetually changing fluid, best charac- laboratory tests. The basic feature of the fluid dynamics terized as intensely turbulent with kinetic energy domi- of the ocean, as opposed to that of the atmosphere, has nated by time-varying flows.
    [Show full text]
  • Climate and Atmospheric Circulation of Mars
    Climate and QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Atmospheric Circulation of Mars: Introduction and Context Peter L Read Atmospheric, Oceanic & Planetary Physics, University of Oxford Motivating questions • Overview and phenomenology – Planetary parameters and ‘geography’ of Mars – Zonal mean circulations as a function of season – CO2 condensation cycle • Form and style of Martian atmospheric circulation? • Key processes affecting Martian climate? • The Martian climate and circulation in context…..comparative planetary circulation regimes? Books? • D. G. Andrews - Intro….. • J. T. Houghton - The Physics of Atmospheres (CUP) ALSO • I. N. James - Introduction to Circulating Atmospheres (CUP) • P. L. Read & S. R. Lewis - The Martian Climate Revisited (Springer-Praxis) Ground-based observations Percival Lowell Lowell Observatory (Arizona) [Image source: Wikimedia Commons] Mars from Hubble Space Telescope Mars Pathfinder (1997) Mars Exploration Rovers (2004) Orbiting spacecraft: Mars Reconnaissance Orbiter (NASA) Image credits: NASA/JPL/Caltech Mars Express orbiter (ESA) • Stereo imaging • Infrared sounding/mapping • UV/visible/radio occultation • Subsurface radar • Magnetic field and particle environment MGS/TES Atmospheric mapping From: Smith et al. (2000) J. Geophys. Res., 106, 23929 DATA ASSIMILATION Spacecraft Retrieved atmospheric parameters ( p,T,dust...) - incomplete coverage - noisy data..... Assimilation algorithm Global 3D analysis - sequential estimation - global coverage - 4Dvar .....? - continuous in time - all variables...... General Circulation Model - continuous 3D simulation - complete self-consistent Physics - all variables........ - time-dependent circulation LMD-Oxford/OU-IAA European Mars Climate model • Global numerical model of Martian atmospheric circulation (cf Met Office, NCEP, ECMWF…) • High resolution dynamics – Typically T31 (3.75o x 3.75o) – Most recently up to T170 (512 x 256) – 32 vertical levels stretched to ~120 km alt.
    [Show full text]
  • Chapter 9 : Air Mass Air Masses Source Regions
    4/29/2011 Chapter 9 : Air Mass • Air masses Contain uniform temperature and humidity characteristics. • Fronts Boundaries between unlike air • Air Masses masses. • Fronts • Fronts on Weather Maps ESS124 ESS124 Prof. Jin-Jin-YiYi Yu Prof. Jin-Jin-YiYi Yu Air Masses • Air masses have fairly uniform temperature and moisture Source Regions content in horizontal direction (but not uniform in vertical). • Air masses are characterized by their temperature and humidity • The areas of the globe where air masses from are properties. called source regions. • The properties of air masses are determined by the underlying • A source region must have certain temperature surface properties where they originate. and humidity properties that can remain fixed for a • Once formed, air masses migrate within the general circulation. substantial length of time to affect air masses • UidilidliliUpon movement, air masses displace residual air over locations above it. thus changing temperature and humidity characteristics. • Air mass source regions occur only in the high or • Further, the air masses themselves moderate from surface low latitudes; middle latitudes are too variable. influences. ESS124 ESS124 Prof. Jin-Jin-YiYi Yu Prof. Jin-Jin-YiYi Yu 1 4/29/2011 Cold Air Masses Warm Air Masses January July January July • The cent ers of cold ai r masses are associ at ed with hi gh pressure on surf ace weath er • The cen ters o f very warm a ir masses appear as sem i-permanentit regions o flf low maps. pressure on surface weather maps. • In summer, when the oceans are cooler than the landmasses, large high-pressure • In summer, low-pressure areas appear over desert areas such as American centers appear over North Atlantic (Bermuda high) and Pacific (Pacific high).
    [Show full text]
  • El Niño and La Niña
    About the Images What are El Niño and La Niña? The images show El Niño, neutral, and La Niña sea surface The naturally occurring El Niño and La Niña phenomenon rep- heights (SSHs) relative to a reference state established in resents a “dance” between the atmosphere and ocean in the 1992. In the equatorial region of the Pacific Ocean, the SSH equatorial Pacific Ocean. Sometimes the atmosphere leads the during El Niño was higher by more than 18 cm over a large ocean and causes ocean conditions, and sometimes the ocean longitudinal region. The warmer water associated with El Niño leads the atmosphere and produces atmospheric motions that— displaces colder water in the upper layer of the ocean causing when strong enough—influence global atmospheric circulation. an increase in SSH because of thermal expansion. During La Sea surface temperature (SST) is the critical variable connecting Niña the temperature of the upper ocean is lower than normal, the atmosphere and ocean. Since SSH measurements yield criti- causing SSH to decrease because of thermal contraction. The cal information about the depth of the subsurface temperatures, neutral condition occurs when the upper-ocean temperature e.g., the thermocline, they provide key information on the onset, is “normal.” Red and white shades indicate high SSHs relative maintenance, and dissipation of El Niño and La Niña events. to the reference state, while blue and purple shades indicate SSHs lower than the reference state. Neutral conditions appear The 2015 El Niño Event green. The El Niño and neutral images are derived using data After five consecutive months with SSTs 0.5 °C above the acquired by the Ocean Surface Topography Mission (OSTM)/Jason-2 long-term mean, the National Oceanic and Atmospheric Admin- satellite.
    [Show full text]
  • Atmospheric General Circulation
    LectureLecture 5:5: AtmosphericAtmospheric GeneralGeneral CirculationCirculation JS JP HadleyHadley CellCell FerrelFerrel CellCell PolarPolar CellCell (driven by eddies) LHL H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the Stratosphere Wind-Driven Ocean Circulation ESS55 Prof. Jin-Yi Yu SingleSingle--CellCell Model:Model: ExplainsExplains WhyWhy ThereThere areare TropicalTropical EasterliesEasterlies Without Earth Rotation With Earth Rotation Coriolis Force (Figures from Understanding Weather & Climate and The Earth System) ESS55 Prof. Jin-Yi Yu BreakdownBreakdown ofof thethe SingleSingle CellCell ÎÎ ThreeThree--CellCell ModelModel Absolute angular momentum at Equator = Absolute angular momentum at 60°N The observed zonal velocity at the equatoru is ueq = -5 m/sec. Therefore, the total velocity at the equator is U=rotational velocity (U0 + uEq) The zonal wind velocity at 60°N (u60N) can be determined by the following: (U0 + uEq) * a * Cos(0°) = (U60N + u60N) * a * Cos(60°) (Ω*a*Cos0° - 5) * a * Cos0° = (Ω*a*Cos60° + u60N) * a * Cos(60°) u60N = 687 m/sec !!!! This high wind speed is not observed! ESS55 Prof. Jin-Yi Yu PropertiesProperties ofof thethe ThreeThree CellsCells thermally indirect circulation thermally direct circulation JS JP HadleyHadley CellCell FerrelFerrel CellCell PolarPolar CellCell (driven by eddies) LHL H Equator 30° 60° Pole (warmer) (warm) (cold) (colder) ESS55 Prof. Jin-Yi Yu AtmosphericAtmospheric Circulation:Circulation: ZonalZonal--meanmean ViewsViews Single-Cell Model Three-Cell Model (Figures from Understanding Weather & Climate and The Earth System) ESS55 Prof. Jin-Yi Yu TheThe ThreeThree CellsCells ITCZ Subtropical midlatitude High Weather system (Figures from Understanding Weather & Climate and The Earth System) ESS55 Prof. Jin-Yi Yu ThermallyThermally Direct/IndirectDirect/Indirect CellsCells Thermally Direct Cells (Hadley and Polar Cells) Both cells have their rising branches over warm temperature zones and sinking braches over the cold temperature zone.
    [Show full text]
  • Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 Μm Images
    atmosphere Article Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 µm Images Dmitry A. Gorinov * , Ludmila V. Zasova, Igor V. Khatuntsev, Marina V. Patsaeva and Alexander V. Turin Space Research Institute, Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (L.V.Z.); [email protected] (I.V.K.); [email protected] (M.V.P.); [email protected] (A.V.T.) * Correspondence: [email protected] Abstract: The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60◦ S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20◦ S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20◦ S.
    [Show full text]
  • Weather Numbers Multiple Choices I
    Weather Numbers Answer Bank A. 1 B. 2 C. 3 D. 4 E. 5 F. 25 G. 35 H. 36 I. 40 J. 46 K. 54 L. 58 M. 72 N. 74 O. 75 P. 80 Q. 100 R. 910 S. 1000 T. 1010 U. 1013 V. ½ W. ¾ 1. Minimum wind speed for a hurricane in mph N 74 mph 2. Flash-to-bang ratio. For every 10 second between lightning flash and thunder, the storm is this many miles away B 2 miles as flash to bang ratio is 5 seconds per mile 3. Minimum diameter of a hailstone in a severe storm (in inches) A 1 inch (formerly ¾ inches) 4. Standard sea level pressure in millibars U 1013.25 millibars 5. Minimum wind speed for a severe storm in mph L 58 mph 6. Minimum wind speed for a blizzard in mph G 35 mph 7. 22 degrees Celsius converted to Fahrenheit M 72 22 x 9/5 + 32 8. Increments between isobars in millibars D 4mb 9. Minimum water temperature in Fahrenheit for hurricane development P 80 F 10. Station model reports pressure as 100, what is the actual pressure in millibars T 1010 (remember to move decimal to left and then add either 10 or 9 100 become 10.0 910.0mb would be extreme low so logic would tell you it would be 1010.0mb) Multiple Choices I 1. A dry line front is also known as a: a. dew point front b. squall line front c. trough front d. Lemon front e. Kelvin front 2.
    [Show full text]
  • Global Climate Influencer – Arctic Oscillation
    ARCTIC OSCILLATION GLOBAL CLIMATE INFLUENCER by James Rohman | February 2014 Figure 1. A satellite image of the jet stream. Figure 2. How the jet stream/Arctic Oscillation might affect weather distribution in the Northern Hemisphere. Arctic Oscillation Introduction (%2#4)#)3(/-%4/!3%-)0%2-!.%.4,/702%3352%#)2#5,!4)/. (%2%!2%!.5-"%2/&2%#522).'#,)-!4%%6%.434(!4)-0!#44(%',/"!, +./7.!34(%0/,!26/24%8(!46/24%8)3).#/.34!.4/00/3)4)/.4/!.$ $)342)"54)/./&7%!4(%20!44%2.3.%/&4(%-/2%3)'.)&)#!.4#,)-!4%).$%8%3&/2 4(%2%&/2%2%02%3%.43/00/3).'02%3352%4/4(%7%!4(%20!44%2.3/&4(% 4(%/24(%2.%-)30(%2%)34(%2#4)#3#),,!4)/. ./24(%2.-)$$,%,!4)45$%3)%./24(%2./24(-%2)#!52/0%!.$3)! ).$)#!4%34(%$)&&%2%.#%).3%!,%6%,02%3352%"%47%%.4(% (%2#4)#3#),,!4)/.-%!352%34(%6!2)!4)/.).4(% /24(/,%!.$4(%./24(%2.-)$,!4)45$%34)-0!#437%!4(%2 342%.'4().4%.3)49!.$3):%/&4(%*%4342%!-!3)4%80!.$3 0!44%2.3).4(%/24(%2.%-)30(%2%4(2/5'(4(%0/3)4)6%!.$.%'!4)6% #/.42!#43!.$!,4%23)433(!0%4)3-%!352%$"93%!02%3352% 0(!3%3/&4(%#9#,% !./-!,)%3%)4(%20/3)4)6%/2.%'!4)6%!.$"9/00/3).'!./-!,)%3.%'!4)6% / / /20/3)4)6%).,!4)45$%3(%,03$%&).%4(% %842% -%3/&4(%%##%.42)#)4)%3).4(%*%4 342%!- (%.4(%2%)3!342/.'.%'!4)6%0(!3%4(%*%4342%!-3,/73 52).'4(%;.%'!4)6%0(!3%</&3%!,%6%,02%3352%)3()'().4(% $/7.!.$4!+%3,!2'%-%!.$%2).',//0352).'0/3)4)6%0(!3%34(%*%4 2#4)#7(),%,/73%!,%6%,02%3352%$%6%,/03).4(%./24(%2.
    [Show full text]