Vombatidae, Marsupialia) from Miocene Deposits in the Riversleigh World Heritage Area (Queensland, Australia)

Total Page:16

File Type:pdf, Size:1020Kb

Vombatidae, Marsupialia) from Miocene Deposits in the Riversleigh World Heritage Area (Queensland, Australia) Palaeontologia Electronica palaeo-electronica.org New genus of primitive wombat (Vombatidae, Marsupialia) from Miocene deposits in the Riversleigh World Heritage Area (Queensland, Australia) Philippa Brewer, Michael Archer, Suzanne J. Hand, and Richard Abel ABSTRACT A new genus of primitive wombat, described here, is the most complete early wombat found. Two partial maxillae, as well as isolated teeth, were found within the Riversleigh World Heritage Area in northwestern Queensland, Australia. Previous to this, only a single species of wombat (Rhizophascolonus crowcrofti) was known from deposits older than 10 Ma, despite an estimated divergence date of 40 Ma between wombats and their closest living relative, the koala. We performed a phylogenetic anal- ysis incorporating the new taxon and using dental, cranial and postcranial characters as well as multiple outgroups in order to control for the diverse specialisations of closely related families and the continuing problem of recognising homologies within these groups. The results indicate a sister relationship between the new taxon and R. crowcrofti relative to all other wombats. Based on detailed comparisons between the cheek teeth of wombats, we propose a model which explains the observed differences in cheek tooth form and function in this group. If this model is correct, it could be used to map morphology against diet, and potentially climate. Brewer, Philippa. Department of Earth Sciences, Natural History Museum, London SW7 5BD. [email protected] Archer, Michael. School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia. [email protected] Hand, Suzanne. School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney 2052, New South Wales, Australia. [email protected] Abel, Richard. Faculty of Medicine, Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, England. [email protected] Keywords: new species; new genus; phylogeny; Marsupialia; Vombatidae; Australia http://zoobank.org/65F19586-5DC7-4DC1-8599-C16743FF024D PE Article Number: 18.1.9A Copyright: Palaeontological Association March 2015 Submission: 28 March 2014. Acceptance: 28 January 2015 Brewer, Philippa, Archer, Michael, Hand, Suzanne J., and Abel, Richard. 2015. New genus of primitive wombat (Vombatidae, Marsupialia) from Miocene deposits in the Riversleigh World Heritage Area (Queensland, Australia). Palaeontologia Electronica 18.1.9A: 1-40. palaeo-electronica.org/content/2015/1060-new-wombat-from-riversleigh BREWER ET AL.: NEW WOMBAT FROM RIVERSLEIGH INTRODUCTION Extant wombats are medium- to large-sized (20-200 kg; size categories 2-3 of Andrews et al., 1979, categories D-G of Hernández Fernández et al., 2006) marsupial herbivores endemic to Austra- lia. There are seven recognised genera, of which two are extant; the Common Wombat (Vombatus ursinus) and the Hairy-nosed Wombats (repre- sented by two species, Lasiorhinus latifrons and Lasiorhinus kreftii). All three of the extant species are burrowing grazers. All wombats are classified in the family Vombatidae and together with six extinct families make up the Infraorder Vombato- morphia (Aplin and Archer, 1987). The closest liv- ing relative of the wombat is the Koala (represented by a single extant species, Phascol- arctos cinereus). Koalas are classified in their own FIGURE 1. Map of Australia showing the location of family, Phascolarctidae, and together with the Miocene wombat fossil sites. Vombatomorphia comprise the Suborder Vombati- formes (Aplin and Archer, 1987). cene deposits, with the greatest diversity of wom- Despite an estimated divergence date bats being found in the Pliocene-Pleistocene. between the Phascolarctidae and the Vombatidae Because extant wombats are specialist grazers, it of 40 Ma (Beck, 2008), only a single monotypic can be hypothesised that their post-Miocene genus of wombat has been described from depos- increase in diversity is related to the spread of its older than 10 Ma. This taxon, Rhizophascolonus more open habitats and greater availability of crowcrofti, was described on the basis of a single graze. However, each of these taxa almost cer- isolated tooth from Lake Ngapakaldi, central Aus- tainly occupied slightly different niches, and the tralia (Figure 1; Stirton et al., 1967), although addi- picture is likely to be more complex. tional specimens have since been described This paper describes specimens of a new (Brewer et al., 2008). genus and species of primitive wombat from early Wombats are significant in being the only Aus- Miocene deposits within the Riversleigh World Her- tralian marsupial group to possess hypselodont itage Area in northwest Queensland (Figure 1). cheek teeth. Hypselodonty is the condition where The specimens comprise two partial maxillae and the teeth grow continuously throughout life. Hyp- isolated teeth, possibly representing as few as two sodonty (high-crowned molars) and hypselodonty individuals. Despite the small sample size, this new (also known as euhypsodonty; Mones, 1982) are taxon represents the most complete early wombat adaptations to high rates of tooth wear and have known. independently evolved in numerous groups. Exam- ples include the cheek teeth of bovids and lago- MATERIALS AND METHODS morphs, respectively. The evolution of hypselodonty in the Vombatidae is poorly docu- Phylogenetic Analysis mented owing to the paucity of fossil material. Of the eight vombatiform families, only vom- Despite this, the Vombatidae are potentially valu- batids and phascolarctids have extant representa- able indicators of changing environmental condi- tives. Interfamilial relationships within the tions in Australia during the Neogene (e.g., Myers Vombatiformes are contentious (Archer, 1984; et al., 2001). Marshall et al., 1990; Munson, 1992; Murray, 1998; The oldest known hypselodont wombat is Black et al., 2012). Accordingly, a phylogenetic Warendja encorensis from the late Miocene of Riv- analysis was performed in which a range of out- ersleigh (Figure 1; Brewer et al., 2007). This genus group taxa were selected (Peramelemorphia and is also found in Pleistocene deposits in South Aus- Didelphimorphia). The choice of outgroup taxa tralia and New South Wales (Flannery and Pledge, concurs with the interordinal relationships deter- 1987; Brewer, 2007), forming a ghost lineage mined by Beck (2008), constrained in some cases throughout the Pliocene. In addition to Warendja, by the availability of postcranial material for some six additional wombat genera are first found in Plio- 2 PALAEO-ELECTRONICA.ORG taxa. A relatively unspecialised representative of at the Museum Victoria; NMV P, palaeontology col- each of the eight vombatiform families was lection at the Museum Victoria, Melbourne; QM F, included in the analysis. A total of 16 taxa were palaeontology collection at the Queensland coded in the analysis. Museum, Brisbane; SAM M, zoology collection at The data set consisted of dental, cranial and the South Australian Museum, Adelaide; SAM P, postcranial characters taken from the literature and palaeontology collection at the South Australian personal observations. Where characters were Museum, Adelaide; AR, temporary number for taken from the literature, they were re-scored, palaeontology collection at the University of New where possible, for each of the taxa in the analysis South Wales, Sydney; UNSW Z, and UNSW J, in order to verify the results of others and to ensure zoology collection at the University of New South consistency. Some characters used by other Wales, Sydney. authors in their phylogenetic analyses were rejected from this analysis because they were SYSTEMATIC PALAEONTOLOGY found to be highly intraspecifically variable (e.g., Order DIPROTODONTIA Owen, 1866 presence of frontal-squamosal contact: Springer et Suborder VOMBATIFORMES Woodburne, 1984 al., 1997; Wroe et al., 1998; Horovitz and Sánchez- Family VOMBATIDAE Burnett, 1830 Villagra, 2003; Black et al., 2012), or they were not Genus NIMBAVOMBATUS gen. nov. parsimony-informative for any of the taxa exam- ined. zoobank.org/C832B075-FB33-4C41-B5DF-EA48888AA8D3 A total of 115 characters were used in the Etymology. ‘Nimba’ is the Waanyi (the local analysis of which 28 are of the type ordered (Wag- Aboriginal language of the Boodjamulla region) ner) and 87 are of the type unordered. The data word for ‘small’. ‘Vombatus’ means ‘wombat-like’. matrix was analysed using Paup 4.0b10 (Swofford, Diagnosis. As for the species diagnosis until addi- 2002) using PaupUp graphical interface (Calendini tional species are described. and Martin, 2005). The branch and bound search Nimbavombatus boodjamullensis sp. nov. option was utilised, using a mixture of ordered and Figures 2-5 unordered characters (Appendices 1, 2). Multistate characters were treated as polymorphisms. All zoobank.org/1D7CD6A8-DB90-4D89-9B2F-7306C2DFDAA5 characters were presumed to have equal weight. Etymology of Specific Name. Refers to the Accelerated transformation (ACCTRAN) and Waanyi (the local Aboriginal language of River- delayed transformation (DELTRAN) character- sleigh) word for the Riversleigh area (Boodjamu- state optimisation methods were employed. Boot- lla). strap support (50%) for clades was determined Holotype. QM F23774 (left maxilla with C1, P3 and using 10,000 replicates. M1-4) Paratypes. QM F23725 (left maxilla fragment with Terminology P3, M1-3 and partial alveolus of M4); QM F30339 Incisor, premolar and molar homology follows 1 (right
Recommended publications
  • SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
    Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Australian Journal of Earth Sciences Paleosol Record of Neogene Climate
    This article was downloaded by: [Retallack, Gregory J.][University of Oregon] On: 28 September 2010 Access details: Access Details: [subscription number 917394740] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Australian Journal of Earth Sciences Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t716100753 Paleosol record of Neogene climate change in the Australian outback C. A. Metzgera; G. J. Retallacka a Department of Geological Sciences, University of Oregon, Eugene, OR, USA Online publication date: 24 September 2010 To cite this Article Metzger, C. A. and Retallack, G. J.(2010) 'Paleosol record of Neogene climate change in the Australian outback', Australian Journal of Earth Sciences, 57: 7, 871 — 885 To link to this Article: DOI: 10.1080/08120099.2010.510578 URL: http://dx.doi.org/10.1080/08120099.2010.510578 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Revision of Basal Macropodids from the Riversleigh World Heritage Area with Descriptions of New Material of Ganguroo Bilamina Cooke, 1997 and a New Species
    Palaeontologia Electronica palaeo-electronica.org Revision of basal macropodids from the Riversleigh World Heritage Area with descriptions of new material of Ganguroo bilamina Cooke, 1997 and a new species K.J. Travouillon, B.N. Cooke, M. Archer, and S.J. Hand ABSTRACT The relationship of basal macropodids (Marsupialia: Macropodoidea) from the Oligo-Miocene of Australia have been unclear. Here, we describe a new species from the Bitesantennary Site within the Riversleigh’s World Heritage Area (WHA), Ganguroo bites n. sp., new cranial and dental material of G. bilamina, and reassess material pre- viously described as Bulungamaya delicata and ‘Nowidgee matrix’. We performed a metric analysis of dental measurements on species of Thylogale which we then used, in combination with morphological features, to determine species boundaries in the fossils. We also performed a phylogenetic analysis to clarify the relationships of basal macropodid species within Macropodoidea. Our results support the distinction of G. bil- amina, G. bites and B. delicata, but ‘Nowidgee matrix’ appears to be a synonym of B. delicata. The results of our phylogenetic analysis are inconclusive, but dental and cra- nial features suggest a close affinity between G. bilamina and macropodids. Finally, we revise the current understanding of basal macropodid diversity in Oligocene and Mio- cene sites at Riversleigh WHA. K.J. Travouillon. School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia and School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia. [email protected] B.N. Cooke. Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia.
    [Show full text]
  • Marsupialia: Ektopodontidae): Including a New Species Ektopodon Litolophus
    Records of the Western Australian Museum Supplement No. 57: 255-264 (1999). Additions to knowledge about ektopodontids (Marsupialia: Ektopodontidae): including a new species Ektopodon litolophus Neville S. Pledge!, Michael Archer, Suzanne J. Hand2and Henk Godthelp2 1 South Australian Museum, North Terrace, Adelaide, SA 5000; email: [email protected] 2 School of Biological Science, University of New South Wales, Sydney, NSW 2052 Abstract - Information about the extinct phalangeroid family Ektopodontidae has been increased following the discovery of new material from several localities. A new species, Ektopodon litolophus, described on the basis of an Ml from the Leaf Locality, Lake Ngapakaldi, Lake Eyre Basin, is characterized by the extremely simple structure of the crests. Ektopodontids are recorded for the first time from the northern half of the Australian continent through discovery of a tooth fragment at Wayne's Wok Site, Riversleigh World Heritage area, northwestern Queensland. Comparisons of Ml of Olllnia and Ektopodon species now allow evolutionary trends of simplification to be discerned. INTRODUCTION million years; Woodburne et al. 1985), following Ektopodon is a genus of extinct possum-like preliminary analyses by W.K. Harris of pollen from marsupials established by Stirton et al. (1967) on the Etadunna Formation at Mammalon Hill, Lake isolated teeth found at the Early to Middle Miocene Palankarinna. Subsequent work with Leaf Locality (Kutjamarpu Local Fauna) at Lake Ngapakaldi, northeastern South Australia (Figure 1). Further specimens from this locality were described and interpreted by Woodburne and Clemens (1986b), together with new, slightly older Oligocene species in the plesiomorphic genus CJmnia (c. illuminata, C. sp. cf. C.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • PRIMITIVE MARS UPIAL TAPIRS ( P RO P ALO RCH ESTE~ NOV ACULACEPHALUS MURRA Y and P
    The Beagle, Records of the Northern Territory Museum of Arts and Sciences, 19907(2):39-51 PRIMITIVE MARS UPIAL TAPIRS ( p RO p ALO RCH ESTE~ NOV ACULACEPHALUS MURRA y AND P. PONTICULUS SP . NOV .) FROM THE MID-MIOCENE OF NORTH AUSTRALIA (MAR;SUPIALIA: PALORCHESTIDAE). PETER MURRA y Northern Territory Museum of Arts and Sciences, GPO Box 2109, Alice Springs NT 0871, Australia. ABS'iRACT The upper molar dentition of Propalorchestes novaculacephalus demonstrates a transitional state between the bilophodont marsupial tapirs and the selenodont wynyardiids. Although Propalorchestes had developed bilophodont crowns, the metacone and stylar cusp D remained sufficiently differentiated to verify the development of bilophodonty in diprotodontoid (vombatimorphian) marsupials from a selenodont condition, in which the primary buccal cusp is formed by stylar cusp D rather than the metacone. KEYWORDS:Palorchestinae, Wynyardiidae, molar evolution, diprotodontoid sys- tematics, Bullock Creek Local Fauna, Riversleigh "Systems" Fauna. INTRODUCTION ments, a maxilla, a cranial fragment and three isolated teeth. Despite the sparseness and frag- A cranial fragment from the Bullock Creek mentary condition of the sample, it substan- Local Fauna indicated that tapir-Iike marsupi- tially improves our resolution of the sys- als £Palorchestinae) were already highly tematics of the marsupial tapirs and moreover , modified forms by mid- Miocene times and adds a previously unknown transitional ele- that they differed in many significant respects ment to the interpretation of the phylogeny of from the palorchestid Ngapakaldia tedfordi bilophodont dentitions within the Vombati- Stirton (Murray 1986). Several years had morphia. elapsed since the cranium of Propalorchestes The "diprotodontoid" (vombatimorphian) was described before any palorchestine denti- affinity as opposed to a macropodoid (Owen tions from the Camfield Beds came to light.
    [Show full text]
  • Megafauna Extinction
    Episode 15 Teacher Resource 2nd June 2020 Megafauna Extinction 1. Before watching the BTN story, record what you know about Students will learn more about Australian megafauna and megafauna. investigate why they became 2. What is megafauna? extinct. 3. About how many years ago did megafauna exist in Australia? a. 4,000 b. 40,000 c. 400,000 Science – Year 6 The growth and survival of living 4. Complete the following sentence. A Diprotodon was a giant things are affected by physical _________________. conditions of their environment. 5. What did palaeontologist Dr Scott Hocknull and his team discover? Science – Year 7 6. Where did they make the discovery? Scientific knowledge has changed peoples’ understanding of the 7. What did they use to create images of what the megafauna might world and is refined as new have looked like? evidence becomes available. 8. Give some examples of the megafauna species they discovered. Interactions between organisms, 9. What might have caused megafauna to become extinct? including the effects of human 10. What did you learn watching the BTN story? activities can be represented by food chains and food webs. What do you know about megafauna? As a class discuss the BTN Megafauna Extinction story and ask students to record what they learnt watching the story. Record any questions they have. Here are some questions they can use to help guide their discussion. • What does the term megafauna mean? • When did megafauna exist? • How do we know they existed? • Why did megafauna grow so big? • What might have caused Australia’s megafauna to die out? Glossary Students will brainstorm a list of key words and terms that relate to the BTN Megafauna Extinction story.
    [Show full text]
  • Timing and Dynamics of Late Pleistocene Mammal Extinctions in Southwestern Australia
    Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia Gavin J. Prideauxa,1, Grant A. Gullya, Aidan M. C. Couzensb, Linda K. Ayliffec, Nathan R. Jankowskid, Zenobia Jacobsd, Richard G. Robertsd, John C. Hellstrome, Michael K. Gaganc, and Lindsay M. Hatcherf aSchool of Biological Sciences, Flinders University, Bedford Park, South Australia 5042, Australia; bSchool of Earth and Environment, University of Western Australia, Crawley, Western Australia 6009, Australia; cResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia; dCentre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; eSchool of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; and fAugusta–Margaret River Tourism Association, Margaret River, Western Australia 6285, Australia Edited by Paul L. Koch, University of California, Santa Cruz, CA, and accepted by the Editorial Board November 1, 2010 (received for review July 27, 2010) Explaining the Late Pleistocene demise of many of the world’s larger tims, falling in alongside sediments and charcoal that were washed terrestrial vertebrates is arguably the most enduring and debated in via now-blocked solution pipes, although tooth marks on some topic in Quaternary science. Australia lost >90% of its larger species bones suggest that the carnivores Sarcophilus and Thylacoleo by around 40 thousand years (ka) ago, but the relative importance played a minor accumulating role. of human impacts and increased aridity remains unclear. Resolving To establish an environmental background against which TEC the debate has been hampered by a lack of sites spanning the last faunal changes could be analyzed, we investigated stratigraphic glacial cycle.
    [Show full text]
  • Relative Demographic Susceptibility Does Not Explain the Extinction Chronology of Sahul's Megafauna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342303; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: Relative demographic susceptibility does not explain the 2 extinction chronology of Sahul’s megafauna 3 Short title: Demographic susceptibility of Sahul’s megafauna 4 5 Corey J. A. Bradshaw1,2,*, Christopher N. Johnson3,2, John Llewelyn1,2, Vera 6 Weisbecker4,2, Giovanni Strona5, and Frédérik Saltré1,2 7 1 Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 8 South Australia 5001, Australia, 2 ARC Centre of Excellence for Australian Biodiversity and Heritage, 9 EpicAustralia.org, 3 Dynamics of Eco-Evolutionary Pattern, University of Tasmania, Hobart, Tasmania 10 7001, Australia, 4 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 11 South Australia 5001, Australia, 5 Research Centre for Ecological Change, University of Helsinki, 12 Viikinkaari 1, Biocentre 3, 00790, Helsinki, Finland 13 14 * [email protected] (CJAB) 15 ORCIDs: C.J.A. Bradshaw: 0000-0002-5328-7741; C.N. Johnson: 0000-0002-9719-3771; J. 16 Llewelyn: 0000-0002-5379-5631; V. WeisbecKer: 0000-0003-2370-4046; F. Saltré: 0000- 17 0002-5040-3911 18 19 Keywords: vombatiformes, macropodiformes, flightless birds, carnivores, extinction 20 Author Contributions: C.J.A.B and F.S. conceptualized the paper, and C.J.A.B.
    [Show full text]
  • Model Keys Unit 1
    Model Keys This section will supply you with the keys to several of the models found in the anatomy lab and the learning center. This does not include all the models. After the model keys in this section you will find keys to most of the Nystrom charts. In the anatomy lab there is a reference shelve that contains binders with the keys to most models, torsos and the Nystrom charts. Keys to some of the models are actually attached to the model. Chart keys can also be found either right on the chart or posted next to the chart. Unit 1 Numbered Skull (with colored numbers): g. internal occipital crest a. third molar (inside) b. incisive canal h. clivus (inside) c. infraorbital foramen i. foramen magnum d. infraorbital groove j. jugular foramen e. pterygopalatine fossa k. hypoglossal canal 6. Zygomatic bone l. cerebella fossa (inside) a. zygomaticofacial foramen m. vermain fossa (inside) 7. Sphenoid bone 4. Temporal bone a. medial pterygoid plate a. styloid process b. lateral pterygoid plate b. tympanic part c. lesser wing of sphenoid c. mastoid process (inside) d. mastoid notch d. greater wing of sphenoid 1. Frontal bone e. zygomatic process (inside) a. zygomatic process f. articular tubercle e. chiasmatic groove b. frontal crest (inside) g. stylomastoid foramen (inside) c. orbital part (inside) h. mastoid foramen f. anterior clinoid process d. supraorbital foramen i. external acoustic meatus (inside) e. anterior ethmoidal j. internal acoustic meatus g. posterior clinoid process foramen (inside) (inside) f. posterior ethmoidal k. carotid canal h. hypophyseal fossa foramen l. mandibular fossa (inside) g.
    [Show full text]
  • Mechanical Characterization of the Hard Palate
    MECHANICAL CHARACTERIZATION OF THE HARD PALATE By JENNIFER LANE HOTZMAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 © 2010 Jennifer Lane Hotzman 2 To my family and friends 3 ACKNOWLEDGMENTS Many individuals have contributed to the success of my dissertation. First, I would like to thank my advisor, Dr. David Daegling, for all of his assistance throughout this entire experience. I would have never been able to complete this undertaking without all of his patience and guidance. I would also like to thank my parents who were unfailing in their support of my dream to accomplish this goal. I give general thanks to Kaki York and Chris Ward who helped answer questions regarding statistics throughout the entire process. There are also specific individuals and organizations I would like to thank for providing help with particular portions of my project. Dr. Gerald Bourne assited with granting access to both the nanoindenter and microindenter. The nanoindentater is in the Major Analytical Instrumentation Center, Department of Materials Science and Engineering, University of Florida. I would like to thank Dr. Andrew Rapoff for providing guidance on how to best prepare the specimens for indentation. Laurel Freas assisted with the initial sawing of the palate that was completed in order to prepare the specimens for indentation. SCANCO USA, Inc. conducted the micro-computed tomography scanning of the macaque skull. I would like to thank Dr. Rasheesh Kapadia for coordinating the scanning and providing the data to me.
    [Show full text]