Sauropterygia: Plesiosauria)

Total Page:16

File Type:pdf, Size:1020Kb

Sauropterygia: Plesiosauria) Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria) Adam Stuart Smith BSc (hons) (Portsmouth), MSc (Bristol) A thesis submitted to the National University of Ireland, University College Dublin for the degree of Doctor of Philosophy November 2007 Supervisor: Dr Gareth J. Dyke Head of School: Professor Thomas Bolger School of Biology and Environmental Science University College Dublin Belfield Dublin 4 Ireland i Contents Frontispiece i Contents ii List of figures vi Acknowledgements xviii Declaration xx Abstract xxi Chapter 1. Introduction and objectives………………………………………….. 1 1.1 General introduction 1 1.2 Palaeobiology 4 1.3 Locomotion 7 1.4 Anatomy 10 1.5 Taxonomic diversity 12 1.6 Thesis objectives 14 1.7 Thesis structure 14 Chapter 2 - Historical background………………………………………………... 16 2.1 History of plesiosaurs 16 2.2 Plesiosaur systematics 16 2.3 Pliosauroidea 16 2.4 Rhomaleosauridae – taxon history 20 2.5 Rhomaleosauridae – previous research 24 2.6 Rhomaleosaurus or Thaumatosaurus? 25 Chapter 3 - Material and palaeontological approaches………………………. 27 3.1 Institutional abbreviations 27 3.2 Data collection –general 28 3.3 NMING F8785 Rhomaleosaurus cramptoni 30 3.3.1 History 30 3.3.2 Iconic specimen 33 3.4 NMING 10194 38 3.5 NMING F8749 38 3.6 NMNH R1336, NMING F8780, TCD.22931 Plesiosaurus 41 macrocephalus 3.7 NMING F8771 and TCD.22932 Thalassiodracon hawkinsi 41 3.8 BMNH 49202 45 3.9 BMNH R38525 Archaeonectrus rostratus 45 ii 3.10 BMNH R4853 Rhomaleosaurus thorntoni 45 3.11 BMNH R2028*, R2029*, R1317, R2061*, R2047*, R2027*, 49 R1318, R1319 and R2030* Eurycleidus arcuatus 3.12 BMNH R5488 Macroplata tenuiceps 50 3.13 BMNH R1310, TCD.47762a, TCD.47762b, 51 3.14 YORYM G503 Rhomaleosaurus zetlandicus 51 3.15 WM 851.S Rhomaleosaurus propinquus 54 3.16 SMNS12478 Rhomaleosaurus victor 54 3.17 LEICS G221.1851 54 3.18 WARMS G10875 56 3.19 TCD.57763 Attenborosaurus conybeari 56 3.20 Additional material 56 3.21 Possible rhomaleosaurids excluded from this study 58 Chapter 4 - Specimen descriptions………………………………………………. 59 4.1 Background 59 4.2 NMING F8785, Rhomaleosaurus cramptoni, skull 59 4.2.1 Skull roof 61 4.2.2 Palate 63 4.2.3 Basicranium 65 4.2.4 Mandible 67 4.2.5 Dentition 68 4.3 NMING F8785, Rhomaleosaurus cramptoni, postcranium 70 4.3.1 Axial skeleton 70 4.3.2 Limbs 73 4.3.3 Girdles 76 4.4 BMNH R4853, Rhomaleosaurus thorntoni 78 4.4.1 Axial skeleton 78 4.4.2 Pectoral girdle 93 4.4.3 Pelvic girdle 95 4.4.4 Limbs 97 4.5 YORYM G503, Rhomaleosaurus zetlandicus 100 4.5.1 Forelimb 100 4.5.2 Caudal vertebrae 102 4.6 Rhomaleosaurus full body reconstruction 105 4.7 NMING F10194, skull 108 4.7.1 Skull roof 108 iii 4.7.2 Palate 112 4.7.3 Basicranium 115 4.7.4 Mandible and dentition 117 4.8 NMING F10194, postcranium 117 4.8.1 Axial skeleton 117 4.8.2 Pectoral girdle 118 4.8.3 Pelvic girdle 120 4.8.4 Limbs 120 4.9 NMING F8749 122 4.9.1 Skull roof 122 4.9.2 Palate and dentition 125 4.9.3 Mandible 130 4.10 Comparison of taxa 132 4.10.1 Skull roof comparison 132 4.10.2 Palate comparison 147 4.10.3 Mandible and dentition comparison 148 4.10.4 Axial skeleton comparison 150 4.10.5 Girdles comparison 152 4.10.6 Limbs comparison 153 4.10.7 General proportions comparison 155 Chapter 5 – Morphometric and cladistic analyses…………………………….. 157 5.1 Analyses 157 5.2 Specimen-based morphometric analysis 157 5.2.1 Taphonomy 1 - Preservation of parts 157 5.2.2 Taphonomy 2 – Exposure 157 5.2.3 Accessibility 158 5.2.4 Size of data set 158 5.2.5 Data collection 158 5.2.6 Results 160 5.3 Specimen-based cladistic analysis 160 5.2.1 Character list with character discussion 168 5.3.2 Results 205 Chapter 6 – Systematic palaeontology…………………………………………... 208 6.1 Rhomaleosauridae - Generic and species-level systematics 208 6.1.1 Genus Rhomaleosaurus Seeley, 1874 208 6.1.2 Gen. nov. (for ‘Rhomaleosaurus’ victor) (Fraas, 1910) 208 Tarlo, 1960 iv Tarlo, 1960 6.1.3 Genus Eurycleidus Andrews, 1922a 212 6.1.4 Genus Macroplata Swinton, 1930a 216 6.1.5 Genus Archaeonectrus Novozhilov, 1964 217 6.2 Revised supra-generic systematics 217 Chapter 7 – Discussion…………………………………………………….……… 221 7.1 Phylogenetic analysis – discussion 221 7.2 Plesiosauroid-pliosauroid dichotomy 221 7.3 The base of Pliosauroidea 222 7.4 Leptocleididae, Pliosauridae and Brachauchenidae 222 7.5 Rhomaleosauridae 223 7.6 Eurycleidus 224 7.7 Comparison of Eurycleidus interpretations 226 7.8 Rhomaleosaurus 228 7.9 Simolestes and Maresaurus 229 7.10 Morphometric analysis – discussion 230 7.11 A caudal fin in plesiosaurs? 231 Chapter 8 – Conclusions………………………………………………………….. 233 8.1 Context 233 8.2 Systematics – conclusions 233 8.3. Anatomy – conclusions 235 References……………………………………………………………………………. 237 Appendices…………………………………………………………………………… 257 Appendix 1. Plesiosaur publications 257 Appendix 2. Additional specimens 259 Appendix 3. Abbreviations 268 Appendix 4. Morphometric data 269 Appendix 5. Data matrix 278 v List of figures Figure 1.1. Diagrams of the four main types of temporal organisation in 2 amniote skulls. A. anapsid (no temporal fenestrae), B. synapsid (single lower temporal fenestra), C. diapsid (two temporal fenestrae, upper and lower), D. euryapsid (single upper temporal fenestra). Plesiosaurs possess the euryapsid condition (see text for discussion) (modified from Benton, 1997). Figure 1.2. Cladogram showing the broad-scale interrelationships amongst 2 basal sauropterygians indicating the derived position of Plesiosauria within the clade (arrow) (modified from Rieppel, 2000). Figure 1.3. Life restorations of plesiosaurs. A. a typical plesiosauromorph 5 (Elasmosaurus platyurus), B. a typical pliosauromorph (Liopleurodon ferox). Figure 1.4. Outline of Rhomaleosaurus victor, a plesiosaur from the 8 Posidonia Shale of Germany, exposed in ventral view showing the plate-like girdles, tightly packed gastralia and wing-like limbs, typical of all plesiosaurs (length = 3.44m). Figure 1.5. Variation in plesiosaur skulls and dentition. A. Hydrorion 11 brachypterygius, a plesiosaurid from the Toarcian of Germany (Based on Brown, 1993). B. Kaiwhekea katiki, a cryptoclidid from the Maastrichtian of New Zealand (Redrawn from Cruickshank and Fordyce, 2002). C. Liopleurodon ferox, a pliosaurid from the Callovian of Europe. Redrawn from Noè et al. (2003) (Scale bar = 10cm). Figure 2.1. The first full body reconstruction of a plesiosaur (Plesiosaurus 17 dolichodeirus) (From Conybeare, 1824, Plate XLIX). Figure 2.2. Graph showing the actual and cumulative numbers of plesiosaur 19 species and genera named since the first plesiosaur was introduced in 1821 (see Appendix 1). Each time interval represents two decades; the cumulative numbers of valid genera and species both increase at a steady rate for most of the history, with a noticeable exponential increase in the last two time intervals (1981-today). Data for 2008 – 2020 was estimated based on the average number of new taxa named per year between 2001 and 2007. vi Figure 2.3. Family-level comparison of two competing hypotheses of 21 plesiosaur relationships. The hypotheses are broadly similar, but differ in the position of Polycotylidae. Druckenmiller (2006a) recognises a distinct clade (Leptocleididae) which form a sister relationship with Polycotylidae within Pliosauroidea. O’Keefe (2001a) resolves polycotylids within the Plesiosauroidea. N.B. The Rhomaleosauridae and Cryptoclididae are actually resolved as paraphyletic assemblages in the analysis of Druckenmiller (2006a) but they are depicted here as monophyletic in both cladograms for ease of comparison – for detailed differences between these hypotheses, see Figure 2.4. Figure 2.4. Detailed comparison of two competing hypotheses of 22 relationships amongst plesiosaurs showing major areas of variation (taxa in boxes). The top phylogeny is from Druckenmiller (2006a, modified from Figure 4.42); the bottom phylogeny is from O’Keefe (2001a, modified from Fig. 20). Both phylogenies divide plesiosaurs (labelled ‘PLESIOSAURIA’) into two superfamilies, Plesiosauroidea and Pliosauroidea (Pliosauroidea = Clade A in Druckenmiller’s phylogeny). In particular, note the differing position of polycotylids (=Clade B in Druckenmiller’s phylogeny) in a derived position in Pliosauroidea according to Druckenmiller, and in a derived position in Plesiosauroidea according to O’Keefe. There is also no consensus on the superfamilial affinity of Thalassiodracon. Within Pliosauroidea, the position of Simolestes and Leptocleidus also show significant variation between the phylogenies (see text for further discussion). Figure 3.1. Geographical map showing the discovery locations of twenty-two 29 specimens of Lower Jurassic plesiosaurs, examined during the production of this thesis. All of the specimens originated from the UK and Germany (highlighted in grey). Figure 3.2. Detailed location map of NMING F8785, the holotype of 31 Rhomaleosaurus cramptoni (the area in grey represents the Lias Group). Figure 3.3. Stratigraphic position of NMING F8785, the holotype of 32 Rhomaleosaurus cramptoni. The exact horizon within the Bifrons Zone is unknown (modified from Simms et al. 2004). Figure 3.4 Photograph of specimen NMING F8785, the holotype of 34 Rhomaleosaurus cramptoni, taken prior to the specimen being broken up and moved to storage. vii and moved to storage. Figure 3.5. One of ten blocks containing the postcranium of specimen 35 NMING F8785, the holotype of Rhomaleosaurus cramptoni. As of October 2007, these still await reconstruction and preparation. Figure 3.6. Padded fibreglass case constructed to enclose and protect 35 specimen NMING F8785, the skull of the holotype of Rhomaleosaurus cramptoni. Figure 3.7. Casts of the holotype of Rhomaleosaurus cramptoni on display, 36 A. in the Natural History Museum, London, UK; B. in the Bath Royal Literary and Scientific Institute, Bath, UK. See text for discussion of the differences between these casts. C. (over page) Illustration of “Item No.
Recommended publications
  • Cranial Anatomy, Taxonomic Implications
    [Palaeontology, Vol. 55, Part 4, 2012, pp. 743–773] CRANIAL ANATOMY, TAXONOMIC IMPLICATIONS AND PALAEOPATHOLOGY OF AN UPPER JURASSIC PLIOSAUR (REPTILIA: SAUROPTERYGIA) FROM WESTBURY, WILTSHIRE, UK by JUDYTH SASSOON1, LESLIE F. NOE` 2 and MICHAEL J. BENTON1* 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK; e-mails: [email protected], [email protected] 2Geociencias, departamento de Fisica, Universidad de los Andes, Bogota´ DC, Colombia; e-mail: [email protected] *Corresponding author. Typescript received 5 December 2010; accepted in revised form 6 April 2011 Abstract: Complete skulls of giant marine reptiles of the genera. The two Westbury Pliosaurus specimens share many Late Jurassic are rare, and so the discovery of the 1.8-m- features, including the form of the teeth, but marked differ- long skull of a pliosaur from the Kimmeridge Clay Forma- ences in the snout and parietal crest suggest sexual dimor- tion (Kimmeridgian) of Westbury, Wiltshire, UK, is an phism; the present specimen is probably female. The large important find. The specimen shows most of the cranial size of the animal, the extent of sutural fusion and the and mandibular anatomy, as well as a series of pathological pathologies suggest this is an ageing individual. An erosive conditions. It was previously referred to Pliosaurus brachy- arthrotic condition of the articular glenoids led to pro- spondylus, but it can be referred reliably only to the genus longed jaw misalignment, generating a suite of associated Pliosaurus, because species within the genus are currently in bone and dental pathologies.
    [Show full text]
  • O'keefe, F. R. 2006
    12 Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F. Robin O’Keefe Introduction Historically, the systematics of the Plesiosauria (Reptilia, Sauroptery- gia) were based largely on postcranial characters (Persson, 1963; Brown, 1981). Several factors account for this bias: plesiosaur skulls tend to be del- icate and are often crushed even when preserved, postcranial elements are relatively common and cranial elements are not, lack of knowledge about the relationships of stem-group sauropterygians, and lack of knowledge of plesiosaur cranial anatomy itself. However, recent detailed examinations of plesiosaur cranial anatomy have identified many characters of use in plesiosaur systematics (Brown, 1993; Cruickshank, 1994; Storrs & Taylor, 1996; Storrs, 1997; Carpenter, 1997; Evans, 1999; O’Keefe, 2001, 2004), and the systematics of the group have changed markedly in response (Carpenter, 1997; O’Keefe, 2001, 2004). The work of Rieppel and others has clarified the anatomy and relationships of stem-group sauropterygians (Storrs, 1991; see Rieppel, 2000, for review). This work has laid the anatomic and phylogenetic foundations for a better understanding of ple- siosaur cranial anatomy. The purpose of this paper is to describe the condition of the braincase in stratigraphically early and morphologically primitive plesiosaurs. In- formation on the braincase of plesiomorphic taxa is important because it establishes the polarity of characters occurring in more derived ple- siosaurs. This paper begins with a short review of braincase anatomy in stem-group sauropterygians. Data on braincase morphology of the ple- siomorphic plesiosaur genera Thalassiodracon and Eurycleidus are then presented and interpreted via comparison with other plesiosaurs, stem- group sauropterygians, and stem diapsids (Araeoscelis).
    [Show full text]
  • A Revision of the Classification of the Plesiosauria with a Synopsis of the Stratigraphical and Geographical Distribution Of
    LUNDS UNIVERSITETS ARSSKRIFT. N. F. Avd. 2. Bd 59. Nr l. KUNGL. FYSIOGRAFISKA SÅLLSKAPETS HANDLINGAR, N. F. Bd 74. Nr 1. A REVISION OF THE CLASSIFICATION OF THE PLESIOSAURIA WITH A SYNOPSIS OF THE STRATIGRAPHICAL AND GEOGRAPHICAL DISTRIBUTION OF THE GROUP BY PER OVE PERSSON LUND C. W. K. GLEER UP Read before the Royal Physiographic Society, February 13, 1963. LUND HÅKAN OHLSSONS BOKTRYCKERI l 9 6 3 l. Introduction The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by KuHN (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geo­ graphical distribution of the group. Some of the species are discussed in the text (pp. 17-22). The synopsis is completed with seven maps (figs. 2-8, pp. 10-16), a selective synonym list (pp. 41-42), and a list of rejected species (pp. 42-43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned ("Non-Plesiosaurians", p. 43). - The numerals in braekets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order. The author has exaroined all material available from Sweden, Australia and Spitzbergen (PERSSON 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German spec­ imens; certain specimens from New Zealand, now in the British Museum (see LYDEK­ KER 1889, pp.
    [Show full text]
  • A New Plesiosaur from the Lower Jurassic of Portugal and the Early Radiation of Plesiosauroidea
    A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea EDUARDO PUÉRTOLAS-PASCUAL, MIGUEL MARX, OCTÁVIO MATEUS, ANDRÉ SALEIRO, ALEXANDRA E. FERNANDES, JOÃO MARINHEIRO, CARLA TOMÁS, and SIMÃO MATEUS Puértolas-Pascual, E., Marx, M., Mateus, O., Saleiro, A., Fernandes, A.E., Marinheiro, J., Tomás, C. and Mateus, S. 2021. A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea. Acta Palaeontologica Polonica 66 (2): 369–388. A new plesiosaur partial skeleton, comprising most of the trunk and including axial, limb, and girdle bones, was collected in the lower Sinemurian (Coimbra Formation) of Praia da Concha, near São Pedro de Moel in central west Portugal. The specimen represents a new genus and species, Plesiopharos moelensis gen. et sp. nov. Phylogenetic analysis places this taxon at the base of Plesiosauroidea. Its position is based on this exclusive combination of characters: presence of a straight preaxial margin of the radius; transverse processes of mid-dorsal vertebrae horizontally oriented; ilium with sub-circular cross section of the shaft and subequal anteroposterior expansion of the dorsal blade; straight proximal end of the humerus; and ventral surface of the humerus with an anteroposteriorly long shallow groove between the epipodial facets. In addition, the new taxon has the following autapomorphies: iliac blade with less expanded, rounded and convex anterior flank; highly developed ischial facet of the ilium; apex of the neural spine of the first pectoral vertebra inclined posterodorsally with a small rounded tip. This taxon represents the most complete and the oldest plesiosaur species in the Iberian Peninsula.
    [Show full text]
  • A Large Rhomaleosaurid Pliosaur from the Upper Lias of Rutland Richard Forrest
    A large Rhomaleosaurid Pliosaur from the Upper Lias of Rutland Richard Forrest Abstract: The fragmentary remains of a very large rhomaleosaurid pliosaur were retrieved during building works at Barnsdale Hall, Rutland. The limited material prevents clear identification at specific level, though on the basis of similarities of ratios of dimensions it shows closer affinity to Rhomaleosaurus arcuatus and R.victor than to R.cramptoni. Although scaling up from such fragmentary material is unreliable, the estimated length of this animal at 7.5 to 8 metres makes it possibly the largest Rhomaleosaurid pliosaur described to date. The fossil material broken end the shaft is oval in section, 148 mm wide and 96 mm deep. The head is 153 mm broad and The bones were excavated in 1988 by Mr. Roy 160 mm deep. Orientation can be determined by Draycott during construction of a retaining wall at rugosities from ridges for muscle attachment on the Barnsdale Hall, east of Rutland Water, in the county posterior side and the ventral surface. A deep hole in of the same name. An outer whorl of the ammonite the posterior muscle attachment presumably marks Hildoceras bifrons was found in association with the where a ligament was connected to the bone. There bones. It can therefore be placed with confidence in is slight taphonomic crushing around the trochanter. the bifrons Zone of the Upper Lias (Lower Jurassic, The surface is encrusted in places with a pyritised Toarcian, Whitbian). It is probable that much more deposit, which shows traces of tracks left by extensive remains of the animal were present at the scavengers post-mortem.
    [Show full text]
  • How Plesiosaurs Swam: New Insights Into Their Underwater Flight Using “Ava”, a Virtual Pliosaur
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2019 doi:10.20944/preprints201910.0094.v1 How Plesiosaurs Swam: New Insights into Their Underwater Flight Using “Ava”, a Virtual Pliosaur Max Hawthorne1,*, Mark A. S. McMenamin 2, Paul de la Salle3 1Far From The Tree Press, LLC, 4657 York Rd., #952, Buckingham, PA, 18912, United States 2Department of Geology and Geography, Mount Holyoke College, South Hadley, Massachusetts, United States 3Swindon, England *Correspondence: [email protected]; Tel.: 267-337-7545 Abstract Analysis of plesiosaur swim dynamics by means Further study attempted to justify the use of all four flippers of a digital 3D armature (wireframe “skeleton”) of a simultaneously via the use of paddle-generated vortices, pliosauromorph (“Ava”) demonstrates that: 1, plesiosaurs which require specific timing to achieve optimal additional used all four flippers for primary propulsion; 2, plesiosaurs thrust. These attempts have largely relied on anatomical utilized all four flippers simultaneously; 3, respective pairs studies of strata-compressed plesiosaur skeletons, and/or of flippers of Plesiosauridae, front and rear, traveled through preconceived notions as pertains to the paddles’ inherent distinctive, separate planes of motion, and; 4, the ability to ranges of motion [8, 10-12]. What has not been considered utilize all four paddles simultaneously allowed these largely are the opposing angles of the pectoral and pelvic girdles, predatory marine reptiles to achieve a significant increase in which strongly indicate varied-yet-complementing relations acceleration and speed, which, in turn, contributed to their between the front and rear sets of paddles, both in repose and sustained dominance during the Mesozoic.
    [Show full text]
  • The First Record of Freshwater Plesiosaurian from the Middle
    Gao et al. Journal of Palaeogeography (2019) 8:27 https://doi.org/10.1186/s42501-019-0043-5 Journal of Palaeogeography ORIGINALARTICLE Open Access The first record of freshwater plesiosaurian from the Middle Jurassic of Gansu, NW China, with its implications to the local palaeobiogeography Ting Gao, Da-Qing Li* , Long-Feng Li and Jing-Tao Yang Abstract Plesiosaurs are one of the common groups of aquatic reptiles in the Mesozoic, which mainly lived in marine environments. Freshwater plesiosaurs are rare in the world, especially from the Jurassic. The present paper reports the first freshwater plesiosaur, represented by four isolated teeth from the Middle Jurassic fluviolacustrine strata of Qingtujing area, Jinchang City, Gansu Province, Northwest China. These teeth are considered to come from one individual. The comparative analysis of the corresponding relationship between the body and tooth sizes of the known freshwater plesiosaur shows that Jinchang teeth represent a small-sized plesiosaurian. Based on the adaptive radiation of plesiosaurs and the palaeobiogeographical context, we propose a scenario of a river leading to the Meso-Tethys in the Late Middle Jurassic in Jinchang area, which may have provided a channel for the seasonal migration of plesiosaurs. Keywords: Freshwater plesiosaur, Middle Jurassic, Jinchang, Gansu Province, Palaeobiogeography 1 Introduction Warren 1980;Satoetal.2003; Kear 2012). Up to now, Plesiosaurs are one of the most familiar groups of Mesozoic the taxonomic affinities of most freshwater plesio- marine reptiles, which mainly lived in marine environ- saurs have remained unclear; some of them are re- ments. The records of plesiosaurs in non-marine deposits ferred to Plesiosauroidea (Cruickshank and Fordyce are sparse in comparison to those from marine sediments.
    [Show full text]
  • A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 12-2001 A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Aquaculture and Fisheries Commons, and the Other Animal Sciences Commons Recommended Citation Frank Robin O’Keefe (2001). A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). ). Acta Zoologica Fennica 213: 1-63. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Acta Zool. Fennica 213: 1–63 ISBN 951-9481-58-3 ISSN 0001-7299 Helsinki 11 December 2001 © Finnish Zoological and Botanical Publishing Board 2001 A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia) Frank Robin O’Keefe Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568, U.S.A Received 13 February 2001, accepted 17 September 2001 O’Keefe F. R. 2001: A cladistic analysis and taxonomic revision of the Plesio- sauria (Reptilia: Sauropterygia). — Acta Zool. Fennica 213: 1–63. The Plesiosauria (Reptilia: Sauropterygia) is a group of Mesozoic marine reptiles known from abundant material, with specimens described from all continents. The group originated very near the Triassic–Jurassic boundary and persisted to the end- Cretaceous mass extinction. This study describes the results of a specimen-based cladistic study of the Plesiosauria, based on examination of 34 taxa scored for 166 morphological characters.
    [Show full text]
  • Novel Anatomy of Cryptoclidid Plesiosaurs with Comments on Axial Locomotion
    NOVEL ANATOMY OF CRYPTOCLIDID PLESIOSAURS WITH COMMENTS ON AXIAL LOCOMOTION. A Thesis submitted to the Graduate College of Marshall University In partial fulfillment of The requirements for the degree of Master of Science In Biological Science by Benjamin C. Wilhelm Approved by Dr. F. Robin O’Keefe, Ph.D., Advisor, Committee Chairperson Dr. Brian L. Antonsen, Ph.D. Dr. Victor Fet, Ph.D. Dr. Suzanne G. Strait, Ph.D. Marshall University May 2010 Acknowledgements This thesis was greatly improved by the comments of my advisor Dr. F. R. O’Keefe and committee members Dr. B. Antonsen, Dr. V. Fet, and Dr. S. Strait. Description of the specimens presented in chapter 2 would not have been possible without the skilled preparation of J. P. Cavigelli. S. Chapman, H. Ketchum , and A. Milner arranged access to specimens at the BMNH. Chapter 2 was also improved by the comments of Dr. R. Schmeisser and an anonymous reviewer. This research was supported by a grant from the National Geographic Society (CRE 7627-04) and Marshall Foundation funds to Dr. F. R. O’Keefe and MURC student travel grants to B. C. Wilhelm. Many thanks are also due to A. Spriggs, my parents, George and Kris, and my brother Greg for all the love and support during the course of my Master’s studies. ii Table of Contents Acknowledgements…………………………………………………………………….……..ii Table of contents…………………………………………………………………………..iii-iv List of Figures, Tables, and Graphs………………………………………………………..v Abstract………………………………………………………………………………………...vi Chapter 1- Introduction to plesiosaurs………………………………………………...1-14
    [Show full text]
  • A New Oxfordian Pliosaurid (Plesiosauria, Pliosauridae
    [Palaeontology, Vol. 52, Part 3, 2009, pp. 661–669] A NEW OXFORDIAN PLIOSAURID (PLESIOSAURIA, PLIOSAURIDAE) IN THE CARIBBEAN SEAWAY by ZULMA GASPARINI Departamento Paleontologı´a Vertebrados, Museo de La Plata, Paseo del Bosque s ⁄ n, 1900 La Plata, Argentina; e-mail: [email protected] Typescript recieved 2 January 2008; accepted in revised form 4 June 2008 Abstract: A new pliosaurid, Gallardosaurus iturraldei gen realms. Among vertebrates, bony fish and long-necked nov. et sp. nov., was found in the Vin˜ales area, western Cuba, plesiosaurs prevailed. However, marine pleurodiran turtles, in sediments of the Jagua Formation, middle–late Oxfordian. metriorhynchid crocodilians, ophthalmosaurian ichthyosaurs, This new taxon is characterized by: wide participation of the and pliosaurids (G. iturraldei gen. nov. et sp. nov.) have also premaxilla in the outer margin of the external naris; frontal been found, as well as at least two species of pterosaurs, and not participating in the orbital margin; postorbital in contact one camarasaurian dinosaur. Among these reptiles there were with the jugal and squamosal; presence of anterior pterygoid off-shore pelagic forms such as the ichthyosaurs and metrio- vacuity; cultriform process of parasphenoid convex and rhynchids, together with the pliosaurid G. iturraldei gen. nov. exposed in palatal view; pterygoid flanges high; jaw articula- et sp. nov.; other taxa were presumably less pelagic, such as tion low relative to tooth row; trihedral teeth in cross-section the pleurodiran turtles and the cryptoclidid plesiosauroids. and with smooth ridges at least in the labial face. A phylo- Gallardosaurus iturraldei gen. nov. et sp. nov. would have genetic analysis suggests that Gallardosaurus forms a clade played the role of an active predator taking advantage of with Peloneustes, the most common pliosaurid genus occur- nectonic fish recorded in the area.
    [Show full text]
  • Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Collection Of Biostatistics Research Archive Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 1-1-2006 Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O'Keefe, F. R. 2006. Neoteny and the plesiomorphic condition of the plesiosaur basicranium. In M. T. Carrano, T. J. Gaudin, R. W. Blob & J. R. Wible, (Eds.), Amniote Paleobiology. (pp. 391-409). Chicago, IL: University of Chicago Press. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. 12 Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F. Robin O’Keefe Introduction Historically, the systematics of the Plesiosauria (Reptilia, Sauroptery- gia) were based largely on postcranial characters (Persson, 1963; Brown, 1981). Several factors account for this bias: plesiosaur skulls tend to be del- icate and are often crushed even when preserved, postcranial elements are relatively common and cranial elements are not, lack of knowledge about the relationships of stem-group sauropterygians, and lack of knowledge of plesiosaur cranial anatomy itself. However, recent detailed examinations of plesiosaur cranial anatomy have identified many characters of use in plesiosaur systematics (Brown, 1993; Cruickshank, 1994; Storrs & Taylor, 1996; Storrs, 1997; Carpenter, 1997; Evans, 1999; O’Keefe, 2001, 2004), and the systematics of the group have changed markedly in response (Carpenter, 1997; O’Keefe, 2001, 2004).
    [Show full text]
  • Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria)
    Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria) Adam Stuart Smith BSc (hons) (Portsmouth), MSc (Bristol) A thesis submitted to the National University of Ireland, University College Dublin for the degree of Doctor of Philosophy November 2007 Supervisor: Dr Gareth J. Dyke Head of School: Professor Thomas Bolger School of Biology and Environmental Science University College Dublin Belfield Dublin 4 Ireland i Contents Frontispiece i Contents ii List of figures vi Acknowledgements xviii Declaration xx Abstract xxi Chapter 1. Introduction and objectives………………………………………….. 1 1.1 General introduction 1 1.2 Palaeobiology 4 1.3 Locomotion 7 1.4 Anatomy 10 1.5 Taxonomic diversity 12 1.6 Thesis objectives 14 1.7 Thesis structure 14 Chapter 2 - Historical background………………………………………………... 16 2.1 History of plesiosaurs 16 2.2 Plesiosaur systematics 16 2.3 Pliosauroidea 16 2.4 Rhomaleosauridae – taxon history 20 2.5 Rhomaleosauridae – previous research 24 2.6 Rhomaleosaurus or Thaumatosaurus? 25 Chapter 3 - Material and palaeontological approaches………………………. 27 3.1 Institutional abbreviations 27 3.2 Data collection –general 28 3.3 NMING F8785 Rhomaleosaurus cramptoni 30 3.3.1 History 30 3.3.2 Iconic specimen 33 3.4 NMING 10194 38 3.5 NMING F8749 38 3.6 NMNH R1336, NMING F8780, TCD.22931 Plesiosaurus 41 macrocephalus 3.7 NMING F8771 and TCD.22932 Thalassiodracon hawkinsi 41 3.8 BMNH 49202 45 3.9 BMNH R38525 Archaeonectrus rostratus 45 ii 3.10 BMNH R4853 Rhomaleosaurus thorntoni 45 3.11 BMNH R2028*, R2029*, R1317, R2061*, R2047*, R2027*, 49 R1318, R1319 and R2030* Eurycleidus arcuatus 3.12 BMNH R5488 Macroplata tenuiceps 50 3.13 BMNH R1310, TCD.47762a, TCD.47762b, 51 3.14 YORYM G503 Rhomaleosaurus zetlandicus 51 3.15 WM 851.S Rhomaleosaurus propinquus 54 3.16 SMNS12478 Rhomaleosaurus victor 54 3.17 LEICS G221.1851 54 3.18 WARMS G10875 56 3.19 TCD.57763 Attenborosaurus conybeari 56 3.20 Additional material 56 3.21 Possible rhomaleosaurids excluded from this study 58 Chapter 4 - Specimen descriptions……………………………………………….
    [Show full text]