Tropical Climatology Oceanographic Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Tropical Climatology Oceanographic Sciences 104 Student books supplement Nature Vol. 272 2 March 1978 particularly where the seasonal variations Africa. Temperate latitude students will Tropical in actual hours of sunshine are relatively find that their needs are better served by climatology small. Nevertheless, Nieuwolt states that such books as Introduction to the the main function of the tropical climates Atmosphere by H. Riehl (McGraw-Hill, Tropical Climatology: An Introduction to as a natural resource is in relation to 1965) and Atmosphere, Weather and the Climates of the Low Latitudes. By agriculture, and he considers both solar Climate by R. G. Barry and R. J. S. Nieuwolt. Pp. 207. (Wiley: London, radiation and rainfall in relation to Chorley (Methuen, third edition, 1976). Sydney, New York and Toronto, tropical crop production. Even so, they will find it a useful book 1977.) £6.75; $15. The book as a whole is easy to read, for additional reading on introductory well produced, and forms an excellent courses. introduction to the climatology of the J. G. Lockwood Tropical Climatology is primarily intended tropics. It should be ideal for University J. G. Lockwood is Senior Lecturer in the for students studying geography at Uni­ geography students studying within the School of Geography at the University of versities within the tropics, though it tropics and in particular those living in Leeds, UK. contains much information useful to students working elsewhere. The level is about that of a first-year geography course in a British University. The book assumes monograph. As well as the extensive that the reader has some basic knowledge Oceanographic references, there are explanatory notes of general climatology, but only a limited to each chapter: "Isotropic turbulence is knowledge of mathematics and physics. sciences determined solely by the nature of the According to the author, the book takes surface over which the wind blows ... " a geographical viewpoint, which concen­ MODERN BOOKS, like modern museums, is an (l hope atypical) example. The trates on the results of the physical pro­ seem able to display their exemplary classic temperature- salinity diagram is cesses in the atmosphere, and their impor­ contents in attractive, eye-catching ways. briefly (and incompletely) described in tance to mankind, rather than on the Four recently published books on the the appendix. The book is an attempt to processes themselves. The book covers oceanographic sciences are well made and fill a gap in the literature but the gaps most aspects of tropical climatology, well illustrated; their style is comparable seems likely to continue to exist, as it is including the general circulation of the but they vary in their aims and in the between differently trained people. tropical atmosphere, tropical distur­ extent to which they suceed in achieving F. P. Shepard, the author of Geological bances, precipitation and applied tropical them. Oceanography: Evolution of Coasts, Conti­ climatology. To me the most visually attractive is nental Margins and the Deep-Sea Floor Nieuwolt starts his book with a dis­ that of J. G. Harvey : Atmosphere (Crane, Russach: New York, $10.50), cussion on the term "tropics" and the and Ocean: Our Fluid Environments is an emeritus professor at the Scripps distinguishing features of "tropical cli­ (Artemis: Horsham, Sussex, UK, £3.75). Institution of Oceanography who was a mates". In the early chapters on radiation Although the cheapest of the four it has pioneer in the subject and has been con­ and temperature, he continues to stress good paper, clear print and is well tributing to it for over 50 years. His book the general uniformity within the deep illustrated. It also seems to me the least is intended for beginning students and tropics. These chapters would have been presumptuous-writing for those with no for the general public-it is descriptive, improved by the introduction of a dis­ previous knowledge of meteorology and with lots of charts, diagrams and photo­ cussion of the energy balance of vegetated oceanography and with little physics or graphs but no formulae. The chapter on and dry surfaces, as the tropics are not mathematics, the author states results waves and currents is less authoritative uniformally wet. Evaporation limits the rather than proving them, with enough than the others: no group velocity, and a temperature over wet surfaces to 32 "C supporting argument to make them seem bit shaky on wave velocity; but it has or below, whereas over dry surfaces it reasonable. To give an example of his useful advice for surfers and for swim­ can rise to much higher values. scope: group velocity is mentioned; meso­ mers in rip currents or on a coral reef. Nieuwolt devotes the last half of his scale oceanic eddies and double diffusive The marine geology is confident and clear, book largely to aspects of water in the convection not. I share the author's view if perhaps a bit discursive. Redolent of tropical atmosphere. He starts with a that there are benefits to be gained from the Pacific, rather than the Atlantic or brief discussion of evapotranspiration, studying the atmosphere and the ocean Mediterranean, I was sorry not to see humidity, condensation and clouds. The together: his book is a useful introduction some reference to side-scan sonar or to principles of evapotranspiration are ex­ for non-specialists. modern magnetic methods. Professor plained in clear simple terms. The nature The Ocean-Atmosphere System (Long­ Shepard has written an interesting intro­ of tropical clouds are discussed, together man : London, £5 .50) by A. H. Perry and duction rather than a textbook. with their relationship to precipitation J. M. Walker, sounds, and is, more por­ Oceanography: A View of the Earth patterns. Tropical rainfall is discussed, tentous. The authors have taken on a (Prentice-Hall: Englewood Cliffs, New together with theories of its formation. harder task, seeking to " treat meteor­ Jersey, £13.55) by M. Grant Cross, is on a Nieuwolt ends his book with a chapter ology, climatology and physical ocean­ bigger scale than the others: more than on applied tropical climatology. Here he ography" for more advanced students in twice the pages, more than twice the cost. suggests that one field in which tropical "the broad fields of geography, geo­ It is the second edition (first in 1972) of climates can make significant contribu­ physics, environmental science, marine his attempt to survey oceanography tions to the world's economy is in the biology and nautical studies". It seems to (marine physics, marine geology and geo­ generation of power. Thus, the high me doubtful that such an aim can be physics, marine biology, a little marine amounts of rainfall which are regularly achieved: specialised branches of fluid chemistry) for beginning students or for received in many elevated areas of the mechanics surely need a good grounding those who need only a nodding acquaint­ tropics, constitute a reliable basis for the in the the fundamentals? To me their ance with the science of the sea. ln this construction of hydroelectric power treatment is too historico-geographical, he has to a great extent succeeded: as stations. The author claims that about too prone to quote detail rather than examples, he gives a good description 55 ~~ of the world's total potential of this basic principle, too broad and too shal­ of group velocity (though not using it form of energy is located in the tropics. low. Again as an example: group velocity in a later section) but regards sonar as a Solar energy is another source of power is not mentioned, though there are ritual method for the sonic detection of other in which the tropics are potentially rich, references to Lamb's treatise and Phillips' vessels or objects and for underwater ©Macmillan Journals Ltd 1978 .
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Aristotle University of Thessaloniki School of Geology Department of Meteorology and Climatology
    1 ARISTOTLE UNIVERSITY OF THESSALONIKI SCHOOL OF GEOLOGY DEPARTMENT OF METEOROLOGY AND CLIMATOLOGY School of Geology 541 24 – Thessaloniki Greece Tel: 2310-998240 Fax:2310995392 e-mail: [email protected] 25 August 2020 Dear Editor We have submitted our revised manuscript with title “Fast responses on pre- industrial climate from present-day aerosols in a CMIP6 multi-model study” for potential publication in Atmospheric Chemistry and Physics. We considered all the comments of the reviewers and there is a detailed response on their comments point by point (see below). I would like to mention that after uncovering an error in the set- up of the atmosphere-only configuration of UKESM1, the piClim simulations of UKESM1-0-LL were redone and uploaded on ESGF (O'Connor, 2019a,b). Hence all ensemble calculations and Figures were redone using the new UKESM1-0-LL simulations. Furthermore, a new co-author (Konstantinos Tsigaridis), who has contributed in the simulations of GISS-E2-1-G used in this work, was added in the manuscript. Yours sincerely Prodromos Zanis Professor 2 Reply to Reviewer #1 We would like to thank Reviewer #1 for the constructive and helpful comments. Reviewer’s contribution is recognized in the acknowledgments of the revised manuscript. It follows our response point by point. 1) The Reviewer notes: “Section 1: Fast response vs. slow response discussion. I understand the use of these concepts, especially in view of intercomparing models. Imagine you have to talk to a wider audience interested in the “effective response” of climate to aerosol forcing in a naturally coupled climate system.
    [Show full text]
  • Geography and Atmospheric Science 1
    Geography and Atmospheric Science 1 Undergraduate Research Center is another great resource. The center Geography and aids undergraduates interested in doing research, offers funding opportunities, and provides step-by-step workshops which provide Atmospheric Science students the skills necessary to explore, investigate, and excel. Atmospheric Science labs include a Meteorology and Climate Hub Geography as an academic discipline studies the spatial dimensions of, (MACH) with state-of-the-art AWIPS II software used by the National and links between, culture, society, and environmental processes. The Weather Service and computer lab and collaborative space dedicated study of Atmospheric Science involves weather and climate and how to students doing research. Students also get hands-on experience, those affect human activity and life on earth. At the University of Kansas, from forecasting and providing reports to university radio (KJHK 90.7 our department's programs work to understand human activity and the FM) and television (KUJH-TV) to research project opportunities through physical world. our department and the University of Kansas Undergraduate Research Center. Why study geography? . Because people, places, and environments interact and evolve in a changing world. From conservation to soil science to the power of Undergraduate Programs geographic information science data and more, the study of geography at the University of Kansas prepares future leaders. The study of geography Geography encompasses landscape and physical features of the planet and human activity, the environment and resources, migration, and more. Our Geography integrates information from a variety of sources to study program (http://geog.ku.edu/degrees/) has a unique cross-disciplinary the nature of culture areas, the emergence of physical and human nature with pathway options (http://geog.ku.edu/geography-pathways/) landscapes, and problems of interaction between people and the and diverse faculty (http://geog.ku.edu/faculty/) who are passionate about environment.
    [Show full text]
  • Link Between the Double-Intertropical Convergence Zone Problem and Cloud Biases Over the Southern Ocean
    Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean Yen-Ting Hwang1 and Dargan M. W. Frierson Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640 Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved February 15, 2013 (received for review August 2, 2012) The double-Intertropical Convergence Zone (ITCZ) problem, in which climate models show that the bias can be reduced by changing excessive precipitation is produced in the Southern Hemisphere aspects of the convection scheme (e.g., refs. 7–9) or changing the tropics, which resembles a Southern Hemisphere counterpart to the surface wind stress formulation (e.g., ref. 10). Given the complex strong Northern Hemisphere ITCZ, is perhaps the most significant feedback processes in the tropics, it is challenging to understand and most persistent bias of global climate models. In this study, we the mechanisms by which the sensitivity experiments listed above look to the extratropics for possible causes of the double-ITCZ improve tropical precipitation. problem by performing a global energetic analysis with historical Recent work in general circulation theory has suggested that simulations from a suite of global climate models and comparing one should not only look within the tropics for features that affect with satellite observations of the Earth’s energy budget. Our results tropical precipitation. A set of idealized experiments showed that show that models with more energy flux into the Southern heating a global climate model exclusively in the extratropics can Hemisphere atmosphere (at the top of the atmosphere and at the lead to tropical rainfall shifts from one side of the tropics to the surface) tend to have a stronger double-ITCZ bias, consistent with other (11).
    [Show full text]
  • Earth System Climatology (ESS200A)
    EarthEarth SystemSystem ClimatologyClimatology (ESS200A)(ESS200A) Course Time Lectures: Tu, Th 9:00-10:20 Discussion: 3315 Croul Hall Text Book The Earth System, 2nd Edition, Kump, Kasting, and Crane, Prentice-Hall Global Physical Climatology, Hartmann; Academic Press Meteorology Today, 7th Edition, Ahrens, Brooks Cool. Grade Homework (40%), Final (60%) Homework Issued and due every Thursday ESS200A Prof. Jin-Yi Yu ESS200A Prof. Jin-Yi Yu CourseCourse DescriptionDescription A general description of the Earth climate system and its subcomponents: the atmosphere, ocean, land surface, ice, and solid earth. ESS200A Prof. Jin-Yi Yu SyllabusSyllabus Week 1 - Global Energy Balance Week 3-4: Ocean Planetary Energy Balance Basic Structure and Dynamics Greenhouse Effect Surface Ocean Circulation: Wind-Driven Atmospheric Composition and Structure Deep Ocean Circulation: Density-Driven Role of Cloud Week 4: Land Surface and Cryosphere Week 2 - Atmospheric General Circulation Land Surface Properties (Soil and Vegetation) Hydrostatic Balance Surface Energy and Water Balance General Circulation in the Troposphere Sea Ice and Land Ice General Circulation in the Stratosphere Climate Roles of Land Surface and Ice Jetstreams Regional Circulation Systems Week 5 – Climate Change and Variation Week 2-3 - Weather Past Climate Change Air Masses and Fronts Short-term Climate variation (ENSO, NAO) Mid-Latitude Cyclones Ozone Hole Tropical Hurricane *** FINAL (October 27, Thursday) *** ESS200A Prof. Jin-Yi Yu GlobalGlobal EnergyEnergy CycleCycle Planetary energy balance Energy absorbed by Earth = Energy emitted by Earth Role of the atmosphere Greenhouse effect Role of oceans Polarward energy transport Role of land surface not significant due to its low heat capacity (from Climate Change 1995) ESS200A Prof.
    [Show full text]
  • General Atmospheric Circulation of the Tropics
    General Atmospheric Circulation of the Tropics By Herbert Riehl Department of Atmospheric Science Colorado State University Fort Collins, Colorado CURRENT PROBLEMS IN RESEi\RCII The General Atmospheric Circulation of the Tropics by Herbert Riehl Colorado State University In science. ,ve are always interested in a well-ordered simple package whenever such a package appears to be in the offing. There has been widespread belief that the general circulation of the tropics meets these requirements. The weather observations which have been gathered in increasing volume in the upper air over the tropics during the last 15 years" ho\vever, have thrown doubt on the validity of such a simple view. They appear to call for a more complex ap­ proach to an ultimate understanding of the tropical atmospheric ma­ chineryand of the interaction between tropical and temperate latitudes. The question no\v is: must we really accept an increased order of difficulty, or can the evidence of the new observations be reconciled with the older approach? If so, chances at arriving at a definite solu­ tion of the tropical general circulation problem within the next decade would be greatly enhanced.. In one respect the story has not changed; the tropics are a heat source for the atmosphere of higher latitudes. This fact, in broad terms. has been appreciated for centuries. Further, circumnaviga­ tion of the oceans by sailing vessels led to recognition of a second fact; the tropics also are the source of momentum for the westerly winds prevalent especially in temperate latitudes. Essentially half.­ of the globe has winds from east at the surface (fig.
    [Show full text]
  • A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B. (Thomas Brian) McKenzie III Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES A CLIMATOLOGY OF TROPICAL CYCLONE SIZE IN THE WESTERN NORTH PACIFIC USING AN ALTERNATIVE METRIC By THOMAS B. MCKENZIE III A Thesis submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science 2017 Copyright © 2017 Thomas B. McKenzie III. All Rights Reserved. Thomas B. McKenzie III defended this thesis on March 23, 2017. The members of the supervisory committee were: Robert E. Hart Professor Directing Thesis Vasubandhu Misra Committee Member Jeffrey M. Chagnon Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii To Mom and Dad, for all that you’ve done for me. iii ACKNOWLEDGMENTS I extend my sincere appreciation to Dr. Robert E. Hart for his mentorship and guidance as my graduate advisor, as well as for initially enlisting me as his graduate student. It was a true honor working under his supervision. I would also like to thank my committee members, Dr. Vasubandhu Misra and Dr. Jeffrey L. Chagnon, for their collaboration and as representatives of the thesis process. Additionally, I thank the Civilian Institution Programs at the Air Force Institute of Technology for the opportunity to earn my Master of Science degree at Florida State University, and to the USAF’s 17th Operational Weather Squadron at Joint Base Pearl Harbor-Hickam, HI for sponsoring my graduate program and providing helpful feedback on the research.
    [Show full text]
  • The Climatological Revolution of the Eighteenth Century (Until 2016) Franz Mauelshagen Over the Last Decade Or So, the History O
    The Climatological Revolution of the Eighteenth Century (until 2016) Franz Mauelshagen Over the last decade or so, the history of meteorology and climatology has developed rapidly, pushed, to some degree, by the question of anthropogenic global warming and its scientific foundations. Naturally, much of this research focuses on the nineteenth and twentieth centuries, while the early days of climatology around 1800 are still somewhat obscure. Reviewing the literature reveals that, up to this point, studies in the history of climate ideas and climate science before 1800 have focused exclusively on meteorology, turning the history of climatology into a by-product of technological progress in meteorological measurement (instruments, their standardization and homogenization) and data collection from about 1700 onwards. This approach has taken for granted that “climate” has always been a meteorological category—an assumption that does not withstand the test. In the context of Antique geography, from which the idea emerged, “climate” referred to a new method of determining the location of a certain place on the globe; the term’s invention parallels the invention of geography, in which context it continued to have little to do with meteorology or the atmosphere. Apparently, the traditional geographic definition of “climate” remained stable well into the eighteenth century. This raises the question of why “climate” finally emerged from its niche in geography to represent the abstract and complex “statistics of weather.” The answer will come from a thorough study of the early modern geographic tradition, particularly the development of physical geography from Varenius to Humboldt, which will change the narrative as well as the chronology of the emergence of climatology as a scientific discipline.
    [Show full text]
  • GEOG 321: Climatology
    Geography 321: Climatology Spring 2018, 4:00-5:20p, Monday and Wednesday, 220 Chapman (CRN 32334) Instructor: Patrick J. Bartlein, 154 Condon Hall, x6-4967, [email protected], OH: Th 2:00-3:30p. GTF: TBA Overview: The climate system is a set of environmental systems including the atmosphere, ocean, and biosphere, that are coupled to one another and vary over time and space, and climatology is the study of that system. This course covers the basics of energy and moisture in the climate system, atmospheric circulation processes and patterns, and the spatial and temporal variations of climate, including those produced by human action. The course will also trace the development of our understanding of the physical basis of climatology, the development of conceptual and numerical models of climate, and how complex systems like the Earth’s climate system are studied. Text: No textbook; .pdfs and URLs will be posted on Canvas, including links to current assessments of climate variations. We will also use entries from the Encyclopedia of Atmospheric Sciences (2nd Ed), available electronically from the UO Library [link]. Prerequisites: Geog 141 (or similar preparation, with consent of instructor) Web Pages: Course web page: http://canvas.uoregon.edu/ Weather and climate page: http://geog.uoregon.edu/weather/ Supplemental materials page, syllabus, etc.: http://geog.uoregon.edu/bartlein/courses/geog321/ Grading: 100 pts. total. Two examinations (20 pts each, weeks 5 and 10), four quizzes (5 pts each), plus completion of ten exercises that involve the analysis of information from the Internet that illustrates the day-to-day and seasonal variations of weather and climate (4 pts each, 40 pts total for the exercises).
    [Show full text]
  • Introduction to Climatology
    © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE Inc. © Eyewire, OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER 1Introduction to Climatology © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION those specializingNOT FOR in glaciology, SALE OR as wellDISTRIBUTION as special- Chapter at a Glance ized physical geographers, geologists, and ocean- Meteorology and Climatology ographers. The biosphere, which crosscuts the Scales in Climatology lithosphere, hydrosphere, cryosphere, and atmo- Subfields of Climatology sphere, includes the zone containing all life forms © Jones & BartlettClimatic Learning, Records andLLC Statistics © Joneson the& Bartlettplanet, including Learning, humans. LLC The biosphere NOT FOR SALE SummaryOR DISTRIBUTION NOT FORis examined SALE by OR specialists DISTRIBUTION in the wide array of life Key Terms sciences, along with physical geographers, geolo- Review Questions gists, and other environmental scientists. Questions for Thought The atmosphere is the component of the system © Jones & Bartlett Learning, LLCstudied by climatologists ©and Jones meteorologists. & Bartlett Ho- Learning, LLC NOT FOR SALE OR DISTRIBUTIONlistic interactions betweenNOT the FORatmosphere SALE and OR DISTRIBUTION Climatology may be described as the scientific each combination of the “spheres” are important study of the behavior of the atmosphere—the contributors to the climate (Table 1.1), at scales thin gaseous layer surrounding Earth’s surface— from local to planetary. Thus, climatologists must integrated over time. Although this definition is draw on knowledge generated in several natural © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC certainly acceptable, it fails to capture fully the and sometimes social scientific disciplines to un- NOTscope FOR of SALE climatology.
    [Show full text]
  • Extreme Precipitation in the Tropics Is Closely Associated with Long-Lived Convective Systems ✉ Rémy Roca 1 & Thomas Fiolleau 1
    ARTICLE https://doi.org/10.1038/s43247-020-00015-4 OPEN Extreme precipitation in the tropics is closely associated with long-lived convective systems ✉ Rémy Roca 1 & Thomas Fiolleau 1 Water and energy cycles are linked to global warming through the water vapor feedback and heavy precipitation events are expected to intensify as the climate warms. For the mid- latitudes, extreme precipitation theory has been successful in explaining the observations, 1234567890():,; however, studies of responses in the tropics have diverged. Here we present an analysis of satellite-derived observations of daily accumulated precipitation and of the characteristics of convective systems throughout the tropics to investigate the relationship between the organization of mesoscale convective systems and extreme precipitation in the tropics. We find that 40% of the days with more than 250 mm precipitation over land are associated with convective systems that last more than 24 hours, although those systems only represent 5% of mesoscale convective systems overall. We conclude that long-lived mesoscale convective systems that are well organized contribute disproportionally to extreme tropical precipitation. 1 Laboratoire d’Études en Géophysique et Océanographie Spatiales (Université de Toulouse III, CNRS, CNES, IRD), Toulouse, France. ✉ email: [email protected] COMMUNICATIONS EARTH & ENVIRONMENT | (2020) 1:18 | https://doi.org/10.1038/s43247-020-00015-4 | www.nature.com/commsenv 1 ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-020-00015-4 ater and energy cycles are intimately linked to global The characteristics of extreme precipitating storms in the tro- Wwarming through the water vapor feedback1. Specifi- pics remain mostly qualitative, lacking in key aspects of the life cally, as temperature increases, the concentration of cycle of organized convection.
    [Show full text]
  • Geologic, Climatic, and Vegetation History of California
    GEOLOGIC, CLIMATIC, AND VEGETATION HISTORY OF CALIFORNIA Constance I. Millar I ntroduction The dawning of the “Anthropocene,” the era of human-induced climate change, exposes what paleoscientists have documented for decades: earth’s environment—land, sea, air, and the organisms that inhabit these—is in a state of continual flux. Change is part of global reality, as is the relatively new and disruptive role humans superimpose on environmental and climatic flux. Historic dynamism is central to understanding how plant lineages exist in the present—their journey through time illuminates plant ecology and diversity, niche preferences, range distributions, and life-history characteristics, and is essential grounding for successful conservation planning. The editors of the current Manual recognize that the geologic, climatic, and vegetation history of California belong together as a single story, reflecting their interweaving nature. Advances in the sci- ences of geology, climatology, and paleobotany have shaken earlier interpretations of earth’s history and promoted integrated understanding of the origins of land, climate, and biota of western North America. In unraveling mysteries about the “what, where, and when” of California history, the respec- tive sciences have also clarified the “how” of processes responsible for geologic, climatic, and vegeta- tion change. This narrative of California’s prehistory emphasizes process and scale while also portraying pic- tures of the past. The goal is to foster a deeper understanding of landscape dynamics of California that will help toward preparing for changes coming in the future. This in turn will inform meaningful and effective conservation decisions to protect the remarkable diversity of rock, sky, and life that is our California heritage.
    [Show full text]