Giant Viruses—Big Surprises

Total Page:16

File Type:pdf, Size:1020Kb

Giant Viruses—Big Surprises viruses Review Giant Viruses—Big Surprises Nadav Brandes 1 and Michal Linial 2,* 1 The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; [email protected] 2 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel * Correspondence: [email protected]; Tel.: +972-02-6585425 Received: 22 March 2019; Accepted: 23 April 2019; Published: 30 April 2019 Abstract: Viruses are the most prevalent infectious agents, populating almost every ecosystem on earth. Most viruses carry only a handful of genes supporting their replication and the production of capsids. It came as a great surprise in 2003 when the first giant virus was discovered and found to have a >1 Mbp genome encoding almost a thousand proteins. Following this first discovery, dozens of giant virus strains across several viral families have been reported. Here, we provide an updated quantitative and qualitative view on giant viruses and elaborate on their shared and variable features. We review the complexity of giant viral proteomes, which include functions traditionally associated only with cellular organisms. These unprecedented functions include components of the translation machinery, DNA maintenance, and metabolic enzymes. We discuss the possible underlying evolutionary processes and mechanisms that might have shaped the diversity of giant viruses and their genomes, highlighting their remarkable capacity to hijack genes and genomic sequences from their hosts and environments. This leads us to examine prominent theories regarding the origin of giant viruses. Finally, we present the emerging ecological view of giant viruses, found across widespread habitats and ecological systems, with respect to the environment and human health. Keywords: Amebae viruses; viral evolution; protein domains; mimivirus; dsdna viruses; translation machinery; pandoravirus; NCLDV 1. Giant Viruses and the Viral World Viruses are cell infecting agents present in almost every ecosystem. Questions the regarding viral origin and early evolution alongside all living organisms (bacteria, archaea and eukarya) are still wide open, and relevant theories remain speculative [1–5]. As viruses are exceptionally diverse and undergo rapid changes, it is impossible to construct an ancestral lineage tree for the viral world [6–10]. Instead, virus families are categorized according to the nature of their genetic material, mode of replication, pathogenicity, and structural properties [11]. At present, the viral world is represented by over 8,000 reference genomes [12]. The International Committee on Taxonomy of Viruses (ICTV) provides a universal virus taxonomical classification proposal that covers ~150 families and ~850 genera, with many viruses yet unclassified [13]. This collection provides a comprehensive, compact set of virus representatives. Inspection of viral genomes reveals that most known viruses have genomes encoding only a few proteins. Actually, 69% of all known viruses have less than 10 proteins encoded in their genomes (Figure1). It is a common assumption that viruses demonstrate near-optimal genome packing and information compression, presumably in order to maximize their replication rate, number of progenies, and other parameters that increase infectivity [14,15]. However, a debate is still ongoing over the generality of these phenomena [16], and there is a non-negligible percentage of larger viruses (Figure1). Viruses 2019, 11, 404; doi:10.3390/v11050404 www.mdpi.com/journal/viruses Viruses 2019, 11, 404 2 of 12 Viruses 2019, 11, x FOR PEER REVIEW 2 of 12 On the far end of the distribution, there are viruses with hundreds of genes, most of them are considered aregiant considered viruses. While giant only viruses. 0.3% While of the knownonly 0.3% viral of proteomes the known contain viral 500proteomes or more proteins,contain 500 they or encode more proteins,as much asthey 7.5% encode of the as total much number as 7.5% of of viral the proteinstotal number (Figure of1 viralB). proteins (Figure 1B). Figure 1. Number of proteins encoded by viruses. (A) The number of encoded proteins (y-axis) in all Figure 1. Number of proteins encoded by viruses. (A) The number of encoded proteins (y-axis) in all 7,959 viral representatives, ranked in descending order. (B) Partitioning of the 7959 viral proteomes 7,959 viral representatives, ranked in descending order. (B) Partitioning of the 7959 viral proteomes by the number of encoded proteins. The 0.3% viral proteomes with the highest number of proteins by the number of encoded proteins. The 0.3% viral proteomes with the highest number of proteins (over 500) encode 7.5% of the total number of viral proteins. (over 500) encode 7.5% of the total number of viral proteins. 2. The Discovery of Giant Viruses 2. The Discovery of Giant Viruses The first giant virus, Acanthamoeba polyphaga mimivirus (APMV), was discovered in 2003 [17]. Its sizeThe was first unprecedented, giant virus, Acanthamoeba being on thepolyphaga scale ofmimivirus small bacteria (APMV), or was archaea discovered cells [18 in]. 2003 Unlike [17]. any Its sizepreviously was unprecedented, identified virus, being APMV on couldthe scale be seenof small with bacteria a lightmicroscope or archaea [19cells,20 ].[18]. Initially Unlike it wasany previouslymistaken for identified a bacterium virus, and APMV recognized could asbe a seen virus with only a ten light years microscope after its isolation [19,20]. [Initially21]. Up it to was this mistakenday, most for of itsa bacterium proteins remain and recognized uncharacterized as a virus [22 ,only23]. Notably,ten years even after more its isolation than a decade[21]. Up after to this the day,discovery most of APMV,its proteins the identification remain uncharacterized of giant viruses [22,23]. still Notably, sometimes even involves more confusion,than a decade as illustrated after the discoveryin the discovery of APMV, of the Pandoravirusthe identification inopinatum of giant[24], viruses which was still initially sometimes described involves as an confusion, endoparasitic as illustratedorganism, andin thePithovirus discovery sibericum of the Pandoravirus[25], which was inopinatum also misinterpreted [24], which aswas an initially archaeal described endosymbiont as an endoparasitic(see discussion organism, in References and [Pithovirus21,26]). sibericum [25], which was also misinterpreted as an archaeal endosymbiontIn the following (see discussion years after in References the initial discovery [21,26]). of APMV, many additional giant viral species haveIn been the identifiedfollowing and years their after genomes the initial fully discovery sequenced. of MostAPMV, giant many viral additional genomes havegiant been viral obtained species havefrom large-scalebeen identified metagenomic and their sequencing genomes projectsfully sequenced. covering aquaticMost giant ecosystems viral genomes (e.g., oceans, have pools,been obtainedlakes and from cooling large-scale wastewater metagenomic units) [27, 28sequencing]; others have projects been covering sequenced aquatic from samplesecosystems extracted (e.g., oceans,from underexplored pools, lakes and geographical cooling wastewater and ecological units) [27,28]; niches others (e.g., thehave Amazon been sequenced River, deep from seassamples and extractedforest soils) from [29 –underexplored32]. Despite the geographical accumulation and of ecological many more niches giant (e.g., virus the representatives, Amazon River, the deep fraction seas andof uncharacterized forest soils) [29–32]. proteins Despite in their the proteomesaccumulation remains of many exceptionally more giant highvirus [ 33representatives,]. Many of these the fractionuncharacterized of uncharacterized proteins were proteins also considered in their proteomes orphan genes remains (ORFans), exceptionally i.e., no significanthigh [33]. matchMany of to theseany other uncharacterized sequence was proteins identified. were also For considered example, 93% orphan of the genesPandoravirus (ORFans), salinus i.e. no proteins,significant the match first torepresentative any other sequence of this family was identified. [34] were For reported example, as ORFans. 93% of the Pandoravirus salinus proteins, the first representative of this family [34] were reported as ORFans. At present, there are over a hundred giant virus isolates, which reveal fascinating and unexpected characteristics. These extreme instances on the viral landscape challenge the current Viruses 2019, 11, 404 3 of 12 At present, there are over a hundred giant virus isolates, which reveal fascinating and unexpected Viruses 2019, 11, x FOR PEER REVIEW 3 of 12 characteristics. These extreme instances on the viral landscape challenge the current theories on genome size and compactness in viruses, and provide a new perspective on the very concept of a virus theories on genome size and compactness in viruses, and provide a new perspective on the very and viral origin [4,20,28,35–37]. concept of a virus and viral origin [4,20,28,35–37]. 3. Definition of Giant Viruses 3. Definition of Giant Viruses Attempts to distinguish giant viruses from other large viruses remain somewhat fuzzy [38,39]. Attempts to distinguish giant viruses from other large viruses remain somewhat fuzzy [38,39]. Any definition for giant viruses would necessarily involve some arbitrary threshold, as virus size, Any definition for giant viruses would necessarily
Recommended publications
  • Diversity and Evolution of the Emerging Pandoraviridae Family
    bioRxiv preprint doi: https://doi.org/10.1101/230904; this version posted December 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PNAS formated 30/08/17 Pandoraviridae Title: Diversity and evolution of the emerging Pandoraviridae family Authors: Matthieu Legendre1, Elisabeth Fabre1, Olivier Poirot1, Sandra Jeudy1, Audrey Lartigue1, Jean- Marie Alempic1, Laure Beucher2, Nadège Philippe1, Lionel Bertaux1, Karine Labadie3, Yohann Couté2, Chantal Abergel1, Jean-Michel Claverie1 Adresses: 1Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) CNRS Aix- Marseille Université, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France. 2CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France. 3 Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France. Corresponding author: Jean-Michel Claverie Structural and Genomic Information Laboratory, UMR 7256, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France. Tel: +33 491825447 , Email: [email protected] Co-corresponding author: Chantal Abergel Structural and Genomic Information Laboratory, UMR 7256, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France. Tel: +33 491825420 , Email: [email protected] Keywords: Nucleocytoplasmic large DNA virus; environmental isolates; comparative genomics; de novo gene creation. 1 bioRxiv preprint doi:
    [Show full text]
  • On the Occurrence of Cytochrome P450 in Viruses
    On the occurrence of cytochrome P450 in viruses David C. Lamba,b,1, Alec H. Follmerc,1, Jared V. Goldstonea,1, David R. Nelsond, Andrew G. Warrilowb, Claire L. Priceb, Marie Y. Truee, Steven L. Kellyb, Thomas L. Poulosc,e,f, and John J. Stegemana,2 aBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; bInstitute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP Wales, United Kingdom; cDepartment of Chemistry, University of California, Irvine, CA 92697-3900; dDepartment of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163; eDepartment of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3900; and fDepartment of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900 Edited by Michael A. Marletta, University of California, Berkeley, CA, and approved May 8, 2019 (received for review February 7, 2019) Genes encoding cytochrome P450 (CYP; P450) enzymes occur A core set of genes involved in viral replication and lysis is most widely in the Archaea, Bacteria, and Eukarya, where they play often conserved in these viruses (10), yet most genes in the giant important roles in metabolism of endogenous regulatory mole- viruses (70–90%) do not have any obvious homolog in existing cules and exogenous chemicals. We now report that genes for virus databases. multiple and unique P450s occur commonly in giant viruses in the Strikingly, many of the giant viruses possess genes coding for Mimiviridae Pandoraviridae , , and other families in the proposed proteins typically involved in cellular processes, including protein order Megavirales. P450 genes were also identified in a herpesvi- translation, DNA repair, and eukaryotic metabolic pathways Ranid herpesvirus 3 Mycobacterium rus ( ) and a phage ( phage previously thought not to occur in viruses (17).
    [Show full text]
  • Exploration of the Propagation of Transpovirons Within Mimiviridae Reveals a Unique Example of Commensalism in the Viral World
    The ISME Journal (2020) 14:727–739 https://doi.org/10.1038/s41396-019-0565-y ARTICLE Exploration of the propagation of transpovirons within Mimiviridae reveals a unique example of commensalism in the viral world 1 1 1 1 1 Sandra Jeudy ● Lionel Bertaux ● Jean-Marie Alempic ● Audrey Lartigue ● Matthieu Legendre ● 2 1 1 2 3 4 Lucid Belmudes ● Sébastien Santini ● Nadège Philippe ● Laure Beucher ● Emanuele G. Biondi ● Sissel Juul ● 4 2 1 1 Daniel J. Turner ● Yohann Couté ● Jean-Michel Claverie ● Chantal Abergel Received: 9 September 2019 / Revised: 27 November 2019 / Accepted: 28 November 2019 / Published online: 10 December 2019 © The Author(s) 2019. This article is published with open access Abstract Acanthamoeba-infecting Mimiviridae are giant viruses with dsDNA genome up to 1.5 Mb. They build viral factories in the host cytoplasm in which the nuclear-like virus-encoded functions take place. They are themselves the target of infections by 20-kb-dsDNA virophages, replicating in the giant virus factories and can also be found associated with 7-kb-DNA episomes, dubbed transpovirons. Here we isolated a virophage (Zamilon vitis) and two transpovirons respectively associated to B- and C-clade mimiviruses. We found that the virophage could transfer each transpoviron provided the host viruses were devoid of 1234567890();,: 1234567890();,: a resident transpoviron (permissive effect). If not, only the resident transpoviron originally isolated from the corresponding virus was replicated and propagated within the virophage progeny (dominance effect). Although B- and C-clade viruses devoid of transpoviron could replicate each transpoviron, they did it with a lower efficiency across clades, suggesting an ongoing process of adaptive co-evolution.
    [Show full text]
  • Comparative Analysis of Transcriptional Regulation Patterns: Understanding the Gene Expression Profile in Nucleocytoviricota
    pathogens Review Comparative Analysis of Transcriptional Regulation Patterns: Understanding the Gene Expression Profile in Nucleocytoviricota Fernanda Gil de Souza †,Jônatas Santos Abrahão * and Rodrigo Araújo Lima Rodrigues *,† Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; [email protected] * Correspondence: [email protected] (J.S.A.); [email protected] (R.A.L.R.) † These authors contributed equally to this work. Abstract: The nucleocytoplasmic large DNA viruses (NCLDV) possess unique characteristics that have drawn the attention of the scientific community, and they are now classified in the phylum Nucleocytoviricota. They are characterized by sharing many genes and have their own transcriptional apparatus, which provides certain independence from their host’s machinery. Thus, the presence of a robust transcriptional apparatus has raised much discussion about the evolutionary aspects of these viruses and their genomes. Understanding the transcriptional process in NCLDV would provide information regarding their evolutionary history and a better comprehension of the biology of these viruses and their interaction with hosts. In this work, we reviewed NCLDV transcription and performed a comparative functional analysis of the groups of genes expressed at different times of infection of representatives of six different viral families of giant viruses. With this analysis, it was possible to observe
    [Show full text]
  • Searching for Megaviruses in Iceland Delanie Baker Ohio Wesleyan University
    Ohio Wesleyan University Digital Commons @ OWU Student Symposium 2019 Apr 25th, 6:00 PM - 7:00 PM Searching for Megaviruses in Iceland Delanie Baker Ohio Wesleyan University Follow this and additional works at: https://digitalcommons.owu.edu/studentsymposium Part of the Microbiology Commons Baker, Delanie, "Searching for Megaviruses in Iceland" (2019). Student Symposium. 2. https://digitalcommons.owu.edu/studentsymposium/2019/poster_session/2 This Poster is brought to you for free and open access by the Student Scholarship at Digital Commons @ OWU. It has been accepted for inclusion in Student Symposium by an authorized administrator of Digital Commons @ OWU. For more information, please contact [email protected]. Presence of Megaviruses from Diverse Icelandic Environments Delanie Baker1, Laura Tuhela1, and Surendra Ambegaokar1,2 1 Department of Botany and Microbiology, Ohio Wesleyan University, 2 Neuroscience Program, Ohio Wesleyan University ABSTRACT METHODS QUESTION SAMPLING The proposed Megavirales order comprises members of the previously 1. Are megaviruses present in Iceland? known nucleocytoplasmic large DNA viruses (NCLDVs). Virus families in the (a) (b) Megavirales order include Poxviridae, Ascoviridae, and the recently explored families of megaviruses infecting free living amoeba such as Mimiviridae, Figure 4. Marseilleviridae, and Pandoraviridae. Megaviruses have been isolated from The top 4cm of soil was water and soil samples from Chile, France, India, and the United States. We collected with a sterile RESULTS chose to study the occurrence of megaviruses in Iceland because of the diverse scoop. 2-3 replicates were Percent lysis of amoeba in various Icelandic soils habitats all within one island. No research has been carried out on the presence taken on a 5m transect.
    [Show full text]
  • List of the Main “Giant” Viruses Known As of Today (April, 18 , 2018)
    List of the main “giant” viruses known as of today (April, 18th, 2018) (complete genomes only)(unpublished in green)(largest genome among their group in red) Family Prototype Virion type Dimension Genome, size, GC% Specific feature Host Mimiviridae Icosahedral Linear DNA MutS, Virophage Acanthamoeba Megavirinae Long fibers Clade A Mimivirus Icosahedral 500+250 nm 1.18 Mb, 28% 4 AaRS Acanthamoeba Clade B Moumouvirus Icosahedral 420+200 nm 1.02 Mb, 25% 5 AaRS Acanthamoeba Clade C Megavirus chilensis Icosahedral 520+150 nm 1.26 Mb, 25% 7 AaRS Acanthamoeba Clade ? Tupanvirus soda lake Icosah. + tail 520+150 nm 1.44 – 1.51 Mb, 28% 20 AaRS Acant. & Verma. Platanovirus KSL-5 Icosahedral 290+140 nm ? ? Saccamoeba Mesomimivirinae Algae-infecting P. globosa virus (PgV) Icosahedral 150 nm 460 kb, 32% Phaeocystis H. ericina virus (CeV) Icosahedral 160 nm 474 kb, 25% Haptolina Aav Icosahedral 140 nm 371 kb, 28.7% Aureococcus TetV Icosahedral 257 nm 668 kb, 41.2%, C DNA Fermentation ? Tetraselmis Aquavirinae CroV Icosahedral 300 nm 693 kb, 23% 1 AaRS Cafeteria BsV Icosahedral 300 nm 1.386 Mb, 25% Bodo saltans Klosneuvirus No isolate ? 1.57 Mb, 28.6% 19 AaRS unknown Catovirus No isolate ? 1.53 Mb, 26.4% 15 AaRS unknown Hokovirus No isolate ? 1.33 Mb, 21.4% 13 AaRS unknown Indivirus No isolate ? 860 kb, 26.6% 3 AaRS unknown Family Prototype Virion type Dimension Genome, size, GC% Host Marseilleviridae icosahedral Acanthamoeba Clade A Marseillevirus (A) icosahedral 200 nm C DNA, 368 kb, 45% Acanthamoeba Melbournevirus icosahedral 200 nm C DNA, 369, 44.7%
    [Show full text]
  • Diversity and Evolution of the Emerging Pandoraviridae Family
    ARTICLE DOI: 10.1038/s41467-018-04698-4 OPEN Diversity and evolution of the emerging Pandoraviridae family Matthieu Legendre 1, Elisabeth Fabre1, Olivier Poirot1, Sandra Jeudy1, Audrey Lartigue1, Jean-Marie Alempic1, Laure Beucher2, Nadège Philippe 1, Lionel Bertaux1, Eugène Christo-Foroux1, Karine Labadie3, Yohann Couté 2, Chantal Abergel 1 & Jean-Michel Claverie1 With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and 1234567890():,; dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes. 1 Aix Marseille Univ, CNRS, Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479), 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France. 2 Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France. 3 CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France.
    [Show full text]
  • Pandoravirus Celtis Illustrate
    Pandoravirus Celtis Illustrates the Microevolution Processes at Work in the Giant Pandoraviridae Genomes Matthieu Legendre, Jean-Marie Alempic, Nadège Philippe, Audrey Lartigue, Sandra Jeudy, Olivier Poirot, Ngan Thi Ta, Sébastien Nin, Yohann Couté, Chantal Abergel, et al. To cite this version: Matthieu Legendre, Jean-Marie Alempic, Nadège Philippe, Audrey Lartigue, Sandra Jeudy, et al.. Pandoravirus Celtis Illustrates the Microevolution Processes at Work in the Giant Pandoraviridae Genomes. Frontiers in Microbiology, Frontiers Media, 2019, 10, pp.430. 10.3389/fmicb.2019.00430. hal-02135607 HAL Id: hal-02135607 https://hal.archives-ouvertes.fr/hal-02135607 Submitted on 5 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-10-00430 March 6, 2019 Time: 17:27 # 1 ORIGINAL RESEARCH published: 08 March 2019 doi: 10.3389/fmicb.2019.00430 Pandoravirus Celtis Illustrates the Microevolution Processes at Work in the Giant Pandoraviridae Genomes Matthieu Legendre1, Jean-Marie
    [Show full text]
  • A Novel 80-Nm Virus Infecting Acanthamoeba Castellanii
    Yaravirus: A novel 80-nm virus infecting Acanthamoeba castellanii Paulo V. M. Borattoa,b,1, Graziele P. Oliveiraa,b,1, Talita B. Machadoa, Ana Cláudia S. P. Andradea, Jean-Pierre Baudoinb,c, Thomas Klosed, Frederik Schulze, Saïd Azzab,c, Philippe Decloquementb,c, Eric Chabrièreb,c, Philippe Colsonb,c, Anthony Levasseurb,c, Bernard La Scolab,c,2, and Jônatas S. Abrahãoa,2 aLaboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; bMicrobes, Evolution, Phylogeny and Infection, Aix-Marseille Université UM63, Institut de Recherche pour le Développement 198, Assistance Publique–Hôpitaux de Marseille, 13005 Marseille, France; cInstitut Hospitalo-Universitaire Méditerranée Infection, Faculté de Médecine, 13005 Marseille, France; dDepartment of Biological Sciences, Purdue University, West Lafayette, IN 47907; and eDepartment of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Edited by James L. Van Etten, University of Nebraska-Lincoln, Lincoln, NE, and approved June 2, 2020 (received for review January 29, 2020) Here we report the discovery of Yaravirus, a lineage of amoebal others. NCDLVs have dsDNA genomes and were proposed to virus with a puzzling origin and evolution. Yaravirus presents share a monophyletic origin based on criteria that include the 80-nm-sized particles and a 44,924-bp dsDNA genome encoding sharing of a set of ancestral vertically inherited genes (17, 18). for 74 predicted proteins. Yaravirus genome annotation showed From this handful set of genes, a core gene cluster is found to be that none of its genes matched with sequences of known organ- present in almost all members of the NCLDVs, being composed isms at the nucleotide level; at the amino acid level, six predicted by five distinct genes, namely a DNA polymerase family B, a proteins had distant matches in the nr database.
    [Show full text]
  • The Multiple Origins of Proteins Present in Tupanvirus Particles
    Available online at www.sciencedirect.com ScienceDirect The multiple origins of proteins present in tupanvirus particles 1 Paulo Victor de Miranda Boratto , 1 Ana Cla´ udia dos Santos Pereira Andrade , 1 2 Rodrigo Arau´ jo Lima Rodrigues , Bernard La Scola and 1 Joˆ natas Santos Abraha˜ o In the last few decades, the isolation of amoebae-infecting that stands out in this scenario is the giant viruses. giant viruses has challenged established principles related to These viruses are classified as nucleo-cytoplasmic large the definition of virus, their evolution, and their particle DNA viruses (NCLDVs – proposed order Megavirales). structures represented by a variety of shapes and sizes. They have dimensions larger than 200 nm and exten- Tupanviruses are one of the most recently described amoebae- sive genomes reaching up to 2.5 Mb that can encode infecting viruses and exhibit a peculiar morphology with a thousands proteins [2–5]. cylindrical tail attached to the capsid. Proteomic analysis of purified viral particles revealed that virions are composed of Most giant viruses, such as mimivirus, pandoravirus, over one hundred proteins with different functions. The putative and pithovirus, are associated with free-living amoebae origin of these proteins had not yet been investigated. Here, we of the genus Acanthamoeba [3–5]. Some giant viruses provide evidences for multiple origins of the proteins present in though, have been described infecting flagellate micro- tupanvirus particles, wherein 20% originate from members of organisms such as Cafeteria roenbergensis virus and Bodo the archaea, bacteria and eukarya. saltans virus, and both groups are phylogenetically related to the family Mimiviridae [6,7].
    [Show full text]
  • Pandoravirus Celtis Illustrates the Microevolution Processes at Work In
    bioRxiv preprint doi: https://doi.org/10.1101/500207; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Pandoravirus celtis illustrates the microevolution processes at work 2 in the giant Pandoraviridae genomes 3 Running title: Evolutionary mechanisms in Pandoraviridae 4 Matthieu Legendre1, Jean-Marie Alempic1, Nadège Philippe1, Audrey Lartigue1, Sandra 5 Jeudy1, Olivier Poirot1, Ngan Thi Ta1, Sébastien Nin1, Yohann Couté2, Chantal Abergel1*, 6 Jean-Michel Claverie1* 7 1Aix Marseille Univ, CNRS, IGS, Structural and Genomic Information Laboratory (UMR7256), 8 Mediterranean Institute of Microbiology (FR3479), 163 Avenue de Luminy, F-13288 Marseille, 9 France 10 2Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France. 11 * Correspondence: 12 Jean-Michel Claverie 13 [email protected] 14 Chantal Abergel 15 [email protected] 16 Keywords: de novo gene creation, comparative genomics, Acanthamoeba, Giant viruses, Soil 17 viruses, hAT transposase 18 Abstract 19 With genomes of up to 2.7 Mb propagated in µm-long oblong particles and initially predicted to 20 encode more than 2000 proteins, members of the Pandoraviridae family display the most extreme 21 features of the known viral world. The mere existence of such giant viruses raises fundamental 22 questions about their origin and the processes governing their evolution. A previous analysis of 23 six newly available isolates, independently confirmed by a study including 3 others, established 24 that the Pandoraviridae pan-genome is open, meaning that each new strain exhibits protein- 25 coding genes not previously identified in other family members.
    [Show full text]
  • Host Range and Coding Potential of Eukaryotic Giant Viruses
    viruses Review Host Range and Coding Potential of Eukaryotic Giant Viruses Tsu-Wang Sun 1,2 , Chia-Ling Yang 1, Tzu-Tong Kao 1 , Tzu-Haw Wang 1, Ming-Wei Lai 1 and Chuan Ku 1,2,* 1 Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; [email protected] (T.-W.S.); [email protected] (C.-L.Y.); [email protected] (T.-T.K.); [email protected] (T.-H.W.); [email protected] (M.-W.L.) 2 Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan * Correspondence: [email protected] Received: 7 November 2020; Accepted: 19 November 2020; Published: 21 November 2020 Abstract: Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions.
    [Show full text]