THE STONE-^ECH COMPACTIFICATION by Russell C

Total Page:16

File Type:pdf, Size:1020Kb

THE STONE-^ECH COMPACTIFICATION by Russell C THE STONE-^ECH COMPACTIFICATION by Russell C. Walker Department of Mathematics Carnegie-Mellon University- August, 1972 The Stone-(5ech Compactification by Russell C. Walker Carnegie-Mellon University ABSTRACT The Stone-fiech compactification PX has been a topic of increasing study since its introduction in 1937. The algebraic content of this research is collected in the 1960 textbook, Rings of continuous Functions, by L. Gillman and M. Jerison. Here we take a more purely topological viewpoint of the Stone-Cech compactification and attempt to collect the most important results which have emerged since Rings of Continuous Functions. The construction of pX is described in an historical perspective. The theory of Boolean algebras is developed and used as a tool, primarily in a detailed investigation of 0 IN and p 3N\IN. The relationships between a space X and its "growth" PX\X are examined, including the non-homogeneity of $X\X, the cellularity of pX\X, and mappings of pX to PX\X. The Glicksberg product theorem which characterizes the products such that 0(x X cc) = x (PX^cc ) and related results are presented. Finally, the Stone-£ech compactification is studied in a categorical context. INTRODUCTION This manuscript had its origins in the author*s fascination with L. Gillman and M. Jerison*s text, Rings of Continuous Functions, particularly with the Stone-Cech compactification. The number of research papers relating to the Stone-fiech compactification since the publication of Rings of Continuous Functions in 1960 shows that I am not alone in my interest. My main objective in this manuscript is to collect these results in a single source in order to make them more accessible to the mathematical community. However, the point of view here is more topological than that of Gillman and Jerison and little of the algebraic interest in the Stone-Cech compactification is apparent beyond the first chapter. Only a very few of the results here are new. Theorem 10.46 concerning epi-reflective hulls and the results in Sections 10.28-31 concerning pushouts in the category of completely regular spaces were first presented by the author to a categorical topology seminar at Carnegie-Mellon University in 1971. The proof of Theorem 10.22 characterizing the realcompact spaces as closed subspaces of products of real lines appears to be new. Finally, Lemma 2.26 is a Boolean algebra result which is crucial to the investigation of p W\W. The lemma first appeared in I. I. ParoviCenko*s 1963 paper as a generalization of a result of W. Rudin. However, Parovitfenko*s proof contains a gap. To i the best of my knowledge, the proof given here is the first | - complete proof of this result. ; This manuscript is intended to be both a reference for research mathematicians and to be a text for second level graduate students in topology. An extensive bibliography has been included as an aid to furthejr reading and the original i papers are cited in the text by year |and author. A list of exercises follows most chapters to supplement the text and to give the reader an opportunity to become familiar with the concepts. i Chapters 2, and 10 are introductory in nature. Chapter 1 contains the basic material about th^ Stone-Cech compactification and parts of the chapter will be repetitive for the reader already familiar with the concept. Chapter 2j is an introduction to Boolean algebras. Chapter 10 provides a brief introduction to category theory and discusses the Stcjne-Cech compactification in the categorical context of reflections. Each of Chapters 3 - 9 i develops a particular topic in the tjheory of Stone-fiech compactifications. Chapters 3 and 7 |are devoted to $ IN and its growth pM\3N. For the reader mainly interested in these two spaces, Corollary 4.30 which showis the existence of P-points in p ]N\IN and the construction used in the proof of Corollary i 6.16 comprise the material needed bettween Chapters 3 and 7. The major pattern of dependence among the chapters is given | • • below. ii Chapter 1 Chapter 8 Chapter 9 Chapter 2 Chapter 10 V Chapter 3 Corollaries 4.30,6.16 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Because the later chapters are essentially independent, the manuscript can be used as a text in several ways. As a one semester second level graduate course, portions of Chapters 1, 2, 3, and 10 together with one of the more specialized chapters would appear to be a good combination of about the right length. The reader already familiar with Rings of Continuous Functions will need only to read Chapter 2 and part of Chapter 3 in order to have easy access to any of the later chapters. As a two semester course, the student who has completed an introductory topology course should be able to cover the complete manuscript. iii ACKNOWLEDGEMENTS I would like to express my gratitude to Professor Stanley P. Franklin under whose guidance this dissertation has been written. Without his advice and encouragement, the project would have been nearly impossible as well as much less enjoyable. I would also like to thank Greg Naber and Barbara Thomas for their constructive comments and criticism. The author would also like to express his gratitude to Carnegie-Mellon University for financial support during the writing of this manuscript and also to Professors Richard A. Moore and Maury Weir for their encouragement during the first years of graduate study. Finally, I would like to thank Nancy Colmer for her excellent typing of the final manuscript. iv TABLE OF CONTENTS 1. Development of the Stone-£ech Compactification 1 2. Boolean Algebras 76 3. On pJN and IN* 131 4. Non-homogeneity of Growths 179 5. Cellularity of Growths 218 6. Mappings of pX to X* 245 7. p IN Revisited 281 8« Product Theorems 293 9. Some Connectedness Results 347 10. pX in Categorical Perspective 361 Bibliography 445 Author Index 470 List of Symbols 472 Index 474 :-•••• CHAPTER ONE: DEVELOPMENT OF THE STONE-^ECH COMPACTIFICATION 1.1. A compactification of a topological space X is a compact space K together with an embedding e : X-—with e [X] dense in K. We will usually identify X with e [X] and consider X as a subspace of K. Our main topic is a very special type of compactification -- one in which X is embedded in such a way that every bounded, real-valued continuous function on X will extend continuously to the compactification. Such a compactification of X will be called a Stone-Cech compacti- fication and will be denoted by j8x. In this chapter, several constructions of #X will be examined. We will find that j8x is a useful device to study relationships between topological characteristics of X and the algebraic structure of the real- valued continuous functions defined on X and that many topological properties of X can be translated into properties of $X. The discussion will proceed in a rough approximation of historical order, although many anachronisms have been included to smooth the way and at the same time to introduce material that will be useful later. Much of the first chapter will be a review of material developed in the classic L. Gillman and M. Jerison text, Rings of Continuous Functions which will henceforth be referred to by [GJ]. The development will be almost entirely self-contained. Only a very few results which rely on the more algebraic approach 2 of [GJ] will be stated without proof. The basic reference for results in general topology will be J. Dugundji*s text, Topology, which will be referred to by [D]. 1.2. For the most part, notation will be as in [GJ]. The ring of all real-valued continuous functions defined on a space X will be denoted by C(X) and the subring consisting of all bounded members of C(X) will be denoted by C*(X). We will say that a subspace S of X is C-embedded (resp. C*-embedded) in X if every member f of C(S) (resp. C*(S)) extends to a member g of C(X) (resp. C (X)). The following diagram illustrates C-embedding: e The symbol # indicates that the composition of g with the embedding e is equal to the mapping f. In such an instance, we will say that the diagram is commutative. The set of points of X where a member f of C(X) is equal to zero is called the zero-set of f and will be denoted by Z(f). We will frequently say that f vanishes at x to mean f(x) =0. The complement of the zero-set Z(f) is called a cozero-set and is denoted by Cz(f). The collections of all zero-sets and all cozero-sets of X will be denoted by 3 Z[X] and CZ[X], respectively. The ring and lattice operations in the rings C(X) and C (X) will be defined pointwise and it will be convenient to be familiar with such relationships as Z(|f| + |g|) = Z(f) n z(g) and {xeX : f(x) 2 1} = Z((f-1) A 0). Note that in the second equation, the symbol "1" is used to represent the function which is constantly equal to 1. The symbol f"*1 will be reserved to denote the reciprocal of a member f of C(X) if the reciprocal is defined, i.e. if f does not vanish anywhere on X. The term mapping will always refer to a continuous function. The composition of two functions f and g will be denoted by go f and inverse images under a function f will be written f (S) .
Recommended publications
  • Stone Coalgebras
    Electronic Notes in Theoretical Computer Science 82 No. 1 (2003) URL: http://www.elsevier.nl/locate/entcs/volume82.html 21 pages Stone Coalgebras Clemens Kupke 1 Alexander Kurz 2 Yde Venema 3 Abstract In this paper we argue that the category of Stone spaces forms an interesting base category for coalgebras, in particular, if one considers the Vietoris functor as an analogue to the power set functor. We prove that the so-called descriptive general frames, which play a fundamental role in the semantics of modal logics, can be seen as Stone coalgebras in a natural way. This yields a duality between the category of modal algebras and that of coalgebras over the Vietoris functor. Building on this idea, we introduce the notion of a Vietoris polynomial functor over the category of Stone spaces. For each such functor T we establish a link between the category of T -sorted Boolean algebras with operators and the category of Stone coalgebras over T . Applications include a general theorem providing final coalgebras in the category of T -coalgebras. Key words: coalgebra, Stone spaces, Vietoris topology, modal logic, descriptive general frames, Kripke polynomial functors 1 Introduction Technically, every coalgebra is based on a carrier which itself is an object in the so-called base category. Most of the literature on coalgebras either focuses on Set as the base category, or takes a very general perspective, allowing arbitrary base categories, possibly restricted by some constraints. The aim of this paper is to argue that, besides Set, the category Stone of Stone spaces is of relevance as a base category.
    [Show full text]
  • Arxiv:2101.00942V2 [Math.CT] 31 May 2021 01Ascainfrcmuigmachinery
    Reiterman’s Theorem on Finite Algebras for a Monad JIŘÍ ADÁMEK∗, Czech Technical University in Prague, Czech Recublic, and Technische Universität Braun- schweig, Germany LIANG-TING CHEN, Academia Sinica, Taiwan STEFAN MILIUS†, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany HENNING URBAT‡, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper, Reiterman’s theorem is generalized to finite Eilenberg- Moore algebras for a monad T on a category D: we prove that a class of finite T-algebras is a pseudovariety iff it is presentable by profinite equations. As a key technical tool, we introduce the concept of a profinite monad T associated to the monad T, which gives a categorical view of the construction of the space of profinite terms. b CCS Concepts: • Theory of computation → Algebraic language theory. Additional Key Words and Phrases: Monad, Pseudovariety, Profinite Algebras ACM Reference Format: Jiří Adámek, Liang-Ting Chen, Stefan Milius, and Henning Urbat. 2021. Reiterman’s Theorem on Finite Al- gebras for a Monad. 1, 1 (June 2021), 49 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION One of the main principles of both mathematics and computer science is the specification of struc- tures in terms of equational properties. The first systematic study of equations as mathematical objects was pursued by Birkhoff [7] who proved that a class of algebraic structures over a finitary signature Σ can be specified by equations between Σ-terms if and only if it is closed under quo- tient algebras (a.k.a.
    [Show full text]
  • A Characterization of the Canonical Extension of Boolean
    A CHARACTERIZATION OF THE CANONICAL EXTENSION OF BOOLEAN HOMOMORPHISMS LUCIANO J. GONZALEZ´ Abstract. This article aims to obtain a characterization of the canon- ical extension of Boolean homomorphisms through the Stone-Cechˇ com- pactification. Then, we will show that one-to-one homomorphisms and onto homomorphisms extend to one-to-one homomorphisms and onto homomorphisms, respectively. 1. Introduction The concept of canonical extension of Boolean algebras with operators was introduced and studied by J´onsson and Tarski [13, 14]. Then, the notion of canonical extension was naturally generalized to the setting of distribu- tive lattices with operators [7]. Later on, the notion of canonical extension was generalized to the setting of lattices [8, 9, 6], and the more general setting of partially ordered sets [3]. The theory of completions for ordered algebraic structures, and in particular the theory of canonical extensions, is an important and useful tool to obtain complete relational semantics for several propositional logics such as modal logics, superintuitionistic logics, fragments of substructural logics, etc., see for instance [1, 5, 10, 16, 3]. The theory of Stone-Cechˇ compactifications of discrete spaces and in particular of discrete semigroup spaces has many applications to several branches of mathematics, see the book [12] and its references. Here we are interested in the characterization of the Stone-Cechˇ compactification of a discrete space through of the Stone duality for Boolean algebras. In this paper, we prove a characterization of the canonical extension of a arXiv:1702.06414v2 [math.LO] 1 Jun 2018 Boolean homomorphism between Boolean algebras [13] through the Stone- Cechˇ compactification of discrete spaces and the Stone duality for Boolean algebras.
    [Show full text]
  • REVERSIBLE FILTERS 1. Introduction a Topological Space X Is Reversible
    REVERSIBLE FILTERS ALAN DOW AND RODRIGO HERNANDEZ-GUTI´ ERREZ´ Abstract. A space is reversible if every continuous bijection of the space onto itself is a homeomorphism. In this paper we study the question of which countable spaces with a unique non-isolated point are reversible. By Stone duality, these spaces correspond to closed subsets in the Cech-Stoneˇ compact- ification of the natural numbers β!. From this, the following natural problem arises: given a space X that is embeddable in β!, is it possible to embed X in such a way that the associated filter of neighborhoods defines a reversible (or non-reversible) space? We give the solution to this problem in some cases. It is especially interesting whether the image of the required embedding is a weak P -set. 1. Introduction A topological space X is reversible if every time that f : X ! X is a continuous bijection, then f is a homeomorphism. This class of spaces was defined in [10], where some examples of reversible spaces were given. These include compact spaces, Euclidean spaces Rn (by the Brouwer invariance of domain theorem) and the space ! [ fpg, where p is an ultrafilter, as a subset of β!. This last example is of interest to us. Given a filter F ⊂ P(!), consider the space ξ(F) = ! [ fFg, where every point of ! is isolated and every neighborhood of F is of the form fFg [ A with A 2 F. Spaces of the form ξ(F) have been studied before, for example by Garc´ıa-Ferreira and Uzc´ategi([6] and [7]).
    [Show full text]
  • Some Limits of Boolean Algebras
    SOME LIMITS OF BOOLEAN ALGEBRAS FRANKLIN HAIMO 1. Introduction. Inverse systems of topological spaces and direct and inverse systems of Abelian groups and resulting applications thereof to algebraic topology have been studied intensively, and the techniques employed are now standard [2]. (Numbers in brackets refer to the bibliography at the end of the paper.) We shall apply some of these ideas to the treatment of sets of Boolean algebras in order to obtain, in the inverse case, a representation, and, in both cases, some information about the ideals and about the decompositions of certain algebras. For instance, it is well known [l] that the cardinal product B* of a set {Ba} of Boolean algebras, indexed by a class A, is also a Boolean algebra. Moreover, if each Ba is m-complete for some fixed cardinal m [3], then B* is m-complete. When A is a set partly ordered by = and directed thereby, and when the Ba form an inverse system (to be defined below), we shall show that the re- sulting inverse limit set is a Boolean algebra, a subalgebra of B*, and a similar result will hold in the direct case, at least in part.1 For each nonfinite Boolean algebra B, there will be constructed a nontrivial inverse limit representation of B, the inverse limit of all principal ideals [3] of B (with repetitions). In the direct case, ideals in the limit algebra (and the homomorphic algebras which they generate) will turn out to be direct limits of like objects. Direct decomposition into ideals of the direct limit takes place (it will be seen) if there is a similar decomposition in each Ba.
    [Show full text]
  • Boolean-Valued Equivalence Relations and Complete Extensions of Complete Boolean Algebras
    BULL. AUSTRAL. MATH. SX. MOS 02JI0, 02J05 VOL. 3 (1970), 65-72. Boolean-valued equivalence relations and complete extensions of complete boolean algebras Denis Higgs It is remarked that, if A is a complete boolean algebra and 6 is an /-valued equivalence relation on a non-empty set J , then the set of 6-extensional functions from J to A can be regarded as a complete boolean algebra extension of A and a characterization is given of the complete extensions which arise in this way. Let A be a boolean algebra, I any non-empty set. An A-valued equivalence relation on I is a function 6 : I x I •*• A such that 6(i, i) = 1 , 6(i, j) = 6(j, i) , and 6(i, j) A 6(J, k) 2 6(i, fc) for all i, j, k in J . Boolean-valued equivalence relations occur of course in boolean-valued model theory and in this context they were first introduced, so far as I know, by -Los [5], p. 103. (As it happens, it is the complement d{i, j) = 6(i, j)' of a boolean-valued equivalence relation which tos describes and he requires in addition that d{i, j) = 0 only if i = j ; such a function d(i, j) may be regarded as an /-valued metric on I . Boolean-valued metrics have been considered by a number of authors - see, for example, Ellis and Sprinkle [7], p. 25^•) Given an /J-valued equivalence relation 6 on the non-empty set I , where from now on we suppose that the boolean algebra A is complete, we Received 28 March 1970.
    [Show full text]
  • Seminar I Boolean and Modal Algebras
    Seminar I Boolean and Modal Algebras Dana S. Scott University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley Visiting Fellow Magdalen College, Oxford Oxford, Tuesday 25 May, 2010 Edinburgh, Wednesday 30 June, 2010 A Very Brief Potted History Gödel gave us two translations: (1) classical into intuitionistic using not-not, and (2) intuitionistic into S4-modal logic. Tarski and McKinsey reviewed all this algebraically in propositional logic, proving completeness of (2). Mostowski suggested the algebraic interpretation of quantifiers. Rasiowa and Sikorski went further with first-order logic, giving many completeness proofs (pace Kanger, Hintikka and Kripke). Montague applied higher-order modal logic to linguistics. Solovay and Scott showed how Cohen's forcing for ZFC can be considered under (1). Bell wrote a book (now 3rd ed.). Gallin studied a Boolean-valued version of Montague semantics. Myhill, Goodman, Flagg and Scedrov made proposals about modal ZF. Fitting studied modal ZF models and he and Smullyan worked out forcing results using both (1) and (2). What is a Lattice? 0 ≤ x ≤ 1 Bounded x ≤ x Partially Ordered x ≤ y & y ≤ z ⇒ x ≤ z Set x ≤ y & y ≤ x ⇒ x = y x ∨ y ≤ z ⇔ x ≤ z & y ≤ z With sups & z ≤ x ∧ y ⇔ z ≤ x & z ≤ y With infs What is a Complete Lattice? ∨i∈Ixi ≤ y ⇔ (∀i∈I) xi ≤ y y ≤ ∧i∈Ixi ⇔ (∀i∈I) y ≤ xi Note: ∧i∈Ixi = ∨{y|(∀i∈I) y ≤ xi } What is a Heyting Algebra? x ≤ y→z ⇔ x ∧ y ≤ z What is a Boolean Algebra? x ≤ (y→z) ∨ w ⇔ x ∧ y ≤ z ∨ w Alternatively using Negation x ≤ ¬y ∨ z ⇔ x ∧ y ≤ z Distributivity Theorem: Every Heyting algebra is distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) Theorem: Every complete Heyting algebra is (∧ ∨)-distributive: ∧ ∨ = ∨ ∧ x i∈Iyi i∈I(x yi) Note: The dual law does not follow for complete Heyting algebras.
    [Show full text]
  • Stone Duality Above Dimension Zero: Axiomatising the Algebraic Theory of C(X)
    Stone duality above dimension zero: Axiomatising the algebraic theory of C(X) Vincenzo Marraa, Luca Reggioa,b aDipartimento di Matematica \Federigo Enriques", Universit`adegli Studi di Milano, via Cesare Saldini 50, 20133 Milano, Italy bUniversit´eParis Diderot, Sorbonne Paris Cit´e,IRIF, Case 7014, 75205 Paris Cedex 13, France Abstract It has been known since the work of Duskin and Pelletier four decades ago that Kop, the opposite of the category of compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that Kop is equivalent to a possibly infinitary variety of algebras ∆ in the sense of S lomi´nskiand Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of ∆ can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosick´yindependently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of Kop. In particular, ∆ is not a finitary variety | Isbell's result is best possible. The problem of axiomatising ∆ by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of ∆. Key words: Algebraic theories, Stone duality, Boolean algebras, MV-algebras, Lattice-ordered Abelian groups, C∗-algebras, Rings of continuous functions, Compact Hausdorff spaces, Stone-Weierstrass Theorem, Axiomatisability. 2010 MSC: Primary: 03C05. Secondary: 06D35, 06F20, 46E25. 1. Introduction. In the category Set of sets and functions, coordinatise the two-element set as 2 := f0; 1g.
    [Show full text]
  • Arxiv:1408.1072V1 [Math.CT]
    SOME NOTES ON ESAKIA SPACES DIRK HOFMANN AND PEDRO NORA Dedicated to Manuela Sobral Abstract. Under Stone/Priestley duality for distributive lattices, Esakia spaces correspond to Heyting algebras which leads to the well-known dual equivalence between the category of Esakia spaces and morphisms on one side and the category of Heyting algebras and Heyting morphisms on the other. Based on the technique of idempotent split completion, we give a simple proof of a more general result involving certain relations rather then functions as morphisms. We also extend the notion of Esakia space to all stably locally compact spaces and show that these spaces define the idempotent split completion of compact Hausdorff spaces. Finally, we exhibit connections with split algebras for related monads. Introduction These notes evolve around the observation that Esakia duality for Heyting algebras arises more naturally when considering the larger category SpecDist with objects spectral spaces and with morphisms spectral distributors. In fact, as we observed already in [Hofmann, 2014], in this category Esakia spaces define the idempotent split completion of Stone spaces. Furthermore, it is well-known that SpecDist is dually equivalent to the category DLat⊥,∨ of distributive lattices and maps preserving finite suprema and that, under this equivalence, Stone spaces correspond to Boolean algebras. This tells us that the category of Esakia spaces and spectral distributors is dually equivalent to the idempotent split completion of the category Boole⊥,∨ of Boolean algebras and maps preserving finite suprema. However, the main ingredients to identify this category as the full subcategory of DLat⊥,∨ defined by all co-Heyting algebras were already provided by McKinsey and Tarski in 1946.
    [Show full text]
  • Arxiv:1807.10637V2 [Math.RA] 1 May 2019 Eso Ht If That, Show We Abstract .Introduction 1
    Codensity, profiniteness and algebras of semiring-valued measures Luca Reggio IRIF, Universit´eParis Diderot, Sorbonne Paris Cit´e, Case 7014, 75205 Paris Cedex 13, France and Laboratoire J. A. Dieudonn´e, Universit´eCˆote d’Azur, Parc Valrose, 06108 Nice Cedex 02, France E-mail address: [email protected] Abstract We show that, if S is a finite semiring, then the free profinite S-semimodule on a Boolean Stone space X is isomorphic to the algebra of all S-valued measures on X, which are finitely additive maps from the Boolean algebra of clopens of X to S. These algebras naturally appear in the logic approach to formal languages as well as in idempotent analysis. Whenever S is a (pro)finite idempotent semiring, the S-valued measures are all given uniquely by continuous density functions. This generalises the classical representation of the Vietoris hyperspace of a Boolean Stone space in terms of continuous functions into the Sierpi´nski space. We adopt a categorical approach to profinite algebra which is based on profinite monads. The latter were first introduced by Ad´amek et al. as a special case of the notion of codensity monads. Keywords: profinite algebra, Stone duality, codensity monad, semimodule over a semiring, measure, Vietoris hyperspace 2010 MSC: 28A60, 54H10, 18A40 1. Introduction Semirings generalise rings by relaxing the conditions on the additive structure requiring just a monoid rather than a group. The analogue of the notion of module over a ring is that of semimodule over a semiring, or more concisely of an S-semimodule where S is the semiring.
    [Show full text]
  • FORCING 1. Ideas Behind Forcing 1.1. Models of ZFC. During the Late 19
    FORCING ROWAN JACOBS Abstract. ZFC, the axiom system of set theory, is not a complete theory. That is, there are statements such that ZFC + ' and ZFC + :' are both consistent. The Continuum Hypothesis| the statement that the size of the real numbers is the first uncountable cardinal @1|is a famous example. This paper will investigate why ZFC is incomplete and what structures satisfy its axioms. The proof technique of forcing is a powerful way to construct structures satisfying ZFC + ' for a wide range of '. This technique will be developed and its applications to the Continuum Hypothesis and the Axiom of Choice will be demonstrated. 1. Ideas Behind Forcing 1.1. Models of ZFC. During the late 19th and early 20th century, set theory played the role of a solid foundation underneath other fields, such as algebra, analysis, and topology. However, without an axiomatization, set theory opened itself up to paradoxes, such as Russell's Paradox. If every predicate defines a set, then we can define a set S of all sets which do not contain themselves. Does S contain itself? If so, then it must not contain itself, since it is an element of S, and all elements of S are sets that do not contain themselves. If not, then it must contain itself, since it is a set that does not contain itself, and all sets that do not contain themselves are in S. With this and similar paradoxes, it became clear that the naive form of set theory, in which any predicate over the entire universe of sets can define a set, could not stand as a foundation for other fields of mathematics.
    [Show full text]
  • An Introduction to Boolean Algebras
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 12-2016 AN INTRODUCTION TO BOOLEAN ALGEBRAS Amy Schardijn California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Algebra Commons Recommended Citation Schardijn, Amy, "AN INTRODUCTION TO BOOLEAN ALGEBRAS" (2016). Electronic Theses, Projects, and Dissertations. 421. https://scholarworks.lib.csusb.edu/etd/421 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. An Introduction to Boolean Algebras A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Amy Michiel Schardijn December 2016 An Introduction to Boolean Algebras A Thesis Presented to the Faculty of California State University, San Bernardino by Amy Michiel Schardijn December 2016 Approved by: Dr. Giovanna Llosent, Committee Chair Date Dr. Jeremy Aikin, Committee Member Dr. Corey Dunn, Committee Member Dr. Charles Stanton, Chair, Dr. Corey Dunn Department of Mathematics Graduate Coordinator, Department of Mathematics iii Abstract This thesis discusses the topic of Boolean algebras. In order to build intuitive understanding of the topic, research began with the investigation of Boolean algebras in the area of Abstract Algebra. The content of this initial research used a particular nota- tion. The ideas of partially ordered sets, lattices, least upper bounds, and greatest lower bounds were used to define the structure of a Boolean algebra.
    [Show full text]