THE STONE-^ECH COMPACTIFICATION by Russell C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stone Coalgebras
Electronic Notes in Theoretical Computer Science 82 No. 1 (2003) URL: http://www.elsevier.nl/locate/entcs/volume82.html 21 pages Stone Coalgebras Clemens Kupke 1 Alexander Kurz 2 Yde Venema 3 Abstract In this paper we argue that the category of Stone spaces forms an interesting base category for coalgebras, in particular, if one considers the Vietoris functor as an analogue to the power set functor. We prove that the so-called descriptive general frames, which play a fundamental role in the semantics of modal logics, can be seen as Stone coalgebras in a natural way. This yields a duality between the category of modal algebras and that of coalgebras over the Vietoris functor. Building on this idea, we introduce the notion of a Vietoris polynomial functor over the category of Stone spaces. For each such functor T we establish a link between the category of T -sorted Boolean algebras with operators and the category of Stone coalgebras over T . Applications include a general theorem providing final coalgebras in the category of T -coalgebras. Key words: coalgebra, Stone spaces, Vietoris topology, modal logic, descriptive general frames, Kripke polynomial functors 1 Introduction Technically, every coalgebra is based on a carrier which itself is an object in the so-called base category. Most of the literature on coalgebras either focuses on Set as the base category, or takes a very general perspective, allowing arbitrary base categories, possibly restricted by some constraints. The aim of this paper is to argue that, besides Set, the category Stone of Stone spaces is of relevance as a base category. -
Arxiv:2101.00942V2 [Math.CT] 31 May 2021 01Ascainfrcmuigmachinery
Reiterman’s Theorem on Finite Algebras for a Monad JIŘÍ ADÁMEK∗, Czech Technical University in Prague, Czech Recublic, and Technische Universität Braun- schweig, Germany LIANG-TING CHEN, Academia Sinica, Taiwan STEFAN MILIUS†, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany HENNING URBAT‡, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper, Reiterman’s theorem is generalized to finite Eilenberg- Moore algebras for a monad T on a category D: we prove that a class of finite T-algebras is a pseudovariety iff it is presentable by profinite equations. As a key technical tool, we introduce the concept of a profinite monad T associated to the monad T, which gives a categorical view of the construction of the space of profinite terms. b CCS Concepts: • Theory of computation → Algebraic language theory. Additional Key Words and Phrases: Monad, Pseudovariety, Profinite Algebras ACM Reference Format: Jiří Adámek, Liang-Ting Chen, Stefan Milius, and Henning Urbat. 2021. Reiterman’s Theorem on Finite Al- gebras for a Monad. 1, 1 (June 2021), 49 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION One of the main principles of both mathematics and computer science is the specification of struc- tures in terms of equational properties. The first systematic study of equations as mathematical objects was pursued by Birkhoff [7] who proved that a class of algebraic structures over a finitary signature Σ can be specified by equations between Σ-terms if and only if it is closed under quo- tient algebras (a.k.a. -
A Characterization of the Canonical Extension of Boolean
A CHARACTERIZATION OF THE CANONICAL EXTENSION OF BOOLEAN HOMOMORPHISMS LUCIANO J. GONZALEZ´ Abstract. This article aims to obtain a characterization of the canon- ical extension of Boolean homomorphisms through the Stone-Cechˇ com- pactification. Then, we will show that one-to-one homomorphisms and onto homomorphisms extend to one-to-one homomorphisms and onto homomorphisms, respectively. 1. Introduction The concept of canonical extension of Boolean algebras with operators was introduced and studied by J´onsson and Tarski [13, 14]. Then, the notion of canonical extension was naturally generalized to the setting of distribu- tive lattices with operators [7]. Later on, the notion of canonical extension was generalized to the setting of lattices [8, 9, 6], and the more general setting of partially ordered sets [3]. The theory of completions for ordered algebraic structures, and in particular the theory of canonical extensions, is an important and useful tool to obtain complete relational semantics for several propositional logics such as modal logics, superintuitionistic logics, fragments of substructural logics, etc., see for instance [1, 5, 10, 16, 3]. The theory of Stone-Cechˇ compactifications of discrete spaces and in particular of discrete semigroup spaces has many applications to several branches of mathematics, see the book [12] and its references. Here we are interested in the characterization of the Stone-Cechˇ compactification of a discrete space through of the Stone duality for Boolean algebras. In this paper, we prove a characterization of the canonical extension of a arXiv:1702.06414v2 [math.LO] 1 Jun 2018 Boolean homomorphism between Boolean algebras [13] through the Stone- Cechˇ compactification of discrete spaces and the Stone duality for Boolean algebras. -
REVERSIBLE FILTERS 1. Introduction a Topological Space X Is Reversible
REVERSIBLE FILTERS ALAN DOW AND RODRIGO HERNANDEZ-GUTI´ ERREZ´ Abstract. A space is reversible if every continuous bijection of the space onto itself is a homeomorphism. In this paper we study the question of which countable spaces with a unique non-isolated point are reversible. By Stone duality, these spaces correspond to closed subsets in the Cech-Stoneˇ compact- ification of the natural numbers β!. From this, the following natural problem arises: given a space X that is embeddable in β!, is it possible to embed X in such a way that the associated filter of neighborhoods defines a reversible (or non-reversible) space? We give the solution to this problem in some cases. It is especially interesting whether the image of the required embedding is a weak P -set. 1. Introduction A topological space X is reversible if every time that f : X ! X is a continuous bijection, then f is a homeomorphism. This class of spaces was defined in [10], where some examples of reversible spaces were given. These include compact spaces, Euclidean spaces Rn (by the Brouwer invariance of domain theorem) and the space ! [ fpg, where p is an ultrafilter, as a subset of β!. This last example is of interest to us. Given a filter F ⊂ P(!), consider the space ξ(F) = ! [ fFg, where every point of ! is isolated and every neighborhood of F is of the form fFg [ A with A 2 F. Spaces of the form ξ(F) have been studied before, for example by Garc´ıa-Ferreira and Uzc´ategi([6] and [7]). -
Some Limits of Boolean Algebras
SOME LIMITS OF BOOLEAN ALGEBRAS FRANKLIN HAIMO 1. Introduction. Inverse systems of topological spaces and direct and inverse systems of Abelian groups and resulting applications thereof to algebraic topology have been studied intensively, and the techniques employed are now standard [2]. (Numbers in brackets refer to the bibliography at the end of the paper.) We shall apply some of these ideas to the treatment of sets of Boolean algebras in order to obtain, in the inverse case, a representation, and, in both cases, some information about the ideals and about the decompositions of certain algebras. For instance, it is well known [l] that the cardinal product B* of a set {Ba} of Boolean algebras, indexed by a class A, is also a Boolean algebra. Moreover, if each Ba is m-complete for some fixed cardinal m [3], then B* is m-complete. When A is a set partly ordered by = and directed thereby, and when the Ba form an inverse system (to be defined below), we shall show that the re- sulting inverse limit set is a Boolean algebra, a subalgebra of B*, and a similar result will hold in the direct case, at least in part.1 For each nonfinite Boolean algebra B, there will be constructed a nontrivial inverse limit representation of B, the inverse limit of all principal ideals [3] of B (with repetitions). In the direct case, ideals in the limit algebra (and the homomorphic algebras which they generate) will turn out to be direct limits of like objects. Direct decomposition into ideals of the direct limit takes place (it will be seen) if there is a similar decomposition in each Ba. -
Boolean-Valued Equivalence Relations and Complete Extensions of Complete Boolean Algebras
BULL. AUSTRAL. MATH. SX. MOS 02JI0, 02J05 VOL. 3 (1970), 65-72. Boolean-valued equivalence relations and complete extensions of complete boolean algebras Denis Higgs It is remarked that, if A is a complete boolean algebra and 6 is an /-valued equivalence relation on a non-empty set J , then the set of 6-extensional functions from J to A can be regarded as a complete boolean algebra extension of A and a characterization is given of the complete extensions which arise in this way. Let A be a boolean algebra, I any non-empty set. An A-valued equivalence relation on I is a function 6 : I x I •*• A such that 6(i, i) = 1 , 6(i, j) = 6(j, i) , and 6(i, j) A 6(J, k) 2 6(i, fc) for all i, j, k in J . Boolean-valued equivalence relations occur of course in boolean-valued model theory and in this context they were first introduced, so far as I know, by -Los [5], p. 103. (As it happens, it is the complement d{i, j) = 6(i, j)' of a boolean-valued equivalence relation which tos describes and he requires in addition that d{i, j) = 0 only if i = j ; such a function d(i, j) may be regarded as an /-valued metric on I . Boolean-valued metrics have been considered by a number of authors - see, for example, Ellis and Sprinkle [7], p. 25^•) Given an /J-valued equivalence relation 6 on the non-empty set I , where from now on we suppose that the boolean algebra A is complete, we Received 28 March 1970. -
Seminar I Boolean and Modal Algebras
Seminar I Boolean and Modal Algebras Dana S. Scott University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley Visiting Fellow Magdalen College, Oxford Oxford, Tuesday 25 May, 2010 Edinburgh, Wednesday 30 June, 2010 A Very Brief Potted History Gödel gave us two translations: (1) classical into intuitionistic using not-not, and (2) intuitionistic into S4-modal logic. Tarski and McKinsey reviewed all this algebraically in propositional logic, proving completeness of (2). Mostowski suggested the algebraic interpretation of quantifiers. Rasiowa and Sikorski went further with first-order logic, giving many completeness proofs (pace Kanger, Hintikka and Kripke). Montague applied higher-order modal logic to linguistics. Solovay and Scott showed how Cohen's forcing for ZFC can be considered under (1). Bell wrote a book (now 3rd ed.). Gallin studied a Boolean-valued version of Montague semantics. Myhill, Goodman, Flagg and Scedrov made proposals about modal ZF. Fitting studied modal ZF models and he and Smullyan worked out forcing results using both (1) and (2). What is a Lattice? 0 ≤ x ≤ 1 Bounded x ≤ x Partially Ordered x ≤ y & y ≤ z ⇒ x ≤ z Set x ≤ y & y ≤ x ⇒ x = y x ∨ y ≤ z ⇔ x ≤ z & y ≤ z With sups & z ≤ x ∧ y ⇔ z ≤ x & z ≤ y With infs What is a Complete Lattice? ∨i∈Ixi ≤ y ⇔ (∀i∈I) xi ≤ y y ≤ ∧i∈Ixi ⇔ (∀i∈I) y ≤ xi Note: ∧i∈Ixi = ∨{y|(∀i∈I) y ≤ xi } What is a Heyting Algebra? x ≤ y→z ⇔ x ∧ y ≤ z What is a Boolean Algebra? x ≤ (y→z) ∨ w ⇔ x ∧ y ≤ z ∨ w Alternatively using Negation x ≤ ¬y ∨ z ⇔ x ∧ y ≤ z Distributivity Theorem: Every Heyting algebra is distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) Theorem: Every complete Heyting algebra is (∧ ∨)-distributive: ∧ ∨ = ∨ ∧ x i∈Iyi i∈I(x yi) Note: The dual law does not follow for complete Heyting algebras. -
Stone Duality Above Dimension Zero: Axiomatising the Algebraic Theory of C(X)
Stone duality above dimension zero: Axiomatising the algebraic theory of C(X) Vincenzo Marraa, Luca Reggioa,b aDipartimento di Matematica \Federigo Enriques", Universit`adegli Studi di Milano, via Cesare Saldini 50, 20133 Milano, Italy bUniversit´eParis Diderot, Sorbonne Paris Cit´e,IRIF, Case 7014, 75205 Paris Cedex 13, France Abstract It has been known since the work of Duskin and Pelletier four decades ago that Kop, the opposite of the category of compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that Kop is equivalent to a possibly infinitary variety of algebras ∆ in the sense of S lomi´nskiand Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of ∆ can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosick´yindependently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of Kop. In particular, ∆ is not a finitary variety | Isbell's result is best possible. The problem of axiomatising ∆ by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of ∆. Key words: Algebraic theories, Stone duality, Boolean algebras, MV-algebras, Lattice-ordered Abelian groups, C∗-algebras, Rings of continuous functions, Compact Hausdorff spaces, Stone-Weierstrass Theorem, Axiomatisability. 2010 MSC: Primary: 03C05. Secondary: 06D35, 06F20, 46E25. 1. Introduction. In the category Set of sets and functions, coordinatise the two-element set as 2 := f0; 1g. -
Arxiv:1408.1072V1 [Math.CT]
SOME NOTES ON ESAKIA SPACES DIRK HOFMANN AND PEDRO NORA Dedicated to Manuela Sobral Abstract. Under Stone/Priestley duality for distributive lattices, Esakia spaces correspond to Heyting algebras which leads to the well-known dual equivalence between the category of Esakia spaces and morphisms on one side and the category of Heyting algebras and Heyting morphisms on the other. Based on the technique of idempotent split completion, we give a simple proof of a more general result involving certain relations rather then functions as morphisms. We also extend the notion of Esakia space to all stably locally compact spaces and show that these spaces define the idempotent split completion of compact Hausdorff spaces. Finally, we exhibit connections with split algebras for related monads. Introduction These notes evolve around the observation that Esakia duality for Heyting algebras arises more naturally when considering the larger category SpecDist with objects spectral spaces and with morphisms spectral distributors. In fact, as we observed already in [Hofmann, 2014], in this category Esakia spaces define the idempotent split completion of Stone spaces. Furthermore, it is well-known that SpecDist is dually equivalent to the category DLat⊥,∨ of distributive lattices and maps preserving finite suprema and that, under this equivalence, Stone spaces correspond to Boolean algebras. This tells us that the category of Esakia spaces and spectral distributors is dually equivalent to the idempotent split completion of the category Boole⊥,∨ of Boolean algebras and maps preserving finite suprema. However, the main ingredients to identify this category as the full subcategory of DLat⊥,∨ defined by all co-Heyting algebras were already provided by McKinsey and Tarski in 1946. -
Arxiv:1807.10637V2 [Math.RA] 1 May 2019 Eso Ht If That, Show We Abstract .Introduction 1
Codensity, profiniteness and algebras of semiring-valued measures Luca Reggio IRIF, Universit´eParis Diderot, Sorbonne Paris Cit´e, Case 7014, 75205 Paris Cedex 13, France and Laboratoire J. A. Dieudonn´e, Universit´eCˆote d’Azur, Parc Valrose, 06108 Nice Cedex 02, France E-mail address: [email protected] Abstract We show that, if S is a finite semiring, then the free profinite S-semimodule on a Boolean Stone space X is isomorphic to the algebra of all S-valued measures on X, which are finitely additive maps from the Boolean algebra of clopens of X to S. These algebras naturally appear in the logic approach to formal languages as well as in idempotent analysis. Whenever S is a (pro)finite idempotent semiring, the S-valued measures are all given uniquely by continuous density functions. This generalises the classical representation of the Vietoris hyperspace of a Boolean Stone space in terms of continuous functions into the Sierpi´nski space. We adopt a categorical approach to profinite algebra which is based on profinite monads. The latter were first introduced by Ad´amek et al. as a special case of the notion of codensity monads. Keywords: profinite algebra, Stone duality, codensity monad, semimodule over a semiring, measure, Vietoris hyperspace 2010 MSC: 28A60, 54H10, 18A40 1. Introduction Semirings generalise rings by relaxing the conditions on the additive structure requiring just a monoid rather than a group. The analogue of the notion of module over a ring is that of semimodule over a semiring, or more concisely of an S-semimodule where S is the semiring. -
FORCING 1. Ideas Behind Forcing 1.1. Models of ZFC. During the Late 19
FORCING ROWAN JACOBS Abstract. ZFC, the axiom system of set theory, is not a complete theory. That is, there are statements such that ZFC + ' and ZFC + :' are both consistent. The Continuum Hypothesis| the statement that the size of the real numbers is the first uncountable cardinal @1|is a famous example. This paper will investigate why ZFC is incomplete and what structures satisfy its axioms. The proof technique of forcing is a powerful way to construct structures satisfying ZFC + ' for a wide range of '. This technique will be developed and its applications to the Continuum Hypothesis and the Axiom of Choice will be demonstrated. 1. Ideas Behind Forcing 1.1. Models of ZFC. During the late 19th and early 20th century, set theory played the role of a solid foundation underneath other fields, such as algebra, analysis, and topology. However, without an axiomatization, set theory opened itself up to paradoxes, such as Russell's Paradox. If every predicate defines a set, then we can define a set S of all sets which do not contain themselves. Does S contain itself? If so, then it must not contain itself, since it is an element of S, and all elements of S are sets that do not contain themselves. If not, then it must contain itself, since it is a set that does not contain itself, and all sets that do not contain themselves are in S. With this and similar paradoxes, it became clear that the naive form of set theory, in which any predicate over the entire universe of sets can define a set, could not stand as a foundation for other fields of mathematics. -
An Introduction to Boolean Algebras
California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 12-2016 AN INTRODUCTION TO BOOLEAN ALGEBRAS Amy Schardijn California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Algebra Commons Recommended Citation Schardijn, Amy, "AN INTRODUCTION TO BOOLEAN ALGEBRAS" (2016). Electronic Theses, Projects, and Dissertations. 421. https://scholarworks.lib.csusb.edu/etd/421 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. An Introduction to Boolean Algebras A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Amy Michiel Schardijn December 2016 An Introduction to Boolean Algebras A Thesis Presented to the Faculty of California State University, San Bernardino by Amy Michiel Schardijn December 2016 Approved by: Dr. Giovanna Llosent, Committee Chair Date Dr. Jeremy Aikin, Committee Member Dr. Corey Dunn, Committee Member Dr. Charles Stanton, Chair, Dr. Corey Dunn Department of Mathematics Graduate Coordinator, Department of Mathematics iii Abstract This thesis discusses the topic of Boolean algebras. In order to build intuitive understanding of the topic, research began with the investigation of Boolean algebras in the area of Abstract Algebra. The content of this initial research used a particular nota- tion. The ideas of partially ordered sets, lattices, least upper bounds, and greatest lower bounds were used to define the structure of a Boolean algebra.