Codensity, profiniteness and algebras of semiring-valued measures Luca Reggio IRIF, Universit´eParis Diderot, Sorbonne Paris Cit´e, Case 7014, 75205 Paris Cedex 13, France and Laboratoire J. A. Dieudonn´e, Universit´eCˆote d’Azur, Parc Valrose, 06108 Nice Cedex 02, France E-mail address:
[email protected] Abstract We show that, if S is a finite semiring, then the free profinite S-semimodule on a Boolean Stone space X is isomorphic to the algebra of all S-valued measures on X, which are finitely additive maps from the Boolean algebra of clopens of X to S. These algebras naturally appear in the logic approach to formal languages as well as in idempotent analysis. Whenever S is a (pro)finite idempotent semiring, the S-valued measures are all given uniquely by continuous density functions. This generalises the classical representation of the Vietoris hyperspace of a Boolean Stone space in terms of continuous functions into the Sierpi´nski space. We adopt a categorical approach to profinite algebra which is based on profinite monads. The latter were first introduced by Ad´amek et al. as a special case of the notion of codensity monads. Keywords: profinite algebra, Stone duality, codensity monad, semimodule over a semiring, measure, Vietoris hyperspace 2010 MSC: 28A60, 54H10, 18A40 1. Introduction Semirings generalise rings by relaxing the conditions on the additive structure requiring just a monoid rather than a group. The analogue of the notion of module over a ring is that of semimodule over a semiring, or more concisely of an S-semimodule where S is the semiring.