Strong Pulses Detected from Rotating Radio Transient J1819 − 1458

Total Page:16

File Type:pdf, Size:1020Kb

Strong Pulses Detected from Rotating Radio Transient J1819 − 1458 A&A 530, A67 (2011) Astronomy DOI: 10.1051/0004-6361/201015953 & c ESO 2011 Astrophysics Strong pulses detected from rotating radio transient J1819−1458 H. D. Hu1,2,A.Esamdin1,J.P.Yuan1,Z.Y.Liu1,R.X.Xu3,J.Li1,2,G.C.Tao1,2, and N. Wang1 1 Urumqi Observatory, NAOC, 40-5 South Beijing Road, Urumqi 830011, P.R. China e-mail: [email protected] 2 Graduate University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China 3 School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, P.R. China Received 19 October 2010 / Accepted 18 March 2011 ABSTRACT Aims. We analyze individual pulses detected from RRAT J1819−1458. Methods. From April 2007 to April 2010, we carried out observations using the Nanshan 25-m radio telescope of Urumqi Observatory at a central frequency of 1541.25 MHz. Results. We obtain a dispersion measure DM = 195.7 ± 0.3pccm−3 by analyzing all the 423 detected bursts. The tri-band pattern of arrival time residuals is confirmed by a single pulse timing analysis. Twenty-seven bimodal bursts located in the middle residual band are detected, and, profiles of two typical bimodal bursts and two individual single-peak pulses are presented. We determine the statistical properties of SNR and W50 of bursts in different residual bands. The W50 variation with SNR shows that the shapes of bursts are quite different from each other. The cumulative probability distribution of intensity for a possible power law with index α = 1.6 ± 0.2 is inferred from the number of those bursts with SNR ≥ 6 and high intensities. Key words. stars: neutron – pulsars: individual: J1819−1458 1. Introduction phase of the radio pulse and a possible X-ray spectral feature that is similar to those of the X-ray dim isolated neutron stars Rotating radio transients (RRATs) are a recently discovered (XDINS, cf. Popov et al. 2006; Haberl 2007; Kondratiev et al. class of neutron stars. At a wave band ∼1.4 GHz, they have spo- 2009). This indicates that RRAT J1819−1458 is a cooling neu- radic radio pulses of durations ranging from 0.5 to 100 ms with tron star and possibly a transitional object between the pulsar flux densities from ∼10 mJy to ∼10 Jy and burst rates from 0.3 and magnetar classes (McLaughlin et al. 2007; for descriptions to 50.3 per hour. The study of the time of arrival (TOA) of sin- of magnetars, see Woods & Thompson 2006; Mereghetti 2008). gle pulses indicates that these RRATs have periods ranging from Rea et al. (2009) found the X-ray extended emission around 12 13 0.1 to 7 s and surface magnetic field of ∼10 or ∼10 Gauss RRAT J1819−1458, which can be interpreted as being a nebula (McLaughlin et al. 2006; Deneva et al. 2009; McLaughlin et al. powered by the pulsar. The near-infrared counterpart to the ex- 2009; Burke-Spolaor & Bailes 2010; Keane et al. 2010). tended X-ray emission was not detected in the observation taken J1819−1458 is the brightest and most prolific radio transient by Rea et al. (2010). There is no evidence of the optical coun- among the more than forty known RRATs. The dispersion mea- terpart to the RRAT in the observation implemented by Dhillon − sure of the source is DM ≈ 196 pc cm 3. At 1.4 GHz, the du- et al. (2006), but there is possibly a near-infrared counterpart rations of most bursts are ∼3 ms at intervals of ∼3minandthe (Rea et al. 2010). peak flux density is ∼10 Jy (McLaughlin et al. 2006; Esamdin Weltevrede et al. (2006) assumed that some RRATs could et al. 2008; Lyne et al. 2009). The irregular bursts cannot be be explained in terms of normal pulsars that have pulse ampli- detected by standard periodicity search methods, but a single tude modulations, such as PSR B0656+14. Had they been put pulse TOA analysis is capable of identifying the rotation period − − at properly large distances, their weak pulses would have been of P ≈ 4.26 s with a spin-down rate P˙ ≈ 5.76 × 10 13 ss 1.The undetectable and they might have been identified as RRATs. ≈ × 13 inferred surface magnetic field density is Bs 5 10 Gauss From the observation results of PSR J1119−6127 with mag- τ ≈ . × 5 and characteristic age is c 1 2 10 years (McLaughlin et al. netic field strength and post-glitch behavior similar to those of 2006; Esamdin et al. 2008). Lyne et al. (2009) reported two RRAT J1819−1458, it is understood that some RRATs can be unusual glitches with quite different post-glitch behavior and interpreted as the consequences of the line of sight missing the an associated increase in the flux intensity, which implies that steady pulse components of emission area and intercepting these RRAT J1819−1458 may be moving toward the death line in the unstable ones (Weltevrede et al. 2011). Wang et al. (2007)pro- pulsar P − P˙ diagram. The Faraday rotation measure of RRAT − posed that RRATs could not be directly related to nulling pulsars J1819−1458 is RM ≈ 330 ± 30 rad m 2 and the integrated lin- because the latter have no observed pulses such as giant pulses ear polarization measurement is relatively low owing to orthog- (e.g. Hankins et al. 2003; Knight et al. 2006). However, taking onal modes of polarization, although some individual pulses are PSR J0941−39 as an example, Burke-Spolaor & Bailes (2010) highly polarized (Karastergiou et al. 2009). argued that there was possibly a link between RRATs and pulsars After the Chandra X-ray Observatory detected the X-ray with nulling phenomena. There is also a hypothesis that some counterpart (Reynolds et al. 2006; Gaensler et al. 2007), the RRATs are possibly related to radio pulsing magnetars such as XMM-Newton discovered the X-ray pulsation aligned with the XTE J1810−197 (Serylak et al. 2009). By studying the birthrates Article published by EDP Sciences A67, page 1 of 6 A&A 530, A67 (2011) of neutron stars, RRATs have been considered distant XDINS (Popov et al. 2006) or an evolutionary stage of a single class of objects (Keane & Kramer 2008). In the P − P˙ diagram, the periods of known RRATs cover a large range where periods of normal pulsars and magnetars distribute; the observational char- acteristics of RRATs vary with diversities (McLaughlin et al. 2009). Although there have been several theoretical interpreta- tions of RRATs (e.g. Li 2006; Zhang et al. 2007; Luo & Melrose 2007; Cordes & Shannon 2008; Ouyed et al. 2009), RRATs do not appear to be completely understood. This paper presents a study of individual bursts detected in single pulse observations from April 2007 to April 2010. Section 2 describes the observation details. The results of study on detected pulses are given in Sect. 3 and discussed in Sect. 4. Section 5 briefly summarizes this paper. 2. Observations − Observations were performed using the Nanshan 25-m radio Fig. 1. Diagnostic plot showing detected burst from RRAT J1819 1458 and RFI signal. The upper-left panel is a DM-time gray map gen- telescope of Urumqi Observatory. The antenna has a cryogenic erated by de-dispersing the signal with DM varying from 0.7 to receiver of two orthogonal linear polarization channels with a 300.7 pc cm−3 in steps of 1 pc cm−3. The brightness of the plot indi- central frequency of 1541.25 MHz. Each polarization channel cates the amplitude at the corresponding position, and, the two bright consists of 128 sub-channels of bandwidth 2.5 MHz and has a marks at around DM = 195.7andDM = 0pccm−3 represent the burst total bandwidth of 320 MHz. The signal from each sub-channel and RFI. The upper-right panel is a DM–SNR graph with two peak SNR is 1-bit sampled and recorded to hard disk for subsequent off- values at around DM = 195.7andDM = 0pccm−3,inwhichtheSNR line processing (for more details of the system, see Wang et al. for each DM is calculated from the bin of maximum amplitude over 2001). The minimum detectable flux density S ≈ 3.4Jyis 512 ms. The lower-left panel is a time series graph showing the ampli- min −3 limited by tude (in an arbitrary unit) of each bin at DM = 195.7pccm ,which clearly delineates a narrow burst profile at the center. 2αβkTsys S min = , (1) ηA npτΔ f frequencies, finding that the signals from two polarization chan- in which√ α = 5 is the threshold signal-to-noise ratio (SNR), nels are de-dispersed. The signals of all 256 sub-channels are β = π/2 is the loss factor due to 1-bit digitization, k is the summed, and signals of SNR ≥ 5 are searched for in the whole Boltzmann constant, Tsys = Trec + Tspl + Tsky ≈ 32 K is the time series of each observation. Selected signals with SNR above system temperature, η ≈ 57% is the telescope efficiency at the threshold are reprocessed with DM varying from 0.7 to 2 −3 −3 1541.25 MHz, A = 490.9m is the telescope area, np = 2is 300.7 pc cm in steps of 1 pc cm . To each DM,theSNR of the number of polarization channels, τ = 0.5msisthesampling the bin with the maximum amplitude is computed over 1024 bins interval, and Δ f = 320 MHz is the total bandwidth (Manchester (512 ms), with the candidate burst being at the center of the se- et al. 2001). ries. Through the process, a diagnostic plot shown in Fig.
Recommended publications
  • Long-Term Evolution and Physical Properties of Rotating Radio Transients
    LONG-TERM EVOLUTION AND PHYSICAL PROPERTIES OF ROTATING RADIO TRANSIENTS by Ali Arda Gençali Submitted to the Graduate School of Engineering and Natural Sciences in partial fulfillment of the requirements for the degree of Master of Science Sabancı University June 2018 c Ali Arda Gençali 2018 All Rights Reserved LONG-TERM EVOLUTION AND PHYSICAL PROPERTIES OF ROTATING RADIO TRANSIENTS Ali Arda Gençali Physics, Master of Science Thesis, 2018 Thesis Supervisor: Assoc. Prof. Ünal Ertan Abstract A series of detailed work on the long-term evolutions of young neutron star pop- ulations, namely anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), dim isolated neutron stars (XDINs), “high-magnetic-field” radio pulsars (HBRPs), and central compact objects (CCOs) showed that the X-ray luminosities, LX, and the rotational prop- erties of these systems can be reached by the neutron stars evolving with fallback discs and conventional dipole fields. Remarkably different individual source properties of these populations are reproduced in the same model as a result of the differences in their initial conditions, magnetic moment, initial rotational period, and the disc properties. In this the- sis, we have analysed the properties of the rotating radio transients (RRATs) in the same model. We investigated the long-term evolution of J1819–1458, which is the only RRAT detected in X-rays. The period, period derivative and X-ray luminosity of J1819–1458 11 can be reproduced simultaneously with a magnetic dipole field strength B0 ∼ 5 × 10 G on the pole of the neutron star, which is much smaller than the field strength inferred from the dipole-torque formula.
    [Show full text]
  • Supermassive Black Hole Binaries and Transient Radio Events: Studies in Pulsar Astronomy
    Supermassive Black Hole Binaries and Transient Radio Events: Studies in Pulsar Astronomy Sarah Burke Spolaor Presented in fulfillment of the requirements of the degree of Doctor of Philosophy 2011 Faculty of Information and Communication Technology Swinburne University i Abstract The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We consid- ered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent 1% of a randomly selected galactic nucleus sample). ≪ This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the “stalling radii” at which binary inspiral evolution may stall indef- initely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Base- line Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for “stalling”, and the relationship of radio activity in nuclei to mergers.
    [Show full text]
  • Neutron Star
    Explosive end of a star (masses M > 8 M⊙ ) Death of massive stars M > 8 M⊙ nuclear reactions stop at Fe ⟹ contraction continues to T = 1010 K (e− degenerate gas cannot support the star for core mass Mcore > 1.4 M⊙ ) ⟹ Fe photo-disintegration (production of α particles, neutrons, protons) ⟹ energy absorbed, contraction goes faster, density grows to point when: e− + p → n + νe ⟹ e− are removed support of e− degenerate gas drops ⟹ collapse continues 12 17 3 T = 10 K, core density 3×10 kg / m ⟹ neutron degeneracy pressure ⟹ collapse suddenly stops ⟹ matter falling inward at high high speed matter bounces when core reached ⟹ shock front outwards ⟹ STAR EXPLODES (SUPERNOVA) ⟹ STAR EXPLODES (SUPERNOVA) Not clear what happens, some or all of the following processes: • Shock wave blows apart outer layer, mainly light elements • Shock wave heats gas to T = 1010 K ⟹ explosive nuclear reactions ⟹ fusion produce Fe-peak elements ⟹ outer layer blown apart • Enormous amount of neutrinos formed. Most escape without interaction, some lift off mass in outer layer External envelope falling inwards at speed up to v ~ 70,000 km/s Bounce backward when core reached → Shock front outward Star destroyed by explosion Stellar explosion = supernova (computer simulation) Video: https://www.youtube.com/watch?v=xVk48Nyd4zY Final result of core collapse: neutron star Supernova remnant: Crab Nebula Distance: 6500 light years Explosion seen in 1054 Size of the bubble: ~ 10 pc Final result of core collapse: neutron star Supernova remnant: Crab Nebula Distance: 6500 light
    [Show full text]
  • Grand Unification of Neutron Stars
    Grand Unification of Neutron Stars ∗ Victoria M. Kaspi ∗Department of Physics, McGill University, Montreal, Canada Submitted to Proceedings of the National Academy of Sciences of the United States of America The last decade has shown us that the observational properties of several different sub-classes of generally radio-quiet neutron neutron stars are remarkably diverse. From magnetars to rotating star have emerged in the Chandra era. The ‘isolated neu- radio transients, from radio pulsars to ‘isolated neutron stars,’ from tron stars’ (INS; poorly named as most RPPs are also iso- central compact objects to millisecond pulsars, observational mani- lated but are not ‘INSs’) have as defining properties quasi- festations of neutron stars are surprisingly varied, with most proper- thermal X-ray emission with relatively low X-ray luminosity, ties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can great proximity, lack of radio counterpart, and relatively long explain this great diversity. Here I survey the disparate neutron stars periodicities (P =3–11 s). classes, describe their properties, and highlight results made possi- Then there are the “drama queens” of the neutron-star ble by the Chandra X-ray Observatory, in celebration of its tenth population: the ‘magnetars’. Magnetars have as their true anniversary. Finally, I describe the current status of efforts at phys- defining properties occasional huge outbursts of X-rays and ical ‘grand unification’ of this wealth of observational phenomena, soft-gamma rays, as well as luminosities in quiescence that are and comment on possibilities for Chandra’s next decade in this field.
    [Show full text]
  • Chandra Smells a RRAT: X-Ray Detection of a Rotating Radio
    Astrophysics and Space Science manuscript No. (will be inserted by the editor) Bryan M. Gaensler · Maura McLaughlin · Stephen Reynolds · Kazik Borkowski · Nanda Rea · Andrea Possenti · Gianluca Israel · Marta Burgay · Fernando Camilo · Shami Chatterjee · Michael Kramer · Andrew Lyne · Ingrid Stairs Chandra Smells a RRAT X-ray Detection of a Rotating Radio Transient Received: date / Accepted: date Abstract “Rotating RAdio Transients” (RRATs) are 1 Introduction a newly discovered astronomical phenomenon, charac- terised by occasional brief radio bursts, with average in- Astronomers are still coming to terms with the fact that tervals between bursts ranging from minutes to hours. the zoo of isolated neutron stars harbours an increas- The burst spacings allow identification of periodicities, ingly diverse population. Objects of considerable inter- which fall in the range 0.4 to 7 seconds. The RRATs thus est include radio pulsars, anomalous X-ray pulsars, soft seem to be rotating neutron stars, albeit with properties gamma repeaters, central compact objects in supernova very different from the rest of the population. We here remnants (SNRs), and dim isolated neutron stars. A present the serendipitous detection with the Chandra X- startling new discovery has now forced us to further ex- ray Observatory of a bright point-like X-ray source coin- pand this group: McLaughlin et al. (2006) have recently cident with one of the RRATs. We discuss the temporal reported the detection of eleven “Rotation RAdio Tran- and spectral properties of this X-ray emission, consider sients”, or “RRATs”, characterised by repeated, irregu- counterparts in other wavebands, and interpret these lar radio bursts, with burst durations of 2–30 ms, and in- results in the context of possible explanations for the tervals between bursts of ∼ 4 min to ∼ 3 hr.
    [Show full text]
  • The Peculiar Isolated Neutron Star in the Carina Nebula Deep XMM-Newton and ESO-VLT Observations of 2XMM J104608.7-594306
    A&A 544, A17 (2012) Astronomy DOI: 10.1051/0004-6361/201219161 & c ESO 2012 Astrophysics The peculiar isolated neutron star in the Carina Nebula Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306 A. M. Pires1,C.Motch2, R. Turolla3,4,A.Schwope1, M. Pilia5,A.Treves6,S.B.Popov7, and E. Janot-Pacheco8 1 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] 2 CNRS, Université de Strasbourg, Observatoire Astronomique, 11 rue de l’Université, 67000 Strasbourg, France 3 Universitá di Padova, Dipartimento di Fisica e Astronomia, via Marzolo 8, 35131 Padova, Italy 4 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK 5 Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands 6 Universitá dell’Insubria, Dipartimento di Fisica e Matematica, via Valleggio 11, 22100 Como, Italy 7 Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, 119991 Moscow, Russia 8 Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão 1226, 05508-090 São Paulo, Brazil Received 2 March 2012 / Accepted 7 May 2012 ABSTRACT While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) – which include magnetars, the ROSAT-discovered “Magnificent Seven” (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) – represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS.
    [Show full text]
  • High-School Student Discovers Strange Astronomical Object National Radio Astronomy Observatory P.O
    10/1/2014 High-School Student Discovers Strange Astronomical Object National Radio Astronomy Observatory P.O. Box O Socorro, NM 87801 http://www.nrao.edu September 22, 2009 Contact: Dave Finley, Public Information Officer Socorro, NM (575) 835-7302 [email protected] High-School Student Discovers Strange Astronomical Object A West Virginia high-school student analyzing data from a giant radio telescope has discovered a new astronomical object -- a strange type of neutron star called a rotating radio transient. Lucas Bolyard, a sophomore at South Harrison High School in Clarksburg, WV, made the discovery while participating in a project in which students are trained to scrutinize data from the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT). The project, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU), funded by a grant from the National Science Foundation. Bolyard made the discovery in March, after he already had studied more than 2,000 data plots from the GBT and found nothing. "I was home on a weekend and had nothing to do, so I decided to look at some more plots from the GBT," he said. "I saw a plot with a pulse, but there was a lot of radio interference, too. The pulse almost got dismissed as interference," he added. Nonetheless, he reported it, and it went on a list of candidates for West Virginia University astronomers Maura McLaughlin and Duncan Lorimer to re-examine, scheduling new observations of the region of sky from which the pulse came.
    [Show full text]
  • Energetic Phenomena in Isolated Neutron Stars, Pulsar Wind Nebulae & Supernova Remnants
    The Fast and the Furious: Energetic Phenomena in Isolated Neutron Stars, Pulsar Wind Nebulae & Supernova Remnants 22−24 May 2013 European Space Astronomy Centre Villafranca del Castillo Madrid, Spain A conference organised by the European Space Agency XMM-Newton Science Operations Centre ABSTRACT BOOK Oral Communications and Posters Edited by Andy Pollock with the help of Cristina Hernandez and Jan-Uwe Ness Organising Committees Scientific Organising Committee Sandro Mereghetti (Chair) INAF, IASF-Milano, Italy Werner Becker MPE, Garching, Germany Andrei Bykov Ioffe Physical-Technical Institute, St. Petersburg, Russia Wim Hermsen SRON, Utrecht, The Netherlands Victoria Kaspi McGill University, Montreal, Canada Demosthenes Kazanas NASA/GSFC, Greenbelt MD, USA Chryssa Kouveliotou NASA/MSFC, Huntsville AL, USA Dong Lai Cornell University, Ithaca, NY, USA Kazuo Makishima University of Tokyo, Japan Sergey Popov Sternberg Astronomical Institute, Moscow, Russia Norbert Schartel (co-Chair) XMM-Newton SOC, Madrid, Spain Patrick Slane CfA, Cambridge MA, USA Luigi Stella INAF, Rome, Italy Diego Torres IEEC-CSIC, Barcelona, Spain Anna Watts University of Amsterdam, The Netherlands Martin C. Weisskopf NASA/MSFC, Huntsville AL, USA Silvia Zane MSSL-UCL, Dorking, Surrey, UK Local Organising Committee (XMM-Newton Science Operations Centre) Jan-Uwe Ness (Chair) Michelle Arpizou Matthias Ehle Carlos Gabriel Aitor Ibarra Andy Pollock Richard Saxton Martin Stuhlinger Contents 1 Invited Speakers 3 Review of the theory of PWNe Niccol`oBucciantini . 4 Multi-wavelength Observations of Known, and Searches for New, Gamma-ray Binaries Robin Corbet, Chi Cheung, Malcolm Coe, Joel Coley, Davide Donato, Philip Ed- wards, Vanessa McBride, M. Virginia McSwain, Jamie Stevens . 4 TeV emitting PWNe: abundant and diverse high energy engines of all ages Arache Djannati-Atai .
    [Show full text]
  • A Search for Rotating Radio Transients and Fast Radio Bursts in the Ap Rkes High-Latitude Pulsar Survey A
    Faculty Scholarship 2016 A Search For Rotating Radio Transients And Fast Radio Bursts In The aP rkes High-Latitude Pulsar Survey A. Rane D. R. Lorimer S. D. Bates N. McMann M. A. McLaughlin See next page for additional authors Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Rane, A.; Lorimer, D. R.; Bates, S. D.; McMann, N.; McLaughlin, M. A.; and Rajwade, K., "A Search For Rotating Radio Transients And Fast Radio Bursts In The aP rkes High-Latitude Pulsar Survey" (2016). Faculty Scholarship. 451. https://researchrepository.wvu.edu/faculty_publications/451 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Authors A. Rane, D. R. Lorimer, S. D. Bates, N. McMann, M. A. McLaughlin, and K. Rajwade This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/faculty_publications/451 Mon. Not. R. Astron. Soc. 000, 1–10 (2015) Printed 19 October 2015 (MN LATEX style file v2.2) A search for rotating radio transients and fast radio bursts in the Parkes high-latitude pulsar survey A. Rane1, D. R. Lorimer1,2, S. D. Bates2, N. McMann1, M. A. McLaughlin1 and K. Rajwade1 1Department of Physics & Astronomy, West Virginia University, Morgantown, WV, 26506 USA 2National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA 19 October 2015 ABSTRACT Discoveries of rotating radio transients and fast radio bursts (FRBs) in pulsar surveys suggest that more of such transient sources await discovery in archival data sets.
    [Show full text]
  • Multiwavelength Studies of Rotating Radio Transients
    Graduate Theses, Dissertations, and Problem Reports 2013 Multiwavelength Studies of Rotating Radio Transients Joshua J. Miller West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Miller, Joshua J., "Multiwavelength Studies of Rotating Radio Transients" (2013). Graduate Theses, Dissertations, and Problem Reports. 482. https://researchrepository.wvu.edu/etd/482 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Multiwavelength Studies of Rotating Radio Transients Joshua J. Miller Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Dr. Maura McLaughlin, Ph.D., Chair Dr. Duncan Lorimer, Ph.D. Dr. Loren Anderson, Ph.D. Dr. Sean McWilliams, Ph.D. Dr. Majid Jaridi, Ph.D. Department of Physics and Astronomy Morgantown, West Virginia 2013 Keywords: Pulsars; Neutron Stars Copyright 2013 Joshua J. Miller ABSTRACT Multiwavelength Studies of Rotating Radio Transients Joshua J.
    [Show full text]
  • The Transient Radio Sky Observed with the Parkes Radio Telescope
    The transient radio sky observed with the Parkes radio telescope Emily Brook Petroff Presented in fulfillment of the requirements of the degree of Doctor of Philosophy February, 2016 Faculty of Science, Engineering, and Technology Swinburne University i Toute la sagesse humaine sera dans ces deux mots: attendre et espérer. All of human wisdom is summed up in these two words: wait and hope. —The Count of Monte Cristo, Aléxandre Dumas ii Abstract This thesis focuses on the study of time-variable phenomena relating to pulsars and fast radio bursts (FRBs). Pulsars are rapidly rotating neutron stars that produce radio emission at their magnetic poles and are observed throughout the Galaxy. The source of FRBs remains a mystery – their high dispersion measures may imply an extragalactic and possibly cosmological origin; however, their progenitor sources and distances have yet to be verified. We first present the results of a 6-year study of 168 young pulsars to search for changes in the electron density along the line of sight through temporal variations in the pulsar dispersion measure. Only four pulsars exhibited detectable variations over the period of the study; it is argued that these variations are due to the movement of ionized material local to the pulsar. Our upper limits on DM variations in the other pulsars are consistent with the scattering predicted by current models of turbulence in the free electron density along these lines of sight through the interstellar medium (ISM). We also present new results of a search for single pulses from Fast Radio Bursts (FRBs), including a full analysis of the data from the High Time Resolution Universe (HTRU) sur- vey at intermediate and high Galactic latitudes.
    [Show full text]
  • Grand Unification of Neutron Stars SPECIAL FEATURE
    Grand unification of neutron stars SPECIAL FEATURE Victoria M. Kaspi1 Department of Physics, McGill University, Montreal, QC, Canada H3A 2T8 Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved March 4, 2010 (received for review January 22, 2010) The last decade has shown us that the observational properties of emerged in the Chandra era. The isolated neutron stars (INSs; neutron stars are remarkably diverse. From magnetars to rotating poorly named because most RPPs are also isolated but are not radio transients, from radio pulsars to isolated neutron stars, from INSs) have as defining properties quasi-thermal x-ray emission central compact objects to millisecond pulsars, observational with relatively low x-ray luminosity, great proximity, lack of radio manifestations of neutron stars are surprisingly varied, with most counterpart, and relatively long periodicities (P ¼ 3–11 s). properties totally unpredicted. The challenge is to establish an Then there are the “drama queens” of the neutron-star popu- overarching physical theory of neutron stars and their birth proper- lation: the magnetars. Magnetars have as their true defining prop- ties that can explain this great diversity. Here I survey the disparate erties occasional huge outbursts of x-rays and soft-gamma rays, as neutron stars classes, describe their properties, and highlight well as luminosities in quiescence that are generally orders of results made possible by the Chandra X-Ray Observatory, in cele- magnitude greater than their spin-down luminosities. Magnetars bration of its 10th anniversary. Finally, I describe the current status are thought to be young, isolated neutron stars powered ulti- of efforts at physical “grand unification” of this wealth of observa- mately by the decay of a very large magnetic field.
    [Show full text]