International Ocean Discovery Program Expedition 382 Preliminary Report Iceberg Alley and Subantarctic Ice and Ocean Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

International Ocean Discovery Program Expedition 382 Preliminary Report Iceberg Alley and Subantarctic Ice and Ocean Dynamics International Ocean Discovery Program Expedition 382 Preliminary Report Iceberg Alley and Subantarctic Ice and Ocean Dynamics 20 March–20 May 2019 Michael E. Weber, Maureen E. Raymo, Victoria L. Peck, Trevor Williams, and the Expedition 382 Scientists Publisher’s notes Core samples and the wider set of data from the science program covered in this report are under moratorium and accessible only to Science Party members until 20 May 2021. This publication was prepared by the JOIDES Resolution Science Operator (JRSO) at Texas A&M University (TAMU) as an account of work performed under the International Ocean Discovery Program (IODP). Funding for IODP is provided by the following international partners: National Science Foundation (NSF), United States Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan European Consortium for Ocean Research Drilling (ECORD) Ministry of Science and Technology (MOST), People’s Republic of China Korea Institute of Geoscience and Mineral Resources (KIGAM) Australia-New Zealand IODP Consortium (ANZIC) Ministry of Earth Sciences (MoES), India Coordination for Improvement of Higher Education Personnel (CAPES), Brazil Portions of this work may have been published in whole or in part in other IODP documents or publications. Disclaimer Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, TAMU, or Texas A&M Research Foundation. Copyright Except where otherwise noted, this work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/ licenses/by/4.0/). Unrestricted use, distribution, and reproduction are permitted, provided the original author and source are credited. Citation Weber, M.E., Raymo, M.E., Peck, V.L., Williams, T., and the Expedition 382 Scientists, 2019. Expedition 382 Prelimi- nary Report: Iceberg Alley and Subantarctic Ice and Ocean Dynamics. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.382.2019 ISSN World Wide Web: 2372-9562 August 2019 M.E. Weber et al. Expedition 382 Preliminary Report Expedition 382 participants Expedition 382 scientists Michael​E.​Weber Marga​Garcia Co-Chief​Scientist Physical​Properties/Downhole​Measurements/Petrophysics​ University of Bonn Specialist Steinmann-Institute Andalusian Institute of Earth Sciences Germany CSIC-University of Granada [email protected] Spain [email protected] Maureen​E.​Raymo Co-Chief​Scientist Anna​Glüder Lamont-Doherty Earth Observatory Sedimentologist Columbia University College of Earth, Ocean and Atmospheric Sciences USA Oregon State University [email protected] USA [email protected] Trevor​Williams Expedition​Project​Manager/Staff​Scientist Michelle​Guitard International Ocean Discovery Program Physical​Properties/Petrophysics​Specialist Texas A&M University College of Marine Science USA University of South Florida, St. Petersburg [email protected] USA [email protected] Linda​Armbrecht Paleontologist​(diatoms) Marcus​Gutjahr Australian Centre for Ancient DNA (ACAD) Inorganic​Geochemist Department of Ecology & Evolutionary Biology GEOMAR Helmholtz Centre for Ocean Research Kiel School of Biological Sciences Germany University of Adelaide [email protected] Australia Sidney​Hemming [email protected] Stratigraphic​Correlator/Petrophysics​Specialist Ian​Bailey Lamont-Doherty Earth Observatory Stratigraphic​Correlator/Petrophysics​Specialist Columbia University Camborne School of Mines & Environment and Sustainability USA Institute [email protected] University of Exeter United Kingdom Ivan​Hernandez-Almeida Paleontologist​(radiolarians) [email protected] Department of Earth Sciences Stefanie​Brachfeld Institute of Geology Paleomagnetist ETH Zurich Earth and Environmental Studies Switzerland Montclair State University [email protected] USA Frida​S.​Hoem [email protected] Palynologist Zhiheng​Du Marine Palynology and Paleoceanography Sedimentologist Utrecht University State Key Laboratory of Cryospheric Sciences Netherlands Chinese Academy of Sciences [email protected] China Ji-Hwan​Hwang [email protected] Inorganic​Geochemist Gerson​Fauth Earth & Environmental Sciences Sedimentologist Korea Basic Science Institute Geology Program Republic of Korea University of Vale do Rio dos Sinos (UNISINOS) [email protected] Instituto Tecnologico de Micropaleontologia, itt Fossil Brazil [email protected] 3 M.E. Weber et al. Expedition 382 Preliminary Report Mutsumi​Iizuka Brendan​Reilly Sedimentologist Paleomagnetist Graduate School of Environmental Science College of Earth, Ocean and Atmospheric Sciences Hokkaido University Oregon State University Japan USA [email protected] [email protected] Yuji​Kato Thomas​A.​Ronge Paleontologist​(diatoms) Sedimentologist Environmental Studies Marine Geology Nagoya University Alfred Wegener Institute Helmholtz Center for Polar and Japan Marine Research Germany Present affiliation (1 April 2019): [email protected] Center for Advanced Marine Core Research Kochi University Osamu​Seki Japan Organic​Geochemist [email protected] Institute of Low Temperature Science Hokkaido University Bridget​K.​Lee Japan Inorganic​Geochemist [email protected] Department of Earth Sciences University of California, Riverside Lisa​Tauxe USA Paleomagnetist [email protected] Scripps Institution of Oceanography University of California, San Diego Yasmina​M.​Martos USA Physical​Properties/Downhole​Measurements/Petrophysics​ [email protected] Specialist NASA Goddard Space Flight Center Shubham​Tripathi University of Maryland College Park Sedimentologist USA Marine Stable Isotope Lab [email protected] National Centre for Polar and Ocean Research (NCPOR) India Suzanne​O’Connell [email protected] Sedimentologist Department of Earth and Environmental Sciences Jonathan​Warnock Wesleyan University Paleontologist​(diatoms) USA Department of Geoscience [email protected] Indiana University of Pennsylvania USA Victoria​L.​Peck [email protected] Sedimentologist Geological Sciences Xufeng​Zheng British Antarctic Survey Physical​Properties/Petrophysics​Specialist United Kingdom Chinese Academy of Sciences [email protected] South China Sea Institute of Oceanology China Lara​F.​Perez [email protected] Physical​Properties/Downhole​Measurements/Petrophysics​ Specialist British Antarctic Survey United Kingdom [email protected] Observers Fabricio​G.​Cardillo Anthony​D.​Mello Observer Weather/Ice​Observer Departamento Oceanografía USA Servicio de Hidrografía Naval [email protected] Ministerio de Defensa Argentina [email protected] 4 M.E. Weber et al. Expedition 382 Preliminary Report Education and outreach Marlo​P.​Garnsworthy Lee​A.​Stevens Outreach​Officer Outreach​Officer Editor/Author/Illustrator Communications Wordy Bird Studio American Museum of Natural History USA USA [email protected] [email protected] Operational and technical staff Siem Offshore AS officials Terry​Skinner Sam​McLelland Master of the Drilling Vessel Drilling Supervisor JRSO shipboard personnel and technical representatives Alexis​Armstrong Zenon​Mateo Core Laboratory Underway Geophysics Laboratory Heather​Barnes Graham​Messe Assistant Laboratory Officer Paleomagnetism Laboratory Michael​Cannon Erik​Moortgat Marine Computer Specialist Assistant Laboratory Officer Etienne​Claassen Algie​Morgan Marine Instrumentation Specialist Application Developer Lisa​Crowder Jenna​Patten Laboratory Officer Marine Laboratory Technician (temporary) Margaret​Hastedt Vincent​Percuoco Core Laboratory Chemistry Laboratory Luan​Heywood Doris​Pinero​Lajas Thin Section Laboratory Physical Properties Laboratory Minh​Huynh Bill​Rhinehart Marine Computer Specialist Operations Superintendent Sarah​Kachovich Alyssa​Stephens X-ray Laboratory Publications Specialist Jan​Jurie​Kotze Johanna​Suhonen Marine Instrumentation Specialist Chemistry Laboratory Brittany​Martinez Kerry​Swain Curatorial Specialist Logging Engineer 5 M.E. Weber et al. Expedition 382 Preliminary Report Abstract tween 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ide- International Ocean Discovery Program (IODP) Expedition ally situated to monitor millennial- to orbital-scale variability in the 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, inves- export of Antarctic Intermediate Water beneath the Subantarctic tigated the long-term climate history of Antarctica, seeking to un- Front. During Expedition 382, we recovered continuously deposited derstand how polar ice sheets responded to changes in insolation sediments from this drift spanning the late Pleistocene (from ~0.78 and atmospheric CO2 in the past and how ice sheet evolution influ- Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites enced global sea level and vice versa. Five sites (U1534–U1538) are expected to yield a wide array of paleoceanographic records that were drilled east of the Drake Passage: two sites at 53.2°S at the can be used to interpret past changes in the density structure of the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the Atlantic sector of the Southern Ocean, track migrations of the Sub- southern Scotia Sea. We recovered continuously deposited late antarctic Front, and give insights into the role and evolution of the Neogene sediment to reconstruct the past history and
Recommended publications
  • Commonwealth of Australia Gazette ASIC 16/02, Tuesday, 9 April 2002
    = = `çããçåïÉ~äíÜ=çÑ=^ìëíê~äá~= = Commonwealth of Australia Gazette No. ASIC 16/02, Tuesday, 9 April 2002 Published by ASIC ^^ppff``==dd~~òòÉÉííííÉÉ== Contents Notices under the Corporations Act 2001 00/2496 01/1681 01/1682 02/0391 02/0392 02/0393 02/0394 02/0395 02/0396 02/0397 02/0398 02/0399 02/0400 02/0401 02/0402 02/0403 02/0404 02/0405 02/0406 02/0408 02/0409 Company deregistrations Page 43 Change of company status Page 404 Company reinstatements Page 405 ISSN 1445-6060 Available from www.asic.gov.au © Commonwealth of Australia, 2001 Email [email protected] This work is copyright. Apart from any use permitted under the Copyright Act 1968, all rights are reserved. Requests for authorisation to reproduce, publish or communicate this work should be made to: Gazette Publisher, Australian Securities and Investment Commission, GPO Box 5179AA, Melbourne Vic 3001 Commonwealth of Australia Gazette ASIC Gazette ASIC 16/02, Tuesday, 9 April 2002 Company deregistrations Page 43= = CORPORATIONS ACT 2001 Section 601CL(5) Notice is hereby given that the names of the foreign companies mentioned below have been struck off the register. Dated this nineteenth day of March 2002 Brendan Morgan DELEGATE OF THE AUSTRALIAN SECURITIES AND INVESTMENTS COMMISSION Name of Company ARBN ABBOTT WINES LIMITED 091 394 204 ADERO INTERNATIONAL,INC. 094 918 886 AEROSPATIALE SOCIETE NATIONALE INDUSTRIELLE 083 792 072 AGGREKO UK LIMITED 052 895 922 ANZEX RESOURCES LTD 088 458 637 ASIAN TITLE LIMITED 083 755 828 AXENT TECHNOLOGIES I, INC. 094 401 617 BANQUE WORMS 082 172 307 BLACKWELL'S BOOK SERVICES LIMITED 093 501 252 BLUE OCEAN INT'L LIMITED 086 028 391 BRIGGS OF BURTON PLC 094 599 372 CANAUSTRA RESOURCES INC.
    [Show full text]
  • Speleothem Paleoclimatology for the Caribbean, Central America, and North America
    quaternary Review Speleothem Paleoclimatology for the Caribbean, Central America, and North America Jessica L. Oster 1,* , Sophie F. Warken 2,3 , Natasha Sekhon 4, Monica M. Arienzo 5 and Matthew Lachniet 6 1 Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA 2 Department of Geosciences, University of Heidelberg, 69120 Heidelberg, Germany; [email protected] 3 Institute of Environmental Physics, University of Heidelberg, 69120 Heidelberg, Germany 4 Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX 78712, USA; [email protected] 5 Desert Research Institute, Reno, NV 89512, USA; [email protected] 6 Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA; [email protected] * Correspondence: [email protected] Received: 27 December 2018; Accepted: 21 January 2019; Published: 28 January 2019 Abstract: Speleothem oxygen isotope records from the Caribbean, Central, and North America reveal climatic controls that include orbital variation, deglacial forcing related to ocean circulation and ice sheet retreat, and the influence of local and remote sea surface temperature variations. Here, we review these records and the global climate teleconnections they suggest following the recent publication of the Speleothem Isotopes Synthesis and Analysis (SISAL) database. We find that low-latitude records generally reflect changes in precipitation, whereas higher latitude records are sensitive to temperature and moisture source variability. Tropical records suggest precipitation variability is forced by orbital precession and North Atlantic Ocean circulation driven changes in atmospheric convection on long timescales, and tropical sea surface temperature variations on short timescales. On millennial timescales, precipitation seasonality in southwestern North America is related to North Atlantic climate variability.
    [Show full text]
  • GSA TODAY • Southeastern Section Meeting, P
    Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.
    [Show full text]
  • Resources Abello, A., Montalvo, C. & Goin, F. 2002
    Resources Abello, A., Montalvo, C. & Goin, F. 2002, Marsupiales del Mioceno Superior de Caleufu (La Pampa, Argentina), Ameghiniana 39(4) Agusti, J. & Anton, M. 2002, Mammoths, Sabertooths & Hominids:65 Million Years of Mammalian Evolution in Europe, Columbia University Press, NY Alroy, J. 2002-2003, North American Fossil Mammal Systematics Database-iNet: <http://www.nceas.ucsb.edu/~alroy/nafmsd.html> American Museum of Natural History, 2001-2003, Fossil Database, <http://paleo.amnh.org/fossil/seek.html> American Museum of Natural History, 1994, Mammals & Their Extinct Relatives, American Museum of Natural History, NY Archibald, J. & Averianov, A. 2003, The Late Cretaceous Placental Mammal Kulbeckia, Journal of Vertebrate Paleontology vol 23 #2 Archibald, J. & Averianov, A. 2001,Paranyctoides and allies from the Late Cretaceous of North America and Asia, Acta Palaeontologica Polonica vol 46 #4 Arduini, P. & Teruzzi, G. 1986,Simon & Schusters Guide to Fossils, Simon & Schuster Inc, NY Argot, C. 2004, Evolution of South American mammalian predators (Borhyaenoidea): anatomical & palaeobiological implications, Zoological Journal of the Linnean Society Vol 140 Issue 4 April Argot, C. 2003, Functional adaptations of the Postcranial Skeleton of two Miocene Borhyaenoids (Mammalia, Metatheria), Borhyaena & Prothylacinus, from South America, Palaeontology Vol 46 part 6 Asher, R., McKenna, M., Emry, R., Tabrum, A. & Kron, D. 2002, Morphology & Relationships of Apternodus & other Extinct, Zalambdodont, Placental Mammals, Bulletin of the American Museum of Natural History #273 Astruc, J., Hugueney, M., Escarguel, G., Legendre, S., Rage, J-C., Simon-Coincon, R., Sudre, J. & Sige, B. 2003, Puycelci, a new vertebrate-bearing locality in the Aquitaine molassic basin. Density & continuity of the Paleogene biochronologic record in the Quercy & peripheral basins area, Geobios Vol 36 #6 November-December Averianov, A., Archibald, J.
    [Show full text]
  • Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern 1 Ocean Heat and Freshwater Content Variability: a View from Argo*
    MARCH 2016 G I G L I O A N D J O H N S O N 749 Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern 1 Ocean Heat and Freshwater Content Variability: A View from Argo*, DONATA GIGLIO Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington GREGORY C. JOHNSON NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington (Manuscript received 17 July 2015, in final form 6 November 2015) ABSTRACT Argo profiling floats initiated a revolution in observational physical oceanography by providing nu- merous, high-quality, global, year-round, in situ (0–2000 dbar) temperature and salinity observations. This study uses Argo’s unprecedented sampling of the Southern Ocean during 2006–13 to describe the position of the Antarctic Circumpolar Current’s Subantarctic and Polar Fronts, comparing and contrasting two different methods for locating fronts using the same dataset. The first method locates three fronts along dynamic height contours, each corresponding to a local maximum in vertically integrated shear. The second approach locates the fronts using specific features in the potential temperature field, following Orsi et al. Results from the analysis of Argo data are compared to those from Orsi et al. and other more recent studies. Argo spatial resolution is not adequate to resolve annual and interannual movements of the fronts on a circumpolar scale since they are on the order of 18 latitude (Kim and Orsi), which is smaller than the resolution of the gridded product analyzed. Argo’s four-dimensional coverage of the Southern Ocean equatorward of ;608S is used to quantify variations in heat and freshwater content there with respect to the time-mean front locations.
    [Show full text]
  • Climate Change
    Optional EffectWhatAddendum: Isof Causing Climate Weather Climate Change and Change,on HumansClimate and and How the DoClimate Environment We Know? Change Optional EffectWhatAddendum: Isof Causing Climate Weather Climate Change and Change,on HumansClimate and and How the DoClimate Environment We Know? Change Part I: The Claim Two students are discussing what has caused the increase in temperature in the last century (100 years). Optional EffectWhatAddendum: Isof Causing Climate Weather Climate Change and Change,on HumansClimate and and How the DoClimate Environment We Know? Change Part II: What Do We Still Need to Know? Destiny Emilio Know from Task 1 Need to Know • Has this happened in • Is more carbon the past? dioxide being made • Are we just in a now than in the past? warm period? • Are humans responsible? Optional EffectWhatAddendum: Isof Causing Climate Weather Climate Change and Change,on HumansClimate and and How the DoClimate Environment We Know? Change Part III: Collect Evidence To support a claim, we need evidence!!! Optional EffectWhatAddendum: Isof Causing Climate Weather Climate Change and Change,on HumansClimate and and How the DoClimate Environment We Know? Change Climate Readings to the Present Data: Petit, J.R., et al., 2001, Vostok Ice Core Data for 420,000 Years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. https://www1.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/deutnat.tXt, …/co2nat.tXt Optional EffectWhatAddendum: Isof Causing Climate Weather Climate Change and Change,on HumansClimate and and How the DoClimate Environment We Know? Change How do we know about the climate from thousands of years ago? Optional EffectWhatAddendum: Isof Causing Climate Weather Climate Change and Change,on HumansClimate and and How the DoClimate Environment We Know? Change Measuring Devices • Thermometers were not invented until 1724.
    [Show full text]
  • Impacts of Climate Change on Antarctic Ecosystems
    IP 56 ! ! ! ! "#$%&'!()$*+ ",-.!/01! -23!45'6 ! 37$8$%)$&!9:+ ";<- ! <7=#=%'>+ 2%#>=8? ! ! Impacts of Climate Change on Antarctic Ecosystems ! ! ! ! ! / IP 56 ! ! Impacts of Climate Change on Antarctic Ecosystems Information paper submitted by ASOC to the XXXI ATCM, Kiev, 2-14 June 2008 ATCM item 13 and CEP item 9a Summary <@$7!)?$!A'8)!BC!:$'781!)?$!D$8)$7%!"%)'7E)=E!3$%=%8F>'!?'8!G'7*$&!*H7$!)?'%!IHF7!)=*$8!I'8)$7!)?'%!)?$!'@$7'#$! 7')$!HI!2'7)?J8!H@$7'>>!G'7*=%#1!*'K=%#!=)!H%$!HI!)?$!7$#=H%8!)?')!=8!$LA$7=$%E=%#!)?$!*H8)!7'A=&!G'7*=%#!H%!)?$! A>'%$)M!">)?HF#?!G'7*=%#!=8!%$=)?$7!$@=&$%)!%H7!F%=IH7*!'E7H88!)?$!"%)'7E)=E1!8F98)'%)='>!$@=&$%E$!=%&=E')$8!*'NH7! 7$#=H%'>!E?'%#$8!=%!)$77$8)7='>!'%&!*'7=%$!$EH8:8)$*8!=%!'7$'8!)?')!?'@$!$LA$7=$%E$&!G'7*=%#M!;FEE$88IF>! =%@'8=H%8!HI!%H%O=%&=#$%HF8!8A$E=$8!)H!8F9O"%)'7E)=E!=8>'%&8!?'@$!9$$%!=&$%)=I=$&!'8!'!>=K$>:!EH%8$PF$%E$!HI!)?$! EH%)=%F=%#!)7$%&!HI!=%E7$'8=%#!?F*'%!'E)=@=)=$8!'%&!=%E7$'8=%#!)$*A$7')F7$8M! ->=*')$!E?'%#$!=8!%H!>H%#$7!'%!=88F$!>=*=)$&!)H!)?$!&$@$>HA$&!'%&!*H7$!AHAF>')$&!A'7)8!HI!)?$!GH7>&M!,?$! -H%8F>)')=@$!3'7)=$8!)H!)?$!"%)'7E)=E!,7$'):!?'@$!EH**=))$&!)?$*8$>@$8!)H!A7H@=&$!EH*A7$?$%8=@$!A7H)$E)=H%!)H!)?$! "%)'7E)=E!$%@=7H%*$%)!'%&!=)8!&$A$%&$%)!$EH8:8)$*8!F%&$7!)?$!2%@=7H%*$%)'>!37H)HEH>M!,?$7$IH7$1!'%&!9'8$&!H%! )?$!A7$E'F)=H%'7:!A7=%E=A>$1!-H%8F>)')=@$!3'7)=$8!8?HF>&!7$EH#%=Q$!)?$!'&@$78$!=*A'E)8!HI!E>=*')$!E?'%#$!H%! "%)'7E)=E'!'%&!)?$!;HF)?$7%!<E$'%!'%&!)'K$!A7H'E)=@$!'E)=H%!G=)?=%!)?$!I7'*$GH7K!HI!)?$!,7$'):!;:8)$*!)H! EH%)7=9F)$!)HG'7&8!E>=*')$!E?'%#$!*=)=#')=H%!'%&!'&'A)')=H%!$IIH7)8M!! 1.
    [Show full text]
  • New Zealand Subantarctic Islands Research Strategy
    New Zealand Subantarctic Islands Research Strategy SOUTHLAND CONSERVANCY New Zealand Subantarctic Islands Research Strategy Carol West MAY 2005 Cover photo: Recording and conservation treatment of Butterfield Point fingerpost, Enderby Island, Auckland Islands Published by Department of Conservation PO Box 743 Invercargill, New Zealand. CONTENTS Foreword 5 1.0 Introduction 6 1.1 Setting 6 1.2 Legal status 8 1.3 Management 8 2.0 Purpose of this research strategy 11 2.1 Links to other strategies 12 2.2 Monitoring 12 2.3 Bibliographic database 13 3.0 Research evaluation and conditions 14 3.1 Research of benefit to management of the Subantarctic islands 14 3.2 Framework for evaluation of research proposals 15 3.2.1 Research criteria 15 3.2.2 Risk Assessment 15 3.2.3 Additional points to consider 16 3.2.4 Process for proposal evaluation 16 3.3 Obligations of researchers 17 4.0 Research themes 18 4.1 Theme 1 – Natural ecosystems 18 4.1.1 Key research topics 19 4.1.1.1 Ecosystem dynamics 19 4.1.1.2 Population ecology 20 4.1.1.3 Disease 20 4.1.1.4 Systematics 21 4.1.1.5 Biogeography 21 4.1.1.6 Physiology 21 4.1.1.7 Pedology 21 4.2 Theme 2 – Effects of introduced biota 22 4.2.1 Key research topics 22 4.2.1.1 Effects of introduced animals 22 4.2.1.2 Effects of introduced plants 23 4.2.1.3 Exotic biota as agents of disease transmission 23 4.2.1.4 Eradication of introduced biota 23 4.3 Theme 3 – Human impacts and social interaction 23 4.3.1 Key research topics 24 4.3.1.1 History and archaeology 24 4.3.1.2 Human interactions with wildlife 25 4.3.1.3
    [Show full text]
  • Unit 1 Lesson 4: Coral Reefs As Indicators of Paleoclimate
    CORAL REEFS Unit 1 Lesson 4: Coral Reefs as Indicators of Paleoclimate esson Objectives: Students will gain knowledge of how the marine environment can tell a story about years past through naturally recorded geographic and environmental phenomenon. Vocabulary: Paleoclimate, greenhouse effect, proxy data information gathered from www.noaa.gov Paleoclimatology is the study temperature increases may of the weather and climate from have a natural cause, for ages past. The word is derived example, from elevated from the Greek root word volcanic activity. "paleo-," which means "long ago" with combined with Gases in the earth’s "climate," meaning weather. atmosphere which trap heat, Scientists and meteorologists and cause an increase in have been using instruments to temperature cause the measure climate and weather greenhouse effect. Carbon for only the past 140 years! dioxide (CO2), water vapor, How do they determine what and other gases in the the Earth's climate was like atmosphere absorb the infrared before then? They use rays forming a kind of blanket historical evidence called proxy around the earth. Scientists data. Examples of proxy data fear that if humans continue to include tree rings, old farmer’s place too much carbon dioxide diaries, ice cores, frozen pollen in the atmosphere, too much and ocean sediments. heat will be trapped, causing the global temperature to rise Scientists know the Earth's and resulting in devastating average temperature has effects. increased approximately 1°F since 1860. Is this warming Some scientists speculate that due to something people are natural events like volcanic releasing into the atmosphere eruptions or an increase in the or natural causes? Many sun's output, may be people today are quick to influencing the climate.
    [Show full text]
  • Paleoclimatology
    Paleoclimatology ATMS/ESS/OCEAN 589 • Ice Age Cycles – Are they fundamentaly about ice, about CO2, or both? • Abrupt Climate Change During the Last Glacial Period – Lessons for the future? • The Holocene – Early Holocene vs. Late Holocene – The last 1000 years: implications for interpreting the recent climate changes and relevance to projecting the future climate. Website: faculty.washington.edu/battisti/589paleo2005 Class email: [email protected] Theory of the Ice Ages: Orbital induced insolation changes and global ice volume “Strong summer insolation peaks pace rapid deglaciation” Theory of the Ice Ages: Ice Volume and Atmospheric Carbon Dioxide are highly correlated •Summer (NH) insulation tends to lead ice volume. •Ice Volume and Carbon Dioxide seem to be in phase (except for in rapid deglaciation, when Ice volume leads Carbon Dioxide) CO2 measured at Vostok, South Pole The Ice Age Cycles: Some big unsolved questions we will examine • Is the Ice Age cycle fundamentaly about cycles in ice volume induced by high latitude insolation changes (with CO2 being a weak positive feedback)? • Or, is the Ice Age cycle fundamentally about changes in CO2 that are driven by insolation changes (with weak positive feedbacks associated with ice albedo feedbacks)? • Why do (high latitude) insolation changes cause changes in atmospheric CO2? Why is it CO2 so highly correlated with ice volume? Abrupt Climate Change during the Last Glacial Period During Glacial stages, the climate system featured large rapid rearrangements. Dansgaard/Oeschger (D/O) events show: – Rapid onset of warming at Greenland ( 10 K in < 30 years!) – Long-lived (~ 200 - 600 years) Greenland Temperature Tropical-Extratropical Linkages during Glacial Times: Extratropics forcing Tropics • Paleo data show strong linkages between the millennial variability in the North Atlantic, the tropical Atlantic and the Northern Hemisphere during the last Glacial Period.
    [Show full text]
  • Geoscience Bulletin Board – 2 November 2020 – Compiled by Elaine J
    Do you know of a colleague and/or student who would be interested in receiving these Bulletin Boards? Please forward to them. A quick email to [email protected] with the word “subscribe” in the subject line and the email address will be added to the listing. Geoscience Bulletin Board – 2 November 2020 – compiled by Elaine J. Hanford M7.0 hits Turkey & Greece • https://currently.att.yahoo.com/att/cm/magnitude-7-0-earthquake-strikes-125010038.html • https://earthquake.usgs.gov/earthquakes/eventpage/us7000c7y0/executive Gales Creek Fault west of Portland capable of producing M7.1 to M7.4 EQ – also smaller active faults • https://www.livescience.com/earthquake-fault-near-portland.html • https://arstechnica.com/science/2020/10/besides-the-big-one-closer-faults-could-also-shake- portland/ What triggered the Little Ice Age? • https://sciencenorway.no/climate-geology-ice-age/what-actually-started-the-little-ice- age/1759318 • Paper: https://advances.sciencemag.org/content/6/38/eaba4320 Simultaneous eruptions on Kamchatka Peninsula of Klyuchevsky & Bezymyan – pics & videos • https://www.rbth.com/lifestyle/332898-two-volcanoes-just-erupted-in-kamchatka “whaleback” forms at Shiveluch volcano on Kamchatka Peninsula • https://www.discovermagazine.com/planet-earth/whaleback-rises-at-a-russian-volcano Hypothesizing the next supercontinent – Pangea Ultima – Novopangea – Aurica – Amasia • https://www.discovermagazine.com/planet-earth/the-next-pangea-what-earths-future- supercontinent-will-look-like New seismic provisions for National Earthquake
    [Show full text]
  • The John Muir Newsletter, Fall 2006
    University of the Pacific Scholarly Commons John Muir Newsletters John Muir Papers Fall 8-1-2006 The ohnJ Muir Newsletter, Fall 2006 The ohnJ Muir Center for Environmental Studies Follow this and additional works at: https://scholarlycommons.pacific.edu/jmn Part of the American Studies Commons, Natural Resources and Conservation Commons, and the United States History Commons Recommended Citation The oJ hn Muir Center for Environmental Studies, "The oJ hn Muir Newsletter, Fall 2006" (2006). John Muir Newsletters. 84. https://scholarlycommons.pacific.edu/jmn/84 This Newsletter is brought to you for free and open access by the John Muir Papers at Scholarly Commons. It has been accepted for inclusion in John Muir Newsletters by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. TH£ JOHN MUIR NEWSLETTER JOHN MUIR'S WORLD TOUR (PART IV) Introduction by W. R. Swagerty Director, John Muir Center Edited by John Hurley and W.R. Swagerty n Part IV of John Muir's unpublished World Tour, we follow one occasion, "Universal beggary prevails;" and on another, "Few Muir from Egypt to Ceylon (Sri Lanke) to Australia. geniuses in any age." Still, as in all of his journeys of discovery, I Notebook"# 51" begins with a description of Suez as a Muir finds the flowers, trees, sunrises, and sunsets "charming," a "queer old town" followed by praise for the oasis-environment universal word in Muir's vocabulary describing his "plant that produces so many palms and bananas. Much of the friends" and the colors of dawn and dusk. notebook focuses on Muir's touring of the Pyramids, those Muir left Port Said on the German steamer Barbarossa "stupendous monuments of the past" which are less impressive bound for Australia on November 22.
    [Show full text]