Zootoca Vivipara) in a Habitat of Forest Glade in Sw Poland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Lacerta Agilis and Zootoca Vivipara) in Extensively Used Farmland In
Folia biologica (Kraków), vol. 56 (2008), No 3-4 doi:10.3409/fb.56_3-4.165-171 DensitiesandMorphologyofTwoCo-existingLizardSpecies (Lacertaagilis and Zootocavivipara)inExtensivelyUsedFarmland inPoland* AnnaEKNER,IgorMAJLÁTH,ViktóriaMAJLÁTHOVÁ, Martin HROMADA, Martin BONA, MarcinANTCZAK,MaciejBOGACZYK andPiotrTRYJANOWSKI Accepted April 22, 2008 EKNER A., MAJLÁTH I., MAJLÁTHOVÁ V., HROMADA M., BONA M., ANTCZAK M., BOGACZYK M., TRYJANOWSKI P. 2008. Densities and morphology of two co-existing lizard species (Lacerta agilis and Zootoca vivipara) in an extensivelly used farmland in Poland. Folia biol. (Kraków) 56: 165-171. The study was carried out in extensive farmland area near the town of Odolanów, Poland. During two breeding seasons (April-May, 2006-2007) lizards were counted on transect routes and captured by hand or by noosing. In total, 123 specimens of L. agilis and 153 specimens of Z. vivipara were captured. The proportion of males to females wasnt differed from the theoretical 1:1 ratio. Almost half of the individuals exhibited tail autotomy at least once in life. In the studied sand lizards significant sex specific differences were found between all morphological traits, i.e. males were shorter, lighter, but had a bigger head. In common lizards significant sex specific differences were detected only in body length, i.e. females were longer. All of the morphological traits were highly inter-correlated. Key words: Biometry, common lizard, sand lizard, co-occurrence, farmland, Poland. Anna EKNER, Marcin ANTCZAK, Maciej BOGACZYK, Piotr TRYJANOWSKI, Department of Be- havioural Ecology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznañ, Poland. E-mail: [email protected] Igor MAJLÁTH, Martin BONA, Institute of Biology and Ecology, P. -
1 It's All Geek to Me: Translating Names Of
IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning. -
The Sand Lizard, Lacerta Ag/Lis, in Italy: Preliminary
SHORT NOTES 101 REFERENCES HERPETOLOGICAL JOURNAL, Vol. 2, pp. 101-103 (1992) Anonymous ( 1987). The flying death ofRa jputana - systematics of dan THE SAND LIZARD, LACERTA AG/LIS, gerously venomous snakes. In Report of the British Museum (Natural History), 1984- 1985. London: British Museum (Natural IN ITALY: PRELIMINARY DATA ON History). DISTRIBUTION AND HABITAT Harding, K. A., & Welch, K. R. G. ( 1980). Venomous snakes of the CHARACTERISTICS World. A checklist. Oxford: Pergamon Press. MASSIMO CAPULA AND LUCA LUISELLI Leviton, A. E. ( 1980). Museum acronyms -second edition. Herpetologica/ Review 11, 93- 102. Dipartimento di Biologia Animate e del/ ' Uomo, Universitii "la Sapienza " di Roma, Via Borelli 50, 00161 Roma, Italy Looareesuwan, S., Viravan, C. & Warrell, D. A. ( 1988). Factors contrib uting to fatal snake bite in the tropics: analysis of 46 cases in (Accepted 30. 1.91) Thailand. Transactions of the Royal Societ.v o.lTropical Medicine and Hygiene 82, 930-934. Lacerta agilis Linnaeus is a lacertid lizard whose wide range extends from NE Iberia and W France to central Asia through Myint-Lwin, Phillips, R. E., Tun-Pe, Warrell, D. A., Tin-Nu-Swe & Maung-Maung-Lay. ( 1985). Bites by Russell's viper (Vipera most of Europe. This species is rare or absent fromthe European russelli siamensis) in Burma: Haemostatic, vascular, and renal regions characterized by a Mediterranean climate, such as most disturbances and response to treatment. The lancet 2, 1259- of the Iberian Peninsula, the Italian Peninsula and S Balkans 1264. (Arnold & Burton, 1978; Jablokov, Baranow & Rozanow, 1980; Bischoff, 1984, 1988). The occurrence of the sand lizard Thorpe, R. -
Arthropod Grasping and Manipulation: a Literature Review
Arthropod Grasping and Manipulation A Literature Review Aaron M. Dollar Harvard BioRobotics Laboratory Technical Report Department of Engineering and Applied Sciences Harvard University April 5, 2001 www.biorobotics.harvard.edu Introduction The purpose of this review is to report on the existing literature on the subject of arthropod grasping and manipulation. In order to gain a proper understanding of the state of the knowledge in this rather broad topic, it is necessary and appropriate to take a step backwards and become familiar with the basics of entomology and arthropod physiology. Once these principles have been understood it will then be possible to proceed towards the more specific literature that has been published in the field. The structure of the review follows this strategy. General background information will be presented first, followed by successively more specific topics, and ending with a review of the refereed journal articles related to arthropod grasping and manipulation. Background The phylum Arthropoda is the largest of the phyla, and includes all animals that have an exoskeleton, a segmented body in series, and six or more jointed legs. There are nine classes within the phylum, five of which the average human is relatively familiar with – insects, arachnids, crustaceans, centipedes, and millipedes. Of all known species of animals on the planet, 82% are arthropods (c. 980,000 species)! And this number just reflects the known species. Estimates put the number of arthropod species remaining to be discovered and named at around 9-30 million, or 10-30 times more than are currently known. And this is just the number of species; the population of each is another matter altogether. -
Curriculum Vitae
CURRICULUM VITAE Lawrence E. Hurd Phone: (540) 458-8484 Department of Biology FAX: 540-458-8012 Washington & Lee University Email: [email protected] Lexington, Virginia 24450 USA Education: B.A., Hiram College, 1969 Ph.D., Syracuse University, 1972 Positions (in reverse chronological order): Herwick Professor of Biology, Washington & Lee University 2008-present; Pesquisador Visitante Especial, Universidade Federal do Amazonas (UFAM) 2013-2015. Editor- in-Chief,Annals of the Entomological Society of America, 2007 – present. Research supported by John T. Herwick Endowment, Brazilian research fellowship from CAPES, and by Lenfest faculty research grants from Washington and Lee University. Head of Department of Biology, Washington and Lee University, 1993-2008. Editorial Board of Oecologia, 1997 - 2003. Professor of Biology, Program in Ecology, School of Life and Health Sciences, and member of Graduate Faculty, University of Delaware, 1973-1993. Joint appointments: (1) College of Marine Studies (1974-1984); (2) Department of Entomology and Applied Ecology, College of Agriculture (1985-1993). Research supported by grants from NSF, NOAA (Sea Grant), and UDRF (U. Del.). Postdoctoral Fellow, Cornell University, 1972 - 1973. Studies of population genetics and agro-ecosystems with D. Pimentel. Supported by grant from Ford Foundation to DP. Postdoctoral Fellow, Costa Rica, summer 1972. Behavioral ecology of tropical hummingbirds with L. L. Wolf. Supported by NSF grant to LLW. Memberships: American Association for the Advancement of Science Linnean Society -
Design and Implementation of a Biodiversity Information Management System: Electronic Catalogue of Known Indian Fauna – a Case Study
DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY A THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOINFORMATICS BY VISHWAS CHAVAN UNDER THE GUIDANCE OF DR. S. KRISHNAN NATIONAL CHEMICAL LABORATORY PUNE SEPTEMBER 2007 DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY A THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOINFORMATICS BY VISHWAS CHAVAN UNDER THE GUIDANCE OF DR. S. KRISHNAN NATIONAL CHEMICAL LABORATORY PUNE SEPTEMBER 2007 DECLARATION I hereby declare that the work embodied in this thesis entitled “DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY” represents original work carried out by me under the supervision of Dr. S. Krishnan, Head, Information Division, National Chemical Laboratory, Pune. It has not been submitted previously for any other research degree of this or any other University. September 25, 2007 Vishwas Chavan National Chemical Laboratory Pune 411008, INDIA CERTIFICATE Certified that the work incorporated in the thesis entitled “DESIGN AND IMPLEMENTATION OF A BIODIVERSITY INFORMATION MANAGEMENT SYSTEM: ELECTRONIC CATALOGUE OF KNOWN INDIAN FAUNA – A CASE STUDY” submitted by Mr. Vishwas Chavan, was carried out by the candidate under my supervision. Materials obtained from other sources have been duly acknowledged in the thesis. September 25, 2007 Dr. S. Krishnan Head, Information Division National Chemical Laboratory Pune 411008, INDIA Dedicated to Mother Earth who nurtures life, my parents who brought me in to this world, my teachers who taught me to understand nature, and my daughter who I believe would continue to care for life«« Acknowledgements Biodiversity informatics is a passion for me. -
Eurasian Lizards
LACERTIDAE—LACERTINAE EURASIAN LIZARDS he subfamily Lacertinae was the large sister keel-scaled, long-tailed lizards are the only Ttaxon to the Gallotinae. It was divided into representatives of the Lacertinae throughout most two tribes, the Eurasian Lacertini and the Afro- of their range from Amur, Russia, and Japan, to Asian Eremiadini, but authors now seem to prefer Bangladesh and Indonesia. elevating these tribes to subfamily level. The Many of the European genera were formerly Lacertinae has a primarily Mediterranean subgenera of Lacerta, which is now reduced to only distribution that spreads eastward into the Middle ten species, including the highly variably patterned East and Central Asia, although there is one Far Sand Lizard (L. agilis), which, although rare and East Asian and Southeast Asian genus, Takydromus, localized in its distribution in the UK, is found the Oriental grass lizards. The 24 species of across a huge swathe of territory from Europe to LACERTINAE Scelarcis, Takydromus, Teira, Timon, DISTRIBUTION and Zootoca Europe, and southwestern, Central, HABITATS Southeast, and Far East Asia Heathland, sand dunes, grassland, maquis, GENERA riverbanks, rocky outcrops and ruins, Algyroides, Anatololacerta, Apathya, coastal islands, and rocky mountains Archaeolacerta, Dalmatolacerta, SIZE Darevskia, Dinarolacerta, Hellenolacerta, SVL 1¾ in (45 mm) Pygmy Keeled Lizard Iberolacerta, Iranolacerta, Lacerta, (Algyroides fitzingeri) to 10¼ in (260 mm) Parvilacerta, Phoenicolacerta, Podarcis, European Eyed Lizard (Timon lepidus) 154 LACERTOIDEA—Lacertids and teiids the Lake Baikal region of Central Asia. Although Among the most attractive species are the male the range of the Sand Lizard is impressive, it is green-bodied, blue-throated Western and Eastern eclipsed by that of the Viviparous Lizard (Zootoca Green Lizards (L. -
Saryarka - Steppe and Lakes of Northern Kazakhstan Kazakhstan
SARYARKA - STEPPE AND LAKES OF NORTHERN KAZAKHSTAN KAZAKHSTAN The area preserves two large lake systems in a diverse and barely altered dry central Eurasian steppe, an ecosystem much reduced since its reclamation for agriculture in the 1950s. Northern pine forest overlaps semi-arid desert flora at Naurzum; and the Korgalzhyn-Tengiz lakes, on a major migratory crossroads, support the largest breeding, moulting and resting waterbird populations in Asia, including relict, endemic and rare species. COUNTRY Kazakhstan NAME Saryarka - Steppe and Lakes of Northern Kazakhstan NATURAL WORLD HERITAGE SERIAL SITE 2008: Inscribed on the World Heritage List under natural criteria ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following Statement of Outstanding Universal Value at the time of inscription Values Saryarka - Steppe and Lakes of Northern Kazakhstan protects substantial, largely undisturbed areas of Central Asian steppe and lakes in the Korgalzhyn and Naurzum State Nature Reserves. The property’s wetland areas are of outstanding importance for migratory waterbirds, including substantial populations of globally threatened species, as they are key stopover points and crossroads on the Central Asian flyways. The property’s steppe areas provide a valuable refuge for over half the species of the region’s steppe flora, a number of threatened bird species and the critically endangered Saiga antelope. Criterion (ix): Ongoing biological and ecological processes: The property contains substantial areas of steppe and lakes with largely undisturbed associated biological and ecological processes. The seasonal dynamics of the hydrology, chemistry and biology of the lakes, with the diverse flora and fauna of the wetlands have evolved through complex wetting and drying cycles, and are of global significance and scientific interest. -
An Assessment of the Impact of Conservation Grazing on Reptile Populations
Amphibian and Reptile Conservation RESEARCH REPORT 12/01 An assessment of the impact of conservation grazing on reptile populations G.M. Jofré & C.J. Reading ACKNOWLEDGEMENTS We wish to thank the following people and organisations for help in providing data used in this review: Biological Records Centre (BRC), The Forestry Commission, D. Galliford from The Centre for Ecology & Hydrology (CEH) and Alison Turnock from the Purbeck District Council. SUGGESTED CITATION: Jofré1, G.M. & Reading2, C.J. (2012). An assessment of the impact of conservation grazing on reptile populations. ARC Research Report 12/01. 1: Amphibian and Reptile Ecologist E-mail: [email protected] 2: Centre for Ecology and Hydrology CEH Wallingford, Oxon. OX10 8BB. E-mail: [email protected] Amphibian and Reptile Conservation Research Reports publish the results of research and/or monitoring activities of interest to the herpetological community. Any views or opinions presented in this publication do not necessarily represent those of Amphibian and Reptile Conservation (ARC) or its collaborators. Whilst our goal is that the information herein is timely and accurate, ARC or its collaborators can accept no responsibility or liability with regards to that information. Reproduction and distribution (e.g. by photocopy or in pdf format) of this Report, acknowledging the source, is permitted for non-commercial purposes only. 2 CONTENTS Page Contents 3 List of Tables and Figures 5 Executive Summary 7 1. Introduction 9 2. The effects of grazing on habitats and their communities 10 2.1 Areas adjacent to fresh water 11 2.2 Grassland 11 2.3 Sand dunes 12 2.4 Lowland heathland 13 2.5 Use of habitat 14 2.6 Use of space 14 2.7 Diet 15 2.8 Differences of impact between ponies and cattle 15 3. -
Cytogenetic and Molecular Characterization of Lacertid Lizard Species from the Iberian Peninsula", Presentado Por Dña
Cytogenetic and molecular characterization of lacertid lizard species from the Iberian Peninsula Verónica Rojo Oróns Doctoral Thesis 2015 Supervisors: Dr Horacio Naveira Fachal, Dr Andrés Martínez Lage Department of Cell and Molecular Biology D. HORACIO NAVEIRA FACHAL, DOCTOR EN BIOLOGÍA Y CATEDRÁTICO DE UNIVERSIDAD DEL ÁREA DE GENÉTICA DEL DEPARTAMENTO DE BIOLOGÍA CELULAR Y MOLECULAR DE LA UNIVERSIDADE DA CORUÑA, Y D. ANDRÉS MARTÍNEZ LAGE, DOCTOR EN BIOLOGÍA Y PROFESOR TITULAR DE UNIVERSIDAD EN EL ÁREA DE GENÉTICA DEL DEPARTAMENTO DE BIOLOGÍA CELULAR Y MOLECULAR DE LA UNIVERSIDADE DA CORUÑA, INFORMAN QUE el trabajo titulado "Cytogenetic and molecular characterization of lacertid lizard species from the Iberian Peninsula", presentado por Dña. VERÓNICA ROJO ORÓNS para optar al título de Doctora en Biología con Mención Internacional por la Universidade da Coruña, ha sido realizado bajo nuestra dirección. Considerándolo finalizado, autorizamos su presentación y defensa. A CORUÑA, A 22 DE SEPTIEMBRE DE 2015 Fdo. Dr. Horacio Naveira Fachal Fdo. Dr. Andrés Martínez Lage Fdo. Verónica Rojo Oróns To my dear Rodri To my granny Acknowledgements Firstly, I would like to thank my supervisors, Horacio Naveira and Andrés Martínez, for trusting me and for the opportunity to work on such an interesting project. Thank you for your patient, guidance, and for sharing your knowledge and experience with me! Many thanks to Ana González and Pedro Galán for their significant contributions to this research. Ana, thanks for your friendship and all your support in scientific and non-scientific questions. Pedro, thank you for collecting all the specimens for this thesis, and for your invaluable wealth of knowledge about lacertids. -
A Dissertation By
WEB-INTEGRATED TAXONOMY AND SYSTEMATICS OF THE PARASITIC WASP FAMILY SIGNIPHORIDAE (HYMENOPTERA, CHALCIDOIDEA) A Dissertation by ANAMARIA DAL MOLIN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, James B. Woolley Committee Members, Mariana Mateos Raul F. Medina Robert A. Wharton John M. Heraty Head of Department, David Ragsdale December 2014 Major Subject: Entomology Copyright 2014 Anamaria Dal Molin ABSTRACT This work focuses on the taxonomy and systematics of parasitic wasps of the family Signiphoridae (Hymenoptera: Chalcidoidea), a relatively small family of chalcidoid wasps, with 79 described valid species in 4 genera: Signiphora Ashmead, Clytina Erdös, Chartocerus Motschulsky and Thysanus Walker. A phylogenetic analysis of the internal relationships in Signiphoridae, a discussion of its supra-specific classification based on DNA sequences of the 18S rDNA, 28S rDNA and COI genes, and taxonomic studies on the genera Clytina, Thysanus and Chartocerus are presented. In the phylogenetic analyses, all genera except Clytina were recovered as monophyletic. The classification into subfamilies was not supported. Out of the four currently recognized species groups in Signiphora, only the Signiphora flavopalliata species group was supported. The taxonomic work was conducted using advanced digital imaging, content management systems, having in sight the online delivery of taxonomic information. The evolution of changes in the taxonomic workflow and dissemination of results are reviewed and discussed in light of current bioinformatics. The species of Thysanus and Clytina are revised and redescribed, including documentation of type material. Four new species of Thysanus and one of Clytina are described. -
Classification Systems Activity Guide
National Park Service U.S. Department of the Interior Zion National Park Classification Systems Introduction to Scientific Observation and Classification NPS/CHRISTOPHER GEZON Contents Introduction 2 Background 2 Activites Do You See What I See? 3 Divided in Two Classification Part 1 5 Canyon Creatures Classification Part 2 6 Glossary 7 References 7 Introduction This guide contains background information about how observation and classification are important to scientists and directions for three activities that will help students better understand why organisms are classified in different ways. The activities are most beneficial to students when completed in order. This guide is specifically designed for seventh grade classrooms, but the activities can be modified for students at other levels. Theme The first modern classification of the natural Observation and classification of living world was by Swedish biologist Carl Linnaeus things allows scientists to understand the in 1735. Linnaeus, now known as the “Father relationships between a variety of organisms of Taxonomy,” first categorized everything in and helps them to properly identify different the natural world as either animal, vegetable, species. or mineral, then further divided each category into different classes based on observable Focus differences. His system is the basis of the This guide will help students to understand taxonomy system used today by scientists to and learn how observations about organisms classify animals, plants, and microorganisms. and their structures are used to develop While much has been added and changed classification systems. to how Linnaeus classified living things, the structure remains similar, including the Activities use of Latin names by modern scientists.