Cd11b Regulation of B Cell Receptor Signaling in Health and Systemic Lupus Erythematosus

Total Page:16

File Type:pdf, Size:1020Kb

Cd11b Regulation of B Cell Receptor Signaling in Health and Systemic Lupus Erythematosus University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2018 CD11b regulation of B cell receptor signaling in health and systemic lupus erythematosus. Paul Lorenzo Dascani University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Immunity Commons Recommended Citation Dascani, Paul Lorenzo, "CD11b regulation of B cell receptor signaling in health and systemic lupus erythematosus." (2018). Electronic Theses and Dissertations. Paper 3076. https://doi.org/10.18297/etd/3076 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. CD11B REGULATION OF B CELL RECEPTOR SIGNALING IN HEALTH AND SYSTEMIC LUPUS ERYTHEMATOSUS By Paul Lorenzo Dascani B.S., University of Pittsburgh, 2011 M.S., University of Louisville, 2015 A Dissertation Submitted to the Faculty of the School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Microbiology and Immunology Department of Microbiology and Immunology University of Louisville Louisville, Kentucky December 2018 Copyright 2018 by Paul Lorenzo Dascani All rights reserved CD11B REGULATION OF B CELL RECEPTOR SIGNALING IN HEALTH AND SYSTEMIC LUPUS ERYTHEMATOSUS By Paul Lorenzo Dascani B.S., University of Pittsburgh, 2008 M.S., University of Louisville, 2015 A Dissertation Approved on December 3, 2018 by the following Dissertation Committee: _____________________________ Jun Yan, M.D., Ph.D. Dissertation Director _____________________________ Michele Kosiewicz, Ph.D. _____________________________ Pascale Alard, Ph.D. _____________________________ Venkatakrishna Jala, Ph.D. ____________________________ David Powell, Ph.D. ii ABSTRACT CD11B REGULATION OF B CELL RECEPTOR SIGNALING IN HEALTH AND SYSTEMIC LUPUS ERYTHEMATOSUS Paul Dascani December 3, 2018 Loss of function mutation in CD11b has been associated with incidence of systemic lupus erythematosus (SLE), a disease driven by B cell production of pathogenic autoimmune antibody. Our previous work has revealed the ability of CD11b to regulate B cell receptor (BCR) signaling and control autoimmune disease in mice. However, how CD11b regulates the immune response under normal conditions remains unknown. Through the use of a CD11b knockout model, we demonstrated that CD11b-deficient mice have an elevated antigen-specific humoral response in a Th2 type immunization. Deletion of CD11b resulted in elevated serum IgM and IgG antibody, increases in antigen-specific germinal center (GC) B cells and plasma cells (PCs), and increased expression of survival and regulatory factors Bcl-XL and Blimp1 within these subsets. Subsequent experiments using a tissue-specific CD11b deletion model revealed this effect to be B cell intrinsic, and not altered by myeloid cell CD11b expression. Examination of BCR signaling in GC B cells of CD11b knockouts revealed defects in association of negative regulators SHP-1 and pLyn with the BCR following stimulation, as well as alterations in nuclear iii localization of GC regulators cMyc and FOXO1. Through the use of a CD11b-reporter mouse model, we identified multiple novel CD11b-expressing B cell subsets that are dynamically altered during immunization and autoimmune conditions. Lastly, we investigated the incidence of CD11b mutation rs1143679 in SLE patients and examined its effect on the clinical outcome of disease and impact on B cell function. These studies describe a novel role for CD11b in regulation of the healthy humoral response at the GC stage and reveal previously unknown populations of CD11b expressing B cell subsets, suggesting a complex function for CD11b in B cells during development and maturation. iv TABLE OF CONTENTS PAGE SIGNATURE PAGE ........................................................................................................ii ABSTRACT .......................................................................................................iii LIST OF FIGURES .......................................................................................................vii INTRODUCTION .........................................................................................................1 General Introduction ......................................................................1 Regulation of B Cells and the Germinal Center Reaction .............2 Classic Functions CD11b .............................................................16 CD11b Regulates B Cell Receptor Signaling ..............................18 CHAPTER I: CD11B REGULATION OF B CELL RECEPTOR SIGNALING IN THE NORMAL IMMUNE RESPONSE ..........................................................................22 Introduction ..................................................................................23 Materials and Methods .................................................................27 Results ..........................................................................................31 Global CD11b Deficiency Alters Antibody Production and GC Formation in Non-autoimmune Mice ...........................................31 CD11b Regulates Germinal Center B Cell BCR Signaling .........37 B Intrinsic CD11b Regulates the Th2 Antibody Response ….....45 Myeloid Cell Loss of CD11b Does Not Impact the Th2 Antibody Response……………………………………………...50 Discussion ....................................................................................54 CHAPTER II: DYNAMIC EXPRESSION OF CD11B ON B CELLS IN NAÏVE AND IMMUNE SETTINGS ............................................................................................62 Introduction ..................................................................................63 Materials and Methods .................................................................67 Results………………………………………………………...…70 B cell CD11b Expression is Altered in a Th2 Immunization Setting ...........................................................................................70 Progression of Lupus-Like Disease in Mice Impacts B Cell Expression of CD11b ...................................................................81 Comparison of the CD11b Expressing Plasma Cell Repertoire ...87 Discussion .....................................................................................91 CHAPTER III: THE IMPACT OF CD11B POLYMORPHISM ON B CELLS IN SYSTEMIC LUPUS ERYTHEMATOSUS......................................................................96 Introduction ..................................................................................97 Materials and Methods ...............................................................106 v Results ........................................................................................109 A Phenotypic Survey of ITGAM Mutation rs1143679 in SLE Patients of the Louisville Region ................................................109 Discussion ...................................................................................116 CONCLUSIONARY REMARKS AND FUTURE PERSPECTIVES ..........................119 CHAPTER IV: TRASNCRIPTION FACTOR STAT3 SERVES AS A NEGATIVE REGULATOR CONTROLLING IGE CLASS SWITCHING ......................................123 Introduction .................................................................................124 Materials and Methods ................................................................132 Results .........................................................................................134 STAT3 Deficiency in B and T Cell Subsets Disrupts the Regulation of Class Switching in a Th2-type Immunization ......137 STAT3-Dependent Regulation of Germinal Center Class Switching is a B cell Intrinsic effect ...........................................142 Depletion of STAT3 Regulates Germinal Center Class Switching In Vitro ........................................................................................151 Target Genes of STAT3 in the GC B Cells .................................156 STAT3 in B Cells Regulates Lung Inflammation During Inhaled Allergy Reactions ........................................................................160 Discussion ...................................................................................164 REFERENCES .....................................................................................................169 CURRICULUM VITAE .....................................................................................................200 vi LIST OF FIGURES Figure 1: Increased antibody response in CD11b-knockout mice following Immunization ....................................................................................................................33 Figure 2: Germinal center B cells are increased in CD11b-knockout mice .....................34 Figure 3: Plasma cells are increased in CD11b-knockout mice .......................................35 Figure 4: CD11b deficiency alters GC and PC regulator expression ...............................36 Figure 5: Loss of CD11b alters SHP-1 colocalization with the BCR ...............................39 Figure 6: Loss of CD11b alters pLyn colocalization
Recommended publications
  • AIRE Variations in Addison's Disease and Autoimmune Polyendocrine Syndromes
    Genes and Immunity (2008) 9, 130–136 & 2008 Nature Publishing Group All rights reserved 1466-4879/08 $30.00 www.nature.com/gene ORIGINAL ARTICLE AIRE variations in Addison’s disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I AS Bøe Wolff1,2,3,7, B Oftedal1,2,7, S Johansson3,4, O Bruland3, K Løva˚s1,2, A Meager5, C Pedersen6, ES Husebye1,2 and PM Knappskog3,4 1Institute of Medicine, University of Bergen, Bergen, Norway; 2Department of Medicine, Haukeland University Hospital, Bergen, Norway; 3Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; 4Department of Clinical Medicine, University of Bergen, Bergen, Norway; 5Biotherapeutics Group, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK and 6Department of Pediatrics, Kolding Hospital, Kolding, Denmark Autoimmune Addison’s disease (AAD) is often associated with other components in autoimmune polyendocrine syndromes (APS). Whereas APS I is caused by mutations in the AIRE gene, the susceptibility genes for AAD and APS II are unclear. In the present study, we investigated whether polymorphisms or copy number variations in the AIRE gene were associated with AAD and APS II. First, nine SNPs in the AIRE gene were analyzed in 311 patients with AAD and APS II and 521 healthy controls, identifying no associated risk. Second, in a subgroup of 25 of these patients, AIRE sequencing revealed three novel polymorphisms. Finally, the AIRE copy number was determined by duplex quantitative PCR in 14 patients with APS I, 161 patients with AAD and APS II and in 39 healthy subjects.
    [Show full text]
  • Sexual Dimorphism in the Immune Response: Endocrinologic and Genetic Insights
    RIJKSUNIVERSITEIT GRONINGEN Sexual dimorphism in the immune response: endocrinologic and genetic insights Author: Lisa Wanders Supervisor: Dr. M.M. Faas Master-essay 29.05.2016 Sexual dimorphism in the immune response: endocrinologic and genetic insights Author: Lisa Wanders Supervisor: Dr. M.M. Faas Group: Medical Biology Abstract Differences in the immune response exist between men and women. While females have a stronger adaptive immune response, including the cellular and humoral response, males have a stronger and more sensitive innate immune response. This essay reviews these differences and focuses on sex hormones and genetics as possible underlying causes. The implications for a variety of conditions are discussed. Females have a higher predisposition to acquire autoimmune diseases and are more susceptible to acute graft rejections but are at the same time more resistant to infections and gain better protection from vaccinations. Males on the other hand have a higher risk to develop multiple organ failure after trauma and severe infections after surgery. Moreover, higher rates of sepsis are observed in males compared to females. Despite extensive research in this field, many of the mechanisms underlying the sexual dimorphism in the immune response are still unknown. 1 Table of contents 1. Introduction ..................................................................................................................................... 3 2. Sex-based differences in the immune response ............................................................................
    [Show full text]
  • Rasgrp3 (C33A3) Rabbit Mab A
    Revision 1 C 0 2 - t RasGRP3 (C33A3) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 4 3 Web: [email protected] 3 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB H M Endogenous 78 Rabbit IgG Q8IV61 25780 Product Usage Information Application Dilution Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity RasGRP3 (C33A3) Rabbit mAb detects endogenous levels of total RasGRP3 protein. Species Reactivity: Human, Mouse Species predicted to react based on 100% sequence homology: Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy teminus of human RasGRP3. Background Lymphocyte activation occurs in part through activation of the Ras signaling pathway following lymphocyte receptor stimulation. The RasGRP family of guanine nucleotide exchange factors (GEFs) catalyzes the exchange of GDP for GTP on Ras family small GTPases, promoting their active GTP-bound form. Diacylglycerol (DAG) or phorbol ester binding to RasGRP family members causes their translocation to the cell membrane and stimulates their activity (1,2). While T-Cells express RasGRP1, B-cells express both RasGRP1 and RasGRP3. RasGRP3 is important in linking B-cell receptor (BCR) activation to Ras signaling (3).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Ncounter® Mouse Autoimmune Profiling Panel - Gene and Probe Details
    nCounter® Mouse AutoImmune Profiling Panel - Gene and Probe Details Official Symbol Accession Alias / Previous Symbol Official Full Name Other targets or Isoform Information AW208573,CD143,expressed sequence AW208573,MGD-MRK- Ace NM_009598.1 1032,MGI:2144508 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 2610036I19Rik,2610510L13Rik,Acinus,apoptotic chromatin condensation inducer in the nucleus,C79325,expressed sequence C79325,MGI:1913562,MGI:1919776,MGI:2145862,mKIAA0670,RIKEN cDNA Acin1 NM_001085472.2 2610036I19 gene,RIKEN cDNA 2610510L13 gene apoptotic chromatin condensation inducer 1 Acp5 NM_001102405.1 MGD-MRK-1052,TRACP,TRAP acid phosphatase 5, tartrate resistant 2310066K23Rik,AA960180,AI851923,Arp1b,expressed sequence AA960180,expressed sequence AI851923,MGI:2138136,MGI:2138359,RIKEN Actr1b NM_146107.2 cDNA 2310066K23 gene ARP1 actin-related protein 1B, centractin beta Adam17 NM_001277266.1 CD156b,Tace,tumor necrosis factor-alpha converting enzyme a disintegrin and metallopeptidase domain 17 ADAR1,Adar1p110,Adar1p150,AV242451,expressed sequence Adar NM_001038587.3 AV242451,MGI:2139942,mZaADAR adenosine deaminase, RNA-specific Adora2a NM_009630.2 A2AAR,A2aR,A2a, Rs,AA2AR,MGD-MRK-16163 adenosine A2a receptor Ager NM_007425.2 RAGE advanced glycosylation end product-specific receptor AI265500,angiotensin precursor,Aogen,expressed sequence AI265500,MGD- Agt NM_007428.3 MRK-1192,MGI:2142488,Serpina8 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) Ah,Ahh,Ahre,aromatic hydrocarbon responsiveness,aryl hydrocarbon
    [Show full text]
  • Our Environment Shapes Us: the Importance of Environment and Sex Differences in Regulation of Autoantibody Production
    REVIEW published: 08 March 2018 doi: 10.3389/fimmu.2018.00478 Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production Michael Edwards, Rujuan Dai and S. Ansar Ahmed* Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop auto- Edited by: Ralf J. Ludwig, immune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic University of Lübeck, (microbiome composition, external triggers, and immune modulators) factors appear to Germany impact the overall outcome of immune responses between sexes. Evidence suggests Reviewed by: Ayanabha Chakraborti, that interactions between environmental contaminants [e.g., endocrine disrupting chemi- University of Alabama at cals (EDCs)] and host leukocytes affect the ability of the immune system to mount a Birmingham, United States response to exogenous and endogenous insults, and/or return to normal activity following Jun-ichi Kira, Kyushu University, Japan clearance of the threat. Inherently, males and females have differential immune response Maja Wallberg, to external triggers. In this review, we describe how environmental chemicals, including University of Cambridge, United Kingdom EDCs, may have sex differential influence on the outcome of immune responses through *Correspondence: alterations in epigenetic status (such as modulation of microRNA expression, gene S.
    [Show full text]
  • Patients with Systemic Lupus Erythematosus Nucleotide-Releasing Protein 1 in a Subset of Defective Expression of Ras Guanyl
    Defective Expression of Ras Guanyl Nucleotide-Releasing Protein 1 in a Subset of Patients with Systemic Lupus Erythematosus This information is current as Shinsuke Yasuda, Richard L. Stevens, Tomoko Terada, of September 24, 2021. Masumi Takeda, Toko Hashimoto, Jun Fukae, Tetsuya Horita, Hiroshi Kataoka, Tatsuya Atsumi and Takao Koike J Immunol 2007; 179:4890-4900; ; doi: 10.4049/jimmunol.179.7.4890 http://www.jimmunol.org/content/179/7/4890 Downloaded from References This article cites 39 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/179/7/4890.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Defective Expression of Ras Guanyl Nucleotide-Releasing Protein 1 in a Subset of Patients with Systemic Lupus Erythematosus1 Shinsuke Yasuda,2* Richard L.
    [Show full text]
  • Bioinformatics Analysis of Differentially Expressed Genes in Rotator Cuff Tear
    Ren et al. Journal of Orthopaedic Surgery and Research (2018) 13:284 https://doi.org/10.1186/s13018-018-0989-5 RESEARCHARTICLE Open Access Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data Yi-Ming Ren†, Yuan-Hui Duan†, Yun-Bo Sun†, Tao Yang and Meng-Qiang Tian* Abstract Background: Rotator cuff tear (RCT) is a common shoulder disorder in the elderly. Muscle atrophy, denervation and fatty infiltration exert secondary injuries on torn rotator cuff muscles. It has been reported that satellite cells (SCs) play roles in pathogenic process and regenerative capacity of human RCT via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) of SCs that regulated between the torn supraspinatus (SSP) samples and intact subscapularis (SSC) samples, identify their functions and molecular pathways. Methods: The gene expression profile GSE93661 was downloaded and bioinformatics analysis was made. Results: Five hundred fifty one DEGs totally were identified. Among them, 272 DEGs were overexpressed, and the remaining 279 DEGs were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene–gene interaction network analysis such as GNG13, GCG, NOTCH1, BCL2, NMUR2, PMCH, FFAR1, AVPR2, GNA14, and KALRN, that may contribute to the understanding of the molecular mechanisms of secondary injuries in RCT. We also discovered that GNG13/calcium signaling pathway is highly correlated with the denervation atrophy pathological process of RCT. Conclusion: These genes and pathways provide a new perspective for revealing the underlying pathological mechanisms and therapy strategy of RCT.
    [Show full text]
  • Express Yourself Immune Evasion by Anthrax
    HIGHLIGHTS MACROPHAGES Bacillus anthracis, the causative agent (LPS)-activated macrophages. First, of anthrax, kills macrophages and they showed that LT causes the apop- evades the host immune response by tosis of LPS-treated macrophages; secreting a protein that leads to the then, they investigated the signalling Immune evasion inhibition of p38 mitogen-activated pathways involved. At the concentra- LF protein kinase (p38 MAPK), accord- tion that is required to induce apopto- by anthrax PA ing to a report in Science.The activity sis, LT inhibits the activation of ERK, of this MAPK is required for the c-Jun NH2-terminal kinase 1 (JNK1) transcription of certain downstream and p38, but the activity of JNK2 and nuclear factor-κB (NF-κB) targets. inhibitor of NF-κB (IκB) kinase (IKK) LT Macrophage Three proteins secreted by B. anthr- is unaffected. The authors used spe- acis are important for its pathogenic- cific MAPK inhibitors to determine ity: protective antigen (PA), oedema the contribution of these MAPK cas- factor (EF) and lethal factor (LF). PA cades to LT-induced apoptosis. Only enables EF and LF to enter the cytosol the p38-specific inhibitor (SB202190) of host cells, where EF causes tissue induced apoptosis of LPS-activated oedema and LF acts as a metallopro- macrophages, which indicates that LT X tease, cleaving MAPK kinases (MKKs) might cause apoptosis by inhibiting P and thereby preventing MAPK activa- p38 signalling. MKKs p38 X tion. Lethal toxin (LT; a complex of Macrophages lacking IKK and activated PA and LF) has been shown NF-κB activity were shown to be sen- to be cytotoxic for macrophages, but it sitive to LPS-induced apoptosis also.
    [Show full text]
  • Role of Genomic Variants in the Response to Biologics Targeting Common Autoimmune Disorders
    Role of genomic variants in the response to biologics targeting common autoimmune disorders by Gordana Lenert, PhD The thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science Ottawa-Carleton Joint Program in Bioinformatics Carleton University Ottawa, Canada © 2016 Gordana Lenert Abstract Autoimmune diseases (AID) are common chronic inflammatory conditions initiated by the loss of the immunological tolerance to self-antigens. Chronic immune response and uncontrolled inflammation provoke diverse clinical manifestations, causing impairment of various tissues, organs or organ systems. To avoid disability and death, AID must be managed in clinical practice over long periods with complex and closely controlled medication regimens. The anti-tumor necrosis factor biologics (aTNFs) are targeted therapeutic drugs used for AID management. However, in spite of being very successful therapeutics, aTNFs are not able to induce remission in one third of AID phenotypes. In our research, we investigated genomic variability of AID phenotypes in order to explain unpredictable lack of response to aTNFs. Our hypothesis is that key genetic factors, responsible for the aTNFs unresponsiveness, are positioned at the crossroads between aTNF therapeutic processes that generate remission and pathogenic or disease processes that lead to AID phenotypes expression. In order to find these key genetic factors at the intersection of the curative and the disease pathways, we combined genomic variation data collected from publicly available curated AID genome wide association studies (AID GWAS) for each disease. Using collected data, we performed prioritization of genes and other genomic structures, defined the key disease pathways and networks, and related the results with the known data by the bioinformatics approaches.
    [Show full text]
  • Trim24-Regulated Estrogen Response Is Dependent on Specific Histone Modifications in Breast Cancer Cells
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2012 TRIM24-REGULATED ESTROGEN RESPONSE IS DEPENDENT ON SPECIFIC HISTONE MODIFICATIONS IN BREAST CANCER CELLS Teresa T. Yiu Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry Commons, Cancer Biology Commons, Medicine and Health Sciences Commons, and the Molecular Biology Commons Recommended Citation Yiu, Teresa T., "TRIM24-REGULATED ESTROGEN RESPONSE IS DEPENDENT ON SPECIFIC HISTONE MODIFICATIONS IN BREAST CANCER CELLS" (2012). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 313. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/313 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TRIM24-REGULATED ESTROGEN RESPONSE IS DEPENDENT ON SPECIFIC HISTONE
    [Show full text]
  • Jci.Org Volume 126 Number 4 April 2016 1239 Commentary the Journal of Clinical Investigation
    The Journal of Clinical Investigation COMMENTARY Estrogen turns down “the AIRE” Pearl Bakhru and Maureen A. Su Department of Pediatrics, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. Early clues that sex hormones may Genetic alterations are known drivers of autoimmune disease; however, also modulate thymic stromal populations, there is a much higher incidence of autoimmunity in women, implicating such as mTECs, came from elegant studies sex-specific factors in disease development. The autoimmune regulator that utilized bone marrow chimeras (5, 6). (AIRE) gene contributes to the maintenance of central tolerance, and These studies showed that thymic epitheli- complete loss of AIRE function results in the development of autoimmune al cells express estrogen receptor (ER) and polyendocrinopathy syndrome type 1. In this issue of the JCI, Dragin and androgen receptor (AR) and that expres- colleagues demonstrate that AIRE expression is downregulated in females sion of these hormone receptors in the stromal compartment is required for alter- as the result of estrogen-mediated alterations at the AIRE promoter. The ing bone marrow–derived T cell subsets association between estrogen and reduction of AIRE may at least partially in the thymus (5, 6). In this issue, Dragin account for the elevated incidence of autoimmune disease in women and et al. confirm that sex hormones indeed has potential implications for sex hormone therapy. act on receptors on thymic stromal cells to impinge upon T cell development within the thymus. Furthermore, this study dem- onstrates that sex hormones regulate AIRE Autoimmune disease: autoimmune disease autoimmune poly- expression in mTECs and, in particular, sex-dependent differences endocrinopathy syndrome type 1 (APS1, estrogen decreases AIRE to predispose The incidence of autoimmune disease is which is also known as autoimmune poly- females to autoimmunity (7).
    [Show full text]