Hydrothermal Formose Reaction.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Hydrothermal Formose Reaction.Pdf View Online / Journal Homepage / Table of Contents for this issue NJC Dynamic Article Links Cite this: NewJ.Chem., 2011, 35, 1787–1794 www.rsc.org/njc PAPER Hydrothermal formose reactionw Daniel Kopetzki* and Markus Antonietti Received (in Montpellier, France) 1st March 2011, Accepted 11th May 2011 DOI: 10.1039/c1nj20191c The self-condensation of formaldehyde is a one pot reaction resulting in a complex mixture of carbohydrates. Based on a simple chemical, the reaction was previously considered as a prebiotic source for sugar generation. Usually, a high pH and the presence of catalytically active species are required. Here, the formose reaction was performed under hydrothermal temperatures up to 200 1C, and carbohydrates were obtained under even simpler conditions. We found no pronounced catalytic influence of active cations, and a slightly alkaline pH was sufficient to induce the reaction. Maximum yield was reached in very short times, partly less than 1 minute. No selectivity for a particular carbohydrate, although searched for, was found. Contrary to reactions performed at lower temperatures, hexoses were only formed in negligible yields, whereas the shorter carbohydrates accounted for the major fraction. Among the pentoses, ribose and the ketoses with corresponding stereochemistry were formed in higher yields compared to the reaction at lower temperature. Furthermore, we identified 2-deoxyribose in the product mix and found strong indications for the presence of other deoxy compounds. Hence, the hydrothermal formose reaction shows some remarkable differences compared to the conventional reaction at moderate temperatures. 1 Introduction Habitats with superheated water are available in submarine areas with volcanic activity and such hydrothermal environ- Downloaded by University of Oxford on 10 November 2011 As nearly 3.5 billion year old microfossils and typical isotope ments with temperatures around 200 1C at a pressure of 20 bar 1 Published on 16 June 2011 http://pubs.rsc.org | doi:10.1039/C1NJ20191C patterns in sediments indicate, life arose quite early on earth, or higher were also present at ocean sites in the hadean period.10 just about some hundred million years after the moon/earth The presented synthesis of carbohydrates is based on collision. Thus, the primary synthesis of biomolecules took formaldehyde, which can be clearly formed under hadean place at environmental conditions very different to the current conditions and is generally considered as a prebiotic molecule ones. The prebiotic chemistry community tries to resolve having contributed to the local chemistry.11 It can be synthe- the question, how complex organic molecules can be formed sized by photoreduction of CO2, but is also available via from simple precursors, and to elucidate plausible mechanisms electric discharges.12 This simple compound can be converted 2 proceeding in prebiotic environments. This is hampered by the to a mixture of different carbohydrates in a one pot reaction, lack of knowledge about the true conditions on the early earth, called the formose reaction. Under alkaline conditions and which includes the composition of the atmosphere, whether it with certain catalysts, formaldehyde polymerises to form 3 4 was neutral or reducing, or the temperature of the ocean. sugars.13 Due to the ease with which complex carbohydrates 5,6 In the famous Miller experiment, the generation of amino are synthesised from a very simple precursor, the formose acids was proven in a simple reducing atmosphere subjected to reaction has been considered to have contributed to the origin spark discharges. Recent work has mainly focused on the of life. However, due to the fast degradation of sugars and the 7 8,9 formation mechanisms towards peptides and nucleic acids, missing selectivity, this is doubtful.14–16 while the focus of this paper lies more in the formation and The kinetics of the formose reaction is quite complex, due to chemistry of carbohydrates. In this respect, we will investigate its autocatalytic nature.17 Formaldehyde usually does not whether high temperature is feasible as an energy source. react with itself establishing a carbon–carbon bond, so that the simplest sugar glycolaldehyde is formed slowly (see Scheme 1). Max-Planck-Institute of Colloids and Interfaces, Research Campus However, as soon as some condensation product is present, a Golm, D-14424 Potsdam, Germany. cascade of reactions is initiated, ultimately leading to the E-mail: [email protected]; Fax: +49 331 567 9502; formation of various straight-chain and branched carbo- Tel: +49 331 567 9538 hydrates,18,19 plus their decomposition products. Elongation w Electronic supplementary information (ESI) available: Moderate temperature experiments, NMR and GC data. See DOI: 10.1039/ of the carbohydrate backbone occurs via base-catalyzed aldol c1nj20191c condensation with formaldehyde, accompanied by isomerisations. This journal is c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011 New J. Chem., 2011, 35, 1787–1794 1787 View Online Scheme 1 Simplified mechanism of the formose reaction. In alkaline medium retro aldol reactions take place as well, A 0.5 M formaldehyde solution was heated to 200 1C under a whereupon both resulting fragments can act as initiators pressure of 100 bar. It should be noted that such a high again, thus leading to an autocatalytic system. Due to their concentration is not along with prebiotic conditions. To vary relative stability pentoses and hexoses are the main products. the pH and to probe for the potential catalysis of simple ions, For prolonged reaction times however they decompose, recogni- salts were added. Despite the fact that certain cations are sable by the yellowing of the solution. necessary at moderate temperatures, we first used inactive Often, Ca(OH)2 is used as base because of its high catalytic sodium or potassium salts. Control experiments were conducted 2+ activity. Ca can coordinate the enediol form of carbo- at 60 1Cin0.05MCa(OH)2 or 0.1 M NaOH, respectively hydrates and thus stabilises the deprotonated species.20 (ESIw, Fig. S1–S3). Performing the reaction in NaOH in the absence of other The conversion of formaldehyde in different salt solutions is catalytically active cations does not yield any sugars. Apart shown in Fig. 1. In pure water and even under acidic conditions from Ca(OH)2 many other catalysts of the formose reaction (such as diluted acetic acid), formaldehyde is consumed relatively have been identified.21 Naturally occurring minerals and clays, fast within a timescale of minutes. An induction period, as quite abundant in nature, can also evoke the formation of described for the formose reaction at moderate temperatures, carbohydrates when refluxing a formaldehyde solution.22–24 is not observed. With increasing basicity of the added salts, the It is even possible to induce the formose reaction photo- conversion is accelerated. Even the barely basic sodium sulfate chemically, resulting in the formation of highly branched sugar shows some effect. This trend is continued following the series alcohols.25 Apart from formaldehyde other small molecules can acetate, hydrogen carbonate and hydrogen phosphate. In a also be employed to build up carbohydrates. Using short carbonate buffer (50 mM NaHCO3,50mMNa2CO3), the sugars, like glycolaldehyde or glyceraldehyde, other catalysts formaldehyde is consumed in less than one minute. and less harsh conditions are sufficient. Examples include zinc Of course, the fact that formaldehyde vanishes does not prolate,26 silicate27 or dipeptides,28 but in none of these cases a prove the formation of carbohydrates. In fact, the NMR Downloaded by University of Oxford on 10 November 2011 successful formose reaction using solely formaldehyde could spectra of the reactions performed in pure water, in acetic Published on 16 June 2011 http://pubs.rsc.org | doi:10.1039/C1NJ20191C be performed. acid and also when sodium acetate was added, just show the The formose reaction is usually performed at moderate Cannizzaro products formic acid and methanol (ESIw,Fig.S4). temperatures or occasionally at around 100 1C.29 In recent These solutions remained clear and colourless even for work, we have presented a continuous flow reactor which prolonged reaction times and did not show the typical yellow- allows us to perform organic reactions in water at high ing point, resulting from decomposition products when temperatures and pressures with high control and precision.30 carbohydrates were formed. This colour change was however It was for instance shown that formic acid acts under such observed for all more basic salts, indicating a successful conditions as an effective hydrogenation agent, while simple salts can take an unexpected role of being a catalyst. In the present attempt, we will apply this set-up to the formose reaction. Using simple hydrothermal reaction conditions and formaldehyde without additional initiators in the presence of only simple salts, reaction sequences are analysed. The moti- vation to study the formose reaction under such conditions is based on the lack of data on the hydrothermal behaviour of formaldehyde yielding complex molecules,31,32 but also on the fact that early earth conditions might have included various aqueous environments under similar conditions. 2 Results and discussion Effects of added salt To establish hydrothermal conditions with high precision and Fig. 1 Conversion of formaldehyde in the presence of various salts at control, reactions were conducted in a continuous flow reactor. 200 1C and 100 bar. 1788 New J. Chem., 2011, 35, 1787–1794 This journal is c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011 View Online formose reaction despite the absence of catalytically active carbohydrate formation is reached well before complete cations. In a control experiment with microwave heating, this formaldehyde consumption. yellowing occurred in glass vessels as well, suggesting that it is At moderate temperatures, the presence of Ca2+ is crucial not the reactor material which causes the observed effects. for a successful formose reaction.
Recommended publications
  • A Chemical Engineering Perspective on the Origins of Life
    Processes 2015, 3, 309-338; doi:10.3390/pr3020309 processesOPEN ACCESS ISSN 2227-9717 www.mdpi.com/journal/processes Article A Chemical Engineering Perspective on the Origins of Life Martha A. Grover *, Christine Y. He, Ming-Chien Hsieh and Sheng-Sheng Yu School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA 30032, USA; E-Mails: [email protected] (C.Y.H.); [email protected] (M.-C.H.); [email protected] (S.-S.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-404-894-2878 or +1-404-894-2866. Academic Editor: Michael Henson Received: 29 January 2015 / Accepted: 19 April 2015 / Published: 5 May 2015 Abstract: Atoms and molecules assemble into materials, with the material structure determining the properties and ultimate function. Human-made materials and systems have achieved great complexity, such as the integrated circuit and the modern airplane. However, they still do not rival the adaptivity and robustness of biological systems. Understanding the reaction and assembly of molecules on the early Earth is a scientific grand challenge, and also can elucidate the design principles underlying biological materials and systems. This research requires understanding of chemical reactions, thermodynamics, fluid mechanics, heat and mass transfer, optimization, and control. Thus, the discipline of chemical engineering can play a central role in advancing the field. In this paper, an overview of research in the origins field is given, with particular emphasis on the origin of biopolymers and the role of chemical engineering phenomena. A case study is presented to highlight the importance of the environment and its coupling to the chemistry.
    [Show full text]
  • Prebiotic Chemistry: Geochemical Context and Reaction Screening
    Life 2013, 3, 331-345; doi:10.3390/life3020331 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Prebiotic Chemistry: Geochemical Context and Reaction Screening Henderson James Cleaves II Earth Life Science Institute, Tokyo Institute of Technology, Institute for Advanced Study, Princeton, NJ 08540, USA; E-Mail: [email protected] Received: 12 April 2013; in revised form: 17 April 2013 / Accepted: 18 April 2013 / Published: 29 April 2013 Abstract: The origin of life on Earth is widely believed to have required the reactions of organic compounds and their self- and/or environmental organization. What those compounds were remains open to debate, as do the environment in and process or processes by which they became organized. Prebiotic chemistry is the systematic organized study of these phenomena. It is difficult to study poorly defined phenomena, and research has focused on producing compounds and structures familiar to contemporary biochemistry, which may or may not have been crucial for the origin of life. Given our ignorance, it may be instructive to explore the extreme regions of known and future investigations of prebiotic chemistry, where reactions fail, that will relate them to or exclude them from plausible environments where they could occur. Come critical parameters which most deserve investigation are discussed. Keywords: chemical evolution; prebiotic organic reactions-prebiotic reactions in the aqueous phase; prebiotic reactions in the solid state; energy sources on the primitive Earth; mineral catalysis 1. Introduction Prebiotic chemistry is the study of how organic compounds formed and self-organized for the origin of life on Earth and elsewhere [1].
    [Show full text]
  • Formose Reaction Controlled by a Copolymer of N,N-Dimethylacrylamide and 4-Vinylphenylboronic Acid
    polymers Article Formose Reaction Controlled by a Copolymer of N,N-Dimethylacrylamide and 4-Vinylphenylboronic Acid Tomohiro Michitaka, Toru Imai and Akihito Hashidzume * ID Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan; [email protected] (T.M.); [email protected] (T.I.) * Correspondence: [email protected]; Tel.: +81-6-6850-8174 Received: 8 October 2017; Accepted: 24 October 2017; Published: 25 October 2017 Abstract: The formose reaction is an oligomerization of formaldehyde under basic conditions, which produces a complicated mixture of monosaccharides and sugar alcohols. Selective formation of useful monosaccharides by the formose reaction has been an important challenge. In this study, we have investigated the formose reaction controlled by N,N-dimethylacrylamide/4-vinylphenylboronic acid copolymer (pDMA/VBA) and phenylboronic acid (PBA) because boronic acid compounds form esters with polyols, e.g., monosaccharides and sugar alcohols. We obtained time–conversion data in the presence of these boronic acid compounds, and characterized the products by liquid chromatography-mass spectroscopy and NMR measurements. pDMA/VBA and PBA decelerated the formose reaction because of the formation of boronic acid esters with products. It is noteworthy that the formose reaction in the presence of pDMA/VBA and PBA formed favorably six- and seven-carbon branched monosaccharides and sugar alcohols. Keywords: formose reaction; boronic acid compounds; N,N-dimethylacrylamide/4-vinylphenyl boronic acid copolymer; phenylboronic acid; monosaccharides; sugar alcohols 1. Introduction Carbohydrates are ubiquitous in our life and very important biological materials [1,2]. Carbohydrates can be divided into three categories based on their molecular weight; (1) low molecular weight saccharides, e.g., monosaccharides and disaccharides, (2) oligosaccharides, and (3) polysaccharides.
    [Show full text]
  • Inferring Chemical Reaction Patterns Using Rule Composition in Graph Grammars Jakob L Andersen1,4, Christoph Flamm2*, Daniel Merkle1* and Peter F Stadler2,3,4,5,6,7
    Andersen et al. Journal of Systems Chemistry 2013, 4:4 http://www.jsystchem.com/content/4/1/4 RESEARCH ARTICLE Open Access Inferring chemical reaction patterns using rule composition in graph grammars Jakob L Andersen1,4, Christoph Flamm2*, Daniel Merkle1* and Peter F Stadler2,3,4,5,6,7 Abstract Background: Modeling molecules as undirected graphs and chemical reactions as graph rewriting operations is a natural and convenient approach to modeling chemistry. Graph grammar rules are most naturally employed to model elementary reactions like merging, splitting, and isomerisation of molecules. It is often convenient, in particular in the analysis of larger systems, to summarize several subsequent reactions into a single composite chemical reaction. Results: We introduce a generic approach for composing graph grammar rules to define a chemically useful rule compositions. We iteratively apply these rule compositions to elementary transformations in order to automatically infer complex transformation patterns. As an application we automatically derive the overall reaction pattern of the Formose cycle, namely two carbonyl groups that can react with a bound glycolaldehyde to a second glycolaldehyde. Rule composition also can be used to study polymerization reactions as well as more complicated iterative reaction schemes. Terpenes and the polyketides, for instance, form two naturally occurring classes of compounds of utmost pharmaceutical interest that can be understood as “generalized polymers” consisting of five-carbon (isoprene) and two-carbon units, respectively. Conclusion: The framework of graph transformations provides a valuable set of tools to generate and investigate large networks of chemical networks. Within this formalism, rule composition is a canonical technique to obtain coarse-grained representations that reflect, in a natural way, “effective” reactions that are obtained by lumping together specific combinations of elementary reactions.
    [Show full text]
  • Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rappoport, Dmitrij, Cooper J. Galvin, Dmitry Zubarev, and Alán Aspuru-Guzik. 2014. “Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.” Journal of Chemical Theory and Computation 10 (3) (March 11): 897–907. Published Version doi:10.1021/ct401004r Accessed February 19, 2015 5:14:37 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12697373 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry Dmitrij Rappoport,∗,† Cooper J Galvin,‡ Dmitry Yu. Zubarev,† and Alán Aspuru-Guzik∗,† Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, and Pomona College, 333 North College Way, Claremont, CA 91711, USA E-mail: [email protected]; [email protected] Abstract While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for mod- eling complex structures and large-scale chemical systems. Here we present heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in metabolism and prebiotic chemistry.
    [Show full text]
  • The Power of Crowding for the Origins of Life
    Orig Life Evol Biosph (2014) 44:307–311 DOI 10.1007/s11084-014-9382-5 ORIGIN OF LIFE The Power of Crowding for the Origins of Life Helen Greenwood Hansma Received: 2 October 2014 /Accepted: 2 October 2014 / Published online: 14 January 2015 # Springer Science+Business Media Dordrecht 2015 Abstract Molecular crowding increases the likelihood that life as we know it would emerge. In confined spaces, diffusion distances are shorter, and chemical reactions produce fewer and more regular products. Crowding will occur in the spaces between Muscovite mica sheets, which has many advantages as a site for life’s origins. Keywords Muscovite mica . Molecular crowding . Origin of life . Mechanochemistry. Abiogenesis . Chemical confinement effects . Chirality. Protocells Cells are crowded. Protein molecules in cells are typically so close to each other that there is room for only one protein molecule between them (Phillips, Kondev et al. 2008). This is nothing like a dilute ‘prebiotic soup.’ Therefore, by analogy with living cells, the origins of life were probably also crowded. Molecular Confinement Effects Many chemical reactions are limited by the time needed for reactants to diffuse to each other. Shorter distances speed up these reactions. Molecular complementarity is another principle of life in which pairs or groups of molecules form specific interactions (Root-Bernstein 2012). Current examples are: enzymes & substrates & cofactors; nucleic acid base pairs; antigens & antibodies; nucleic acid - protein interactions. Molecular complementarity is likely to have been involved at life’s origins and also benefits from crowding. Mineral surfaces are a likely place for life’s origins and for formation of polymeric molecules (Orgel 1998).
    [Show full text]
  • 4 Carbohydrates
    Basic classes of biomolecules • Aminoacids • Lipids • Carbohydrates (sugars) • Nucleobases • Nucleosides (sugar+nucleobase) Nucleotides - components Phosphates and the prebiotic synthesis of oligonucleotides Activated ribonucleotides in the potentially prebiotic assembly of RNA. Potential P–O bond forming polymerization chemistry is indicated by the curved arrows. Phosphorylation reagents DAP M. A. Pasek, et al. Angew. Chem. Int. Ed. 2008, 47, 7918-7920 A. Eschenmoser, et al. Orig. Life Evol. Biosph. 1999, 29, 333-354 Phosphorylation reagents DAP M. A. Pasek, et al. Angew. Chem. Int. Ed. 2008, 47, 7918-7920 A. Eschenmoser, et al. Orig. Life Evol. Biosph. 1999, 29, 333-354 Phosphorylation of sugars A. Eschenmoser, et al. Angew. Chem. Int. Ed. 2000, 39, 2281-2285 Phosphorylation of sugars A. Eschenmoser, et al. Angew. Chem. Int. Ed. 2000, 39, 2281-2285 Nucleosides - nucleobases + sugars Carbohydrates Formose reaction Alexander Butlerov (1828-1886) St. Petersburg, Kazan, Russia The reaction begins with two formaldehyde molecules condensing to make glycolaldehyde 1 which further reacts in an aldol reaction with another equivalent of formaldehyde to make glyceraldehyde 2. An aldose-ketose isomerization of 2 forms dihydroxyacetone 3 which can Ronald Breslow (1931-) react with 1 to form ribulose 4, and through another isomerization ribose 5. Molecule 3 also Columbia University, USA can react with formaldehyde to produce tetrulose 6 and then aldoltetrose 7. Molecule 7 can split into 2 in a retro-aldol reaction. Formaldehyde condensation Aldol
    [Show full text]
  • Gravitational Influence on Human Living Systems and the Evolution Of
    molecules Review Gravitational Influence on Human Living Systems and the Evolution of Species on Earth Konstantinos Adamopoulos 1 , Dimitrios Koutsouris 1 , Apostolos Zaravinos 2,* and George I. Lambrou 1,3,* 1 School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, National Technical University of Athens, Heroon Polytechneiou 9, Zografou, 15780 Athens, Greece; [email protected] (K.A.); [email protected] (D.K.) 2 Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus 3 First Department of Pediatrics, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece * Correspondence: [email protected] (A.Z.); [email protected] (G.I.L.); Tel.: +357-22713043 (A.Z.); +30-210-7467427 (G.I.L.) Abstract: Gravity constituted the only constant environmental parameter, during the evolutionary period of living matter on Earth. However, whether gravity has affected the evolution of species, and its impact is still ongoing. The topic has not been investigated in depth, as this would require frequent and long-term experimentations in space or an environment of altered gravity. In addition, each organism should be studied throughout numerous generations to determine the profound biological changes in evolution. Here, we review the significant abnormalities presented in the cardiovascular, immune, vestibular and musculoskeletal systems, due to altered gravity conditions. We also review the impact that gravity played in the anatomy of snakes and amphibians, during their evolution. Overall, it appears that gravity does not only curve the space–time continuum but the biological Citation: Adamopoulos, K.; continuum, as well. Koutsouris, D.; Zaravinos, A.; Lambrou, G.I.
    [Show full text]
  • Fermentation of Dihydroxyacetone by Engineered Escherichia Coli and Klebsiella Variicola to Products
    Fermentation of dihydroxyacetone by engineered Escherichia coli and Klebsiella variicola to products Liang Wanga, Diane Chauliaca,1, Mun Su Rheea,2, Anushadevi Panneerselvama, Lonnie O. Ingrama,3, and K. T. Shanmugama,3 aDepartment of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 Contributed by Lonnie O. Ingram, March 21, 2018 (sent for review January 18, 2018; reviewed by John W. Frost and F. Robert Tabita) Methane can be converted to triose dihydroxyacetone (DHA) by process, formaldehyde can also be produced biologically from chemical processes with formaldehyde as an intermediate. Carbon CO2 with formate as an intermediate (Fig. 1) (7). Dickens and dioxide, a by-product of various industries including ethanol/ Williamson reported as early as 1958 that DHA can be produced butanol biorefineries, can also be converted to formaldehyde biologically by transketolation of hydroxypyruvate and formalde- and then to DHA. DHA, upon entry into a cell and phosphorylation hyde (8). This transketolase is implicated in a unique pentose– to DHA-3-phosphate, enters the glycolytic pathway and can be phosphate–dependent pathway (DHA cycle) in methanol-utilizing fermented to any one of several products. However, DHA is yeast that fixes formaldehyde to xylulose-5-phosphate, yielding inhibitory to microbes due to its chemical interaction with cellular DHA as an intermediate in the production of glyceraldehyde-3- components. Fermentation of DHA to D-lactate by Escherichia coli phosphate in a cyclic mode (9). DHA in the cytoplasm is phos- strain TG113 was inefficient, and growth was inhibited by 30 g·L−1 phorylated by DHA kinase and/or glycerol kinase, and the DHA-P DHA.
    [Show full text]
  • The Origin of Life—Out of the Blue John D
    Angewandte Reviews Chemie International Edition:DOI:10.1002/anie.201506585 Prebiotic SystemsChemistry German Edition:DOI:10.1002/ange.201506585 The Origin of Life—Out of the Blue John D. Sutherland* Keywords: amino acids ·hydrogen cyanide · prebiotic chemistry · ribonucleotides · systems chemistry Angewandte Chemie 104 www.angewandte.org 2016 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim Angew.Chem. Int. Ed. 2016, 55,104 –121 Angewandte Reviews Chemie Either to sustain autotrophy,orasaprelude to heterotrophy,organic From the Contents synthesis from an environmentally available C1 feedstock molecule is crucial to the origin of life.Recent findings augment key literature 1. Introduction: How to Study the Origin of Life? 105 results and suggest that hydrogen cyanide—“Blausäure”—was that feedstock. 2. The Informational Subsystem 106 3. ADigression 108 “The answer has to come from revisiting the chemistry of HCN” Albert Eschenmoser.[1] 4. The Informational Subsystem—Resumed 108 1. Introduction:How to Study the Origin of Life? 5. First Hints at an Impact Scenario 112 In principle,the origin of life can be studied from geochemistry up,orfrom biology down, but in practice, 6. Chemical Implications of an there are problems with both approaches. Impact Scenario 113 Starting from geochemistry,planetary science suggests that the early Earth could have offered awide range of 7. Refinements to the Impact environments and conditions.Ahuge amount of chemistry is Scenario 114 potentially possible in asubmarine vent, or adrying lagoon, or an impact crater,orareduced atmosphere subject to 8. Chemical Implications of the lightning,orwhatever other scenario one can imagine. Refined Impact Scenario 115 However,there is insufficient constraint from geochemistry per se to settle on one particular scenario,and thence to 9.
    [Show full text]
  • Ii COMBINED FEED MOLARITY of Ca (OH)
    Worcester Polytechnic Institute Department of Chemical Engineering Worcester, Massachusetts 01609 Final Report for NASA Grant No. NGR 22-017-023 "An Interfaced System for Production of Methane in a Spacecraft June 30, 1973 , -7-27588 92 3 SYSTEM (NASA-CR-138 ) AN INTERFACED ;FOR PRODUCTICN OF METHANE IN A SPACECRAFT Final Report (Worcester Unclas Polytechnic Inst.) 37 p HC $5.00 CSCL 07C G3/06 1621 - - -~CSCL 07C G3/06 162 Homogeneously Catalyzed Formaldehyde Condensation to Carb Concentration Instabilities, Nature of the Catalyst, and Mechanisms by Alvin H. Weiss and Tom John Chemical Engineering Department Worcester Polytechnic Institute Worcester, Massachusetts 01609 ABSTRACT The formose reaction, the homogeneously catalyzed conden- sation of formaldehyde to sugars, proceeds simultaneously with Cannizzaro and crossed-Cannizzaro reactions. Reaction studies in a continuous stirred tank reactor have shown that rate instabili- ties are exhibited. There are temperature instabilities as well as concentration instabilities in calcium hydroxide catalyst, formaldehyde reactant, and hydroxyl ion. It is postulated that Ca(OH)+ is the actual catalytic species for the formose system. A unifying mechanism is developed that uses observed rate phenomena to explain why almost any base, regardless of valence, is a catalyst for the formose and Cannizzaro reactions of formaldehyde. The mechanism postulates that reactions proceed from a common intermediate complexed species, and the selectivity for each reaction depends on the nature of the catalyst forming the carbohydrate complex. The catalytic mechanism explains the Lobry de Bruyn-van Eckenstein aldose-ketose rearrangements and mutarotations of sugars that also proceed in the system. Running Title: Formose Instabilities -1- Introduction The calcium hydroxide catalyzed condensation of formaldehyde to carbohydrates .
    [Show full text]
  • Impact-Induced Amino Acid Formation on Hadean Earth and Noachian Mars
    www.nature.com/scientificreports OPEN Impact-induced amino acid formation on Hadean Earth and Noachian Mars Yuto Takeuchi1, Yoshihiro Furukawa1 ✉ , Takamichi Kobayashi2, Toshimori Sekine3,4, Naoki Terada5 & Takeshi Kakegawa1 Abiotic synthesis of biomolecules is an essential step for the chemical origin of life. Many attempts have succeeded in synthesizing biomolecules, including amino acids and nucleobases (e.g., via spark discharge, impact shock, and hydrothermal heating), from reduced compounds that may have been limited in their availabilities on Hadean Earth and Noachian Mars. On the other hand, formation of amino-acids and nucleobases from CO2 and N2 (i.e., the most abundant C and N sources on Earth during the Hadean) has been limited via spark discharge. Here, we demonstrate the synthesis of amino acids by laboratory impact-induced reactions among simple inorganic mixtures: Fe, Ni, Mg2SiO4, H2O, CO2, and N2, by coupling the reduction of CO2, N2, and H2O with the oxidation of metallic Fe and Ni. These chemical processes simulated the possible reactions at impacts of Fe-bearing meteorites/asteroids on oceans with a CO2 and N2 atmosphere. The results indicate that hypervelocity impact was a source of amino acids on the Earth during the Hadean and potentially on Mars during the Noachian. Amino acids formed during such events could more readily polymerize in the next step of the chemical evolution, as impact events locally form amino acids at the impact sites. Te composition of early Earth’s atmosphere has been a subject of discussion. Te atmosphere was once regarded 1 as strongly reduced, composed mostly of CH4, NH3, and H2 .
    [Show full text]