The Messy Alkaline Formose Reaction and Its Link to Metabolism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Chemical Engineering Perspective on the Origins of Life
Processes 2015, 3, 309-338; doi:10.3390/pr3020309 processesOPEN ACCESS ISSN 2227-9717 www.mdpi.com/journal/processes Article A Chemical Engineering Perspective on the Origins of Life Martha A. Grover *, Christine Y. He, Ming-Chien Hsieh and Sheng-Sheng Yu School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA 30032, USA; E-Mails: [email protected] (C.Y.H.); [email protected] (M.-C.H.); [email protected] (S.-S.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-404-894-2878 or +1-404-894-2866. Academic Editor: Michael Henson Received: 29 January 2015 / Accepted: 19 April 2015 / Published: 5 May 2015 Abstract: Atoms and molecules assemble into materials, with the material structure determining the properties and ultimate function. Human-made materials and systems have achieved great complexity, such as the integrated circuit and the modern airplane. However, they still do not rival the adaptivity and robustness of biological systems. Understanding the reaction and assembly of molecules on the early Earth is a scientific grand challenge, and also can elucidate the design principles underlying biological materials and systems. This research requires understanding of chemical reactions, thermodynamics, fluid mechanics, heat and mass transfer, optimization, and control. Thus, the discipline of chemical engineering can play a central role in advancing the field. In this paper, an overview of research in the origins field is given, with particular emphasis on the origin of biopolymers and the role of chemical engineering phenomena. A case study is presented to highlight the importance of the environment and its coupling to the chemistry. -
Organic Chemistry
Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles . -
Prebiotic Chemistry: Geochemical Context and Reaction Screening
Life 2013, 3, 331-345; doi:10.3390/life3020331 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Prebiotic Chemistry: Geochemical Context and Reaction Screening Henderson James Cleaves II Earth Life Science Institute, Tokyo Institute of Technology, Institute for Advanced Study, Princeton, NJ 08540, USA; E-Mail: [email protected] Received: 12 April 2013; in revised form: 17 April 2013 / Accepted: 18 April 2013 / Published: 29 April 2013 Abstract: The origin of life on Earth is widely believed to have required the reactions of organic compounds and their self- and/or environmental organization. What those compounds were remains open to debate, as do the environment in and process or processes by which they became organized. Prebiotic chemistry is the systematic organized study of these phenomena. It is difficult to study poorly defined phenomena, and research has focused on producing compounds and structures familiar to contemporary biochemistry, which may or may not have been crucial for the origin of life. Given our ignorance, it may be instructive to explore the extreme regions of known and future investigations of prebiotic chemistry, where reactions fail, that will relate them to or exclude them from plausible environments where they could occur. Come critical parameters which most deserve investigation are discussed. Keywords: chemical evolution; prebiotic organic reactions-prebiotic reactions in the aqueous phase; prebiotic reactions in the solid state; energy sources on the primitive Earth; mineral catalysis 1. Introduction Prebiotic chemistry is the study of how organic compounds formed and self-organized for the origin of life on Earth and elsewhere [1]. -
Formose Reaction Controlled by a Copolymer of N,N-Dimethylacrylamide and 4-Vinylphenylboronic Acid
polymers Article Formose Reaction Controlled by a Copolymer of N,N-Dimethylacrylamide and 4-Vinylphenylboronic Acid Tomohiro Michitaka, Toru Imai and Akihito Hashidzume * ID Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan; [email protected] (T.M.); [email protected] (T.I.) * Correspondence: [email protected]; Tel.: +81-6-6850-8174 Received: 8 October 2017; Accepted: 24 October 2017; Published: 25 October 2017 Abstract: The formose reaction is an oligomerization of formaldehyde under basic conditions, which produces a complicated mixture of monosaccharides and sugar alcohols. Selective formation of useful monosaccharides by the formose reaction has been an important challenge. In this study, we have investigated the formose reaction controlled by N,N-dimethylacrylamide/4-vinylphenylboronic acid copolymer (pDMA/VBA) and phenylboronic acid (PBA) because boronic acid compounds form esters with polyols, e.g., monosaccharides and sugar alcohols. We obtained time–conversion data in the presence of these boronic acid compounds, and characterized the products by liquid chromatography-mass spectroscopy and NMR measurements. pDMA/VBA and PBA decelerated the formose reaction because of the formation of boronic acid esters with products. It is noteworthy that the formose reaction in the presence of pDMA/VBA and PBA formed favorably six- and seven-carbon branched monosaccharides and sugar alcohols. Keywords: formose reaction; boronic acid compounds; N,N-dimethylacrylamide/4-vinylphenyl boronic acid copolymer; phenylboronic acid; monosaccharides; sugar alcohols 1. Introduction Carbohydrates are ubiquitous in our life and very important biological materials [1,2]. Carbohydrates can be divided into three categories based on their molecular weight; (1) low molecular weight saccharides, e.g., monosaccharides and disaccharides, (2) oligosaccharides, and (3) polysaccharides. -
Inferring Chemical Reaction Patterns Using Rule Composition in Graph Grammars Jakob L Andersen1,4, Christoph Flamm2*, Daniel Merkle1* and Peter F Stadler2,3,4,5,6,7
Andersen et al. Journal of Systems Chemistry 2013, 4:4 http://www.jsystchem.com/content/4/1/4 RESEARCH ARTICLE Open Access Inferring chemical reaction patterns using rule composition in graph grammars Jakob L Andersen1,4, Christoph Flamm2*, Daniel Merkle1* and Peter F Stadler2,3,4,5,6,7 Abstract Background: Modeling molecules as undirected graphs and chemical reactions as graph rewriting operations is a natural and convenient approach to modeling chemistry. Graph grammar rules are most naturally employed to model elementary reactions like merging, splitting, and isomerisation of molecules. It is often convenient, in particular in the analysis of larger systems, to summarize several subsequent reactions into a single composite chemical reaction. Results: We introduce a generic approach for composing graph grammar rules to define a chemically useful rule compositions. We iteratively apply these rule compositions to elementary transformations in order to automatically infer complex transformation patterns. As an application we automatically derive the overall reaction pattern of the Formose cycle, namely two carbonyl groups that can react with a bound glycolaldehyde to a second glycolaldehyde. Rule composition also can be used to study polymerization reactions as well as more complicated iterative reaction schemes. Terpenes and the polyketides, for instance, form two naturally occurring classes of compounds of utmost pharmaceutical interest that can be understood as “generalized polymers” consisting of five-carbon (isoprene) and two-carbon units, respectively. Conclusion: The framework of graph transformations provides a valuable set of tools to generate and investigate large networks of chemical networks. Within this formalism, rule composition is a canonical technique to obtain coarse-grained representations that reflect, in a natural way, “effective” reactions that are obtained by lumping together specific combinations of elementary reactions. -
Direct Visualization of a Mechanochemically Induced Molecular Rearrangement Karen J
Angewandte Communications Chemie How to cite: Angew. Chem. Int. Ed. 2020, 59, 13458–13462 Mechanochemical Synthesis International Edition: doi.org/10.1002/anie.201914921 German Edition: doi.org/10.1002/ange.201914921 Direct Visualization of a Mechanochemically Induced Molecular Rearrangement Karen J. Ardila-Fierro, Stipe Lukin, Martin Etter, Krunoslav Uzˇarevic´, Ivan Halasz, Carsten Bolm, and JosØ G. Hernµndez* Abstract: Recent progress in the field of mechanochemistry (thio)acylations[5]). In this context, we became curious as to has expanded the discovery of mechanically induced chemical whether a combination of in situ real-time monitoring by transformations to several areas of science. However, a general synchrotron powder X-ray diffraction (PXRD), Raman fundamental understanding of how mechanochemical reac- spectroscopy, and temperature sensing could be applied for tions by ball milling occur has remained unreached. For this, the investigation of a fundamentally different type of organic we have now implemented in situ monitoring of a mechano- reaction; namely, a molecular rearrangement. As the first chemically induced molecular rearrangement by synchrotron example, we considered the emblematic benzil–benzilic acid X-ray powder diffraction, Raman spectroscopy, and real-time rearrangement in the presence of hydroxide ions (Sche- temperature sensing. The results of this study demonstrate that me 1a). molecular rearrangements can be accomplished in the solid state by ball milling and how in situ monitoring techniques enable the visualization of changes occurring at the exact instant of a molecular migration. The mechanochemical benzil–benzilic acid rearrangement is the focal point of the study. In mechanochemical reactions by ball milling, collisions of accelerated balls inside a milling container maintain a con- stant mixing of the reactants while simultaneously trans- ducing the energy required to induce specific physicochemical changes into the milled system. -
Low Fructose Diet
Low Fructose Diet What is Fructose? Fructose is a naturally occurring simple sugar found in fruit, vegetables, and honey. Fructose intolerance can occur in people with irritable bowel syndrome and other GI disorders. Fruits and fruit juices with higher levels of fructose may cause gas, bloating, abdominal cramping, and diarrhea. Glucose is also a naturally occurring sugar. The more glucose than fructose in a product, the more “intestinal friendly” the fruit or fruit juice may be. High Fructose Corn Syrup (HFCS) **** HFCS is made up of almost half glucose and half fructose and may be absorbed just as well as sucrose (regular table sugar). Therefore, items with HFCS such as soft drinks, may be tolerated well when limited to 12 oz per day and with a meal. HFCS can also be found in canned, baked, or processed foods. **** In some patients, even a small amount of processed fruit juice or even foods with HFCS may cause as much malabsorption, and/or intestinal discomfort, as eating large quantities of fruit. Sorbitol Sorbitol or Sorbose is a sugar alcohol used as an artificial sweetener and found naturally in fruits and fruit juices. It can also be found in many “diet foods” such as diet soft drinks, sugarless gum, sugar-free jelly/jam, and liquid medications. Sorbitol often creates similar symptoms as fructose – especially when fructose and sorbitol are ingested together. General Guidelines • Eliminate products with ingredients that list fructose, crystalline fructose (not HFCS), honey, and sorbitol on the label. • Avoid sugar alcohols which include sorbitol, isomalt, lactitol, maltitol, mannitol, xylitol, erythrytol, and lactatol. -
Evidence for Two Asymmetric Conformational States in the Human Erythrocyte Sugar-Transport System by JOHN E
Biochem. J. (1975) 145, 417429 417 Printed in Great Britain Evidence for Two Asymmetric Conformational States in the Human Erythrocyte Sugar-Transport System By JOHN E. G. BARNETT, GEOFFREY D. HOLMAN, R. ALAN CHALKLEY and KENNETH A. MUNDAY Department ofPhysiology and Biochlemistry, University ofSouthampton, Southampton S09 3TU, U.K. (Received 4 June 1974) 6-0-Methyl-, 6-0-propyl-, 6-0-pentyl- and 6-0-benzyl-D-galactose, and 6-0-methyl-, 6-0-propyl- and 6-0-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-0-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-0-alkyl-D-galactoses penetrate by a slower D-glucose- insensitive route at rates proportional to their olive oil/water partition coefficients. 6-0-n-Propyl-D-glucose and 6-0-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-f6-D-glucopyranoside, which also penetrates the membrane slowly by a glucose- insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-0-alkyl-D-galactoses, like the other non- transported C4 and C-6 derivatives, maltose and 4,6-0-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl ,B-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. -
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rappoport, Dmitrij, Cooper J. Galvin, Dmitry Zubarev, and Alán Aspuru-Guzik. 2014. “Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.” Journal of Chemical Theory and Computation 10 (3) (March 11): 897–907. Published Version doi:10.1021/ct401004r Accessed February 19, 2015 5:14:37 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12697373 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry Dmitrij Rappoport,∗,† Cooper J Galvin,‡ Dmitry Yu. Zubarev,† and Alán Aspuru-Guzik∗,† Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, and Pomona College, 333 North College Way, Claremont, CA 91711, USA E-mail: [email protected]; [email protected] Abstract While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for mod- eling complex structures and large-scale chemical systems. Here we present heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in metabolism and prebiotic chemistry. -
The Power of Crowding for the Origins of Life
Orig Life Evol Biosph (2014) 44:307–311 DOI 10.1007/s11084-014-9382-5 ORIGIN OF LIFE The Power of Crowding for the Origins of Life Helen Greenwood Hansma Received: 2 October 2014 /Accepted: 2 October 2014 / Published online: 14 January 2015 # Springer Science+Business Media Dordrecht 2015 Abstract Molecular crowding increases the likelihood that life as we know it would emerge. In confined spaces, diffusion distances are shorter, and chemical reactions produce fewer and more regular products. Crowding will occur in the spaces between Muscovite mica sheets, which has many advantages as a site for life’s origins. Keywords Muscovite mica . Molecular crowding . Origin of life . Mechanochemistry. Abiogenesis . Chemical confinement effects . Chirality. Protocells Cells are crowded. Protein molecules in cells are typically so close to each other that there is room for only one protein molecule between them (Phillips, Kondev et al. 2008). This is nothing like a dilute ‘prebiotic soup.’ Therefore, by analogy with living cells, the origins of life were probably also crowded. Molecular Confinement Effects Many chemical reactions are limited by the time needed for reactants to diffuse to each other. Shorter distances speed up these reactions. Molecular complementarity is another principle of life in which pairs or groups of molecules form specific interactions (Root-Bernstein 2012). Current examples are: enzymes & substrates & cofactors; nucleic acid base pairs; antigens & antibodies; nucleic acid - protein interactions. Molecular complementarity is likely to have been involved at life’s origins and also benefits from crowding. Mineral surfaces are a likely place for life’s origins and for formation of polymeric molecules (Orgel 1998). -
The Food Lawyers® Respectfully Request That FDA Implements the Following
December 7, 2020 Dockets Management Staff (HFA-305) Filed Electronically Food and Drug Administration https://www.regulations.gov Re: Sugars Metabolized Differently than Traditional Sugars (FDA-2020-N-1359) Ladies and Gentlemen: One Page Executive Summary FDA’s seeks information to “… promote the public health and help consumers make informed dietary decisions” regarding sugars that are metabolized differently than traditional sugars. Given the nation’s battles with diabetes and obesity, and the benefits that non-traditional sugars can offer in these battles, the Agency’s stated public policy goal goes to the very heart of American consumers’ health. This laudatory public policy’s realization is complicated by a lack of consumer awareness of how some sugars are metabolized differently than others. In an effort to answer the questions posed by the Agency regarding the treatment of Sugars that Are Metabolized Differently Than Traditional Sugars, we suggest that the Agency adapt a mechanism that will seek to harmonize the public policy of promoting public health with consumers’ lack of awareness of sugars that are metabolized differently than sucrose. In particular, we suggest that FDA should consider the following: 1. Establish a new category of sugars called Rare Sugars that exhibit the following characteristics: a. Are naturally occurring b. Impart a sweet taste that is at least 50% the sweetness of sucrose c. 2.0 kcal/g or less. d. Resulting pH of 6.0 or greater of dental plaque after consumption. e. No or low glycemic response. f. No or low insulinemic response. 2. Exclude Rare Sugars from “Total Sugars” and “Added Sugars” declarations to stimulate their deployment by industry and consumption by the public. -
4 Carbohydrates
Basic classes of biomolecules • Aminoacids • Lipids • Carbohydrates (sugars) • Nucleobases • Nucleosides (sugar+nucleobase) Nucleotides - components Phosphates and the prebiotic synthesis of oligonucleotides Activated ribonucleotides in the potentially prebiotic assembly of RNA. Potential P–O bond forming polymerization chemistry is indicated by the curved arrows. Phosphorylation reagents DAP M. A. Pasek, et al. Angew. Chem. Int. Ed. 2008, 47, 7918-7920 A. Eschenmoser, et al. Orig. Life Evol. Biosph. 1999, 29, 333-354 Phosphorylation reagents DAP M. A. Pasek, et al. Angew. Chem. Int. Ed. 2008, 47, 7918-7920 A. Eschenmoser, et al. Orig. Life Evol. Biosph. 1999, 29, 333-354 Phosphorylation of sugars A. Eschenmoser, et al. Angew. Chem. Int. Ed. 2000, 39, 2281-2285 Phosphorylation of sugars A. Eschenmoser, et al. Angew. Chem. Int. Ed. 2000, 39, 2281-2285 Nucleosides - nucleobases + sugars Carbohydrates Formose reaction Alexander Butlerov (1828-1886) St. Petersburg, Kazan, Russia The reaction begins with two formaldehyde molecules condensing to make glycolaldehyde 1 which further reacts in an aldol reaction with another equivalent of formaldehyde to make glyceraldehyde 2. An aldose-ketose isomerization of 2 forms dihydroxyacetone 3 which can Ronald Breslow (1931-) react with 1 to form ribulose 4, and through another isomerization ribose 5. Molecule 3 also Columbia University, USA can react with formaldehyde to produce tetrulose 6 and then aldoltetrose 7. Molecule 7 can split into 2 in a retro-aldol reaction. Formaldehyde condensation Aldol