Eye Development How Does Neural Crest Originate? Some Major Neural Crest Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

Eye Development How Does Neural Crest Originate? Some Major Neural Crest Derivatives What Are Main Ectodermal Regions? • Three main parts of ectoderm – Epidermis and related structures – Neural tube derivatives: CNS brain and spinal chord, CNS – Neural crest Where Do Sense Organs Come From? • Parts from ectodermal thickenings or placodes • Olfactory – Nasal placode -> nasal sac -> nasal pit – Neurons connect to telencephalon • Auditory – Auditory placode induced by rhombencephalon -> auditory sac -> auditory vesicle – sinks beneath epidermis -> labyrinth of inner ear • Optic – Lens placode becomes lens How Does the Eye Form? • Roof archenteron induces optic vesicle • Forms optic cup which induces lens • Lens induces cornea • Neurons grow into brain through optic stalk SEM of Eye Formation Differentiation of Retinal Neurons Pigmented layer of retina neural layer of retina Multiple Inductions in Mouse Eye Development How Does Neural Crest Originate? Some Major Neural Crest Derivatives • Some neurons – Cranial – Sensory and sympathetic neurons • Schwann and glial cells (supportive) • Connective tissue of the head (cartilage and bone) • Pigment cells of dermis and epidermis Migration Paths of Neural Crest Cells • I – Dorsally between cord and epidermis iv • II – Laterally between cord and somites • III – Ventrally over and between somites • IV – Dorsally towards head Fates of Neural Crest Cells • I – Pigment cells of skin • II – Dorsal root ganglia (sensory neurons near neural tube) • III – Neurons that innervate organs (autonomic nervous system) – Adrenal medulla • IV – Pigment cells, sensory ganglia, autonomic nervous system as for trunk neural crest cells (above) – Facial connective tissue • Cartilage and bone in head – Parts of eyes, teeth, ears Potency of Neural Crest • Is neural crest – a mixed population of monopotent cells? – or uniform population of pluripotent cells? How Pluripotent is Neural Crest? • Label individual n.c. cell with fluorescent particles • Marked daughters make several cell types • So some are pluripotent cells Does Potency Become Restricted? • Others more restricted • Final determination by environmental factors.
Recommended publications
  • The Morphogenesis of the Zebrafish Eye, Including a Fate Map of The
    DEVELOPMENTAL DYNAMICS 218:175–188 (2000) The Morphogenesis of the Zebrafish Eye, Including a Fate Map of the Optic Vesicle ZHENG LI, NANCY M. JOSEPH, AND STEPHEN S. EASTER, JR.* Biology Department, University of Michigan, Ann Arbor, Michigan ABSTRACT We have examined the morpho- The morphogenesis of the zebrafish eye, described by genesis of the zebrafish eye, from the flat optic Schmitt and Dowling (1994), is similar, but different in vesicle at 16 hours post fertilization (hpf) to the some respects. Their scanning electron micrographs of functional hemispheric eye at 72 hpf. We have skinned embryos provided excellent views of the eye, produced three-dimensional reconstructions and revealed that the vesicle bypassed the spherical from semithin sections, measured volumes and stage; when discerned at about 14 hours post fertiliza- areas, and produced a fate map by labeling clus- tion (hpf), the vesicle was a flattened wing-like struc- ters of cells at 14–15 hpf and finding them in the ture. The “wing” was initially attached to the neural 24 hpf eye cup. Both volume and area increased tube over most of its length, but by 16 hpf had detached sevenfold, with different schedules. Initially from most of the neural tube, the only remaining point (16–33 hpf), area increased but volume remained of attachment through the optic stalk. The vesicle constant; later (33–72 hpf) both increased. When sagged, so that its erstwhile dorsal and ventral sur- the volume remained constant, the presumptive faces faced laterally and medially, respectively, and the pigmented epithelium (PE) shrank and the pre- choroid fissure formed, but caudal to the optic stalk, sumptive neural retina (NR) enlarged.
    [Show full text]
  • Induction and Specification of Cranial Placodes ⁎ Gerhard Schlosser
    Developmental Biology 294 (2006) 303–351 www.elsevier.com/locate/ydbio Review Induction and specification of cranial placodes ⁎ Gerhard Schlosser Brain Research Institute, AG Roth, University of Bremen, FB2, PO Box 330440, 28334 Bremen, Germany Received for publication 6 October 2005; revised 22 December 2005; accepted 23 December 2005 Available online 3 May 2006 Abstract Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium.
    [Show full text]
  • And Late-Migrating Cranial Neural Crest Cell Populations Have Equivalent Developmental Potential in Vivo
    Development 124, 3077-3087 (1997) 3077 Printed in Great Britain © The Company of Biologists Limited 1997 DEV3724 Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo Clare V. H. Baker1,2,*, Marianne Bronner-Fraser1, Nicole M. Le Douarin2 and Marie-Aimée Teillet2 1Division of Biology, Beckman Institute 139-74, California Institute of Technology, Pasadena, California 91125, USA 2Institut d’Embryologie cellulaire et moléculaire du CNRS et du Collège de France, 49bis avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France *Author for correspondence currently at address1 SUMMARY We present the first in vivo study of the long-term fate and heterochronically for the late-migrating population, it no potential of early-migrating and late-migrating mesen- longer contributes to the jaw skeleton and only forms cephalic neural crest cell populations, by performing dorsal derivatives. When the late-migrating population is isochronic and heterochronic quail-to-chick grafts. Both grafted into a late-stage host whose neural crest had previ- early- and late-migrating populations form melanocytes, ously been ablated, it migrates ventrally into the jaws. neurons, glia, cartilage and bone in isochronic, isotopic Thus, the dorsal fate restriction of the late-migrating mes- chimeras, showing that neither population is lineage- encephalic neural crest cell population in normal develop- restricted. The early-migrating population distributes both ment is due to the presence of earlier-migrating neural dorsally and ventrally during normal development, while crest cells, rather than to any change in the environment or the late-migrating population is confined dorsally and to any intrinsic difference in migratory ability or potential forms much less cartilage and bone.
    [Show full text]
  • The Drosophila Eye
    Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye Helen McNeill, 1 Chung-Hui Yang, 1 Michael Brodsky, 2 Josette Ungos, ~ and Michael A. Simon ~'3 1Department of Biological Sciences, Stanford University, Stanford, California 94305 USA; ZDepartment of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA The Drosophila eye is composed of dorsal and ventral mirror-image fields of opposite chiral forms of ommatidia. The boundary between these fields is known as the equator. We describe a novel gene, mirror (mrr), which is expressed in the dorsal half of the eye and plays a key role in forming the equator. Ectopic equators can be generated by juxtaposing mrr expressing and nonexpressing cells, and the path of the normal equator can be altered by changing the domain of mrr expression. These observations suggest that mrr is a key component in defining the dorsal-ventral boundary of tissue polarity in the eye. In addition, loss of mrr function leads to embryonic lethality and segmental defects, and its expression pattern suggests that it may also act to define segmental borders. Mirror is a member of the class of homeoproteins defined by the human proto-oncogene PBX1. mrr is similar to the Iroquois genes ara and caup and is located adjacent to them in this recently described homeotic cluster. [Key Words: Drosophila; eye development; polarity; compartment; border] Received January 14, 1997; revised version accepted March 4, 1997.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Semaphorin3a/Neuropilin-1 Signaling Acts As a Molecular Switch Regulating Neural Crest Migration During Cornea Development
    Developmental Biology 336 (2009) 257–265 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development Peter Y. Lwigale a,⁎, Marianne Bronner-Fraser b a Department of Biochemistry and Cell Biology, MS 140, Rice University, P.O. Box 1892, Houston, TX 77251, USA b Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA article info abstract Article history: Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues Received for publication 2 April 2009 including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over Revised 11 September 2009 the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal Accepted 6 October 2009 differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that Available online 13 October 2009 semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down- Keywords: Semaphorin3A regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives Neuropilin-1 rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the Neural crest periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that Cornea inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that Lens phenocopies lens ablation.
    [Show full text]
  • Migratory Patterns and Developmental Potential of Trunk Neural Crest Cells in the Axolotl Embryo
    DEVELOPMENTAL DYNAMICS 236:389–403, 2007 RESEARCH ARTICLE Migratory Patterns and Developmental Potential of Trunk Neural Crest Cells in the Axolotl Embryo Hans-Henning Epperlein,1* Mark A.J. Selleck,2 Daniel Meulemans,3 Levan Mchedlishvili,4 Robert Cerny,5 Lidia Sobkow,4 and Marianne Bronner-Fraser3 Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at pre- and early-migratory stages revealed that individual neural crest cells migrate away from the neural tube along two main routes: first, dorsolaterally between the epidermis and somites and, later, ventromedially between the somites and neural tube/notochord. Dorsolaterally migrating crest primarily forms pigment cells, with those from anterior (but not mid or posterior) trunk neural folds also contributing glia and neurons to the lateral line. White mutants have impaired dorsolateral but normal ventromedial migration. At late migratory stages, most labeled cells move along the ventromedial pathway or into the dorsal fin. Contrasting with other anamniotes, axolotl has a minor neural crest contribution to the dorsal fin, most of which arises from the dermomyotome. Taken together, the results reveal stereotypic migration and differentiation of neural crest cells in axolotl that differ from other vertebrates in timing of entry onto the dorsolateral pathway and extent of contribution to some derivatives.
    [Show full text]
  • Homocysteine Intensifies Embryonic LIM3 Expression in Migratory Neural Crest Cells: a Quantitative Confocal Microscope Study
    University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2014 Homocysteine intensifies embryonic LIM3 expression in migratory neural crest cells: A quantitative confocal microscope study Jordan Naumann University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2014 Jordan Naumann Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Biology Commons Recommended Citation Naumann, Jordan, "Homocysteine intensifies embryonic LIM3 expression in migratory neural crest cells: A quantitative confocal microscope study" (2014). Dissertations and Theses @ UNI. 89. https://scholarworks.uni.edu/etd/89 This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Copyright by JORDAN NAUMANN 2014 All Rights Reserved HOMOCYSTEINE INTENSIFIES EMBRYONIC LIM3 EXPRESSION IN MIGRATORY NEURAL CREST CELLS – A QUANTITATIVE CONFOCAL MICROSCOPE STUDY An Abstract of a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Jordan Naumann University of Northern Iowa May 2014 ABSTRACT Elevated levels of homocysteine in maternal blood and amniotic fluid are associated with cardiovascular, renal, skeletal, and endocrine diseases and also with embryonic malformations related to neural crest cells. Neural crest cells are necessary for the formation of tissues and organs throughout the body of vertebrate animals. The migration of neural crest cells is essential for proper development of the target tissues. When migration is disrupted, abnormalities may occur.
    [Show full text]
  • Neural Crest Cells Organize the Eye Via TGF-Β and Canonical Wnt Signalling
    ARTICLE Received 18 Oct 2010 | Accepted 9 Mar 2011 | Published 5 Apr 2011 DOI: 10.1038/ncomms1269 Neural crest cells organize the eye via TGF-β and canonical Wnt signalling Timothy Grocott1, Samuel Johnson1, Andrew P. Bailey1,† & Andrea Streit1 In vertebrates, the lens and retina arise from different embryonic tissues raising the question of how they are aligned to form a functional eye. Neural crest cells are crucial for this process: in their absence, ectopic lenses develop far from the retina. Here we show, using the chick as a model system, that neural crest-derived transforming growth factor-βs activate both Smad3 and canonical Wnt signalling in the adjacent ectoderm to position the lens next to the retina. They do so by controlling Pax6 activity: although Smad3 may inhibit Pax6 protein function, its sustained downregulation requires transcriptional repression by Wnt-initiated β-catenin. We propose that the same neural crest-dependent signalling mechanism is used repeatedly to integrate different components of the eye and suggest a general role for the neural crest in coordinating central and peripheral parts of the sensory nervous system. 1 Department of Craniofacial Development, King’s College London, Guy’s Campus, London SE1 9RT, UK. †Present address: NIMR, Developmental Neurobiology, Mill Hill, London NW7 1AA, UK. Correspondence and requests for materials should be addressed to A.S. (email: [email protected]). NatURE COMMUNicatiONS | 2:265 | DOI: 10.1038/ncomms1269 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited. All rights reserved. ARTICLE NatUre cOMMUNicatiONS | DOI: 10.1038/ncomms1269 n the vertebrate head, different components of the sensory nerv- ous system develop from different embryonic tissues.
    [Show full text]
  • Bilayered Optic Cup Is Defined Anatomically by The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 398 ABSTRACTS / Developmental Biology 295 (2006) 393–402 bilayered optic cup is defined anatomically by the presence of 198 the prospective neural retina (NR) in the distal layer and the Characterization of silica spicule formation during the retinal pigmented epithelium (RPE) proximally. Accordingly, resuscitation and in vitro cell culture of molecular markers accompany morphogenesis by restricting Hymeniacidon perleve their expression to definite compartments. For instance, in the Wei Zhang 1, Xupeng Cao 2, Xingju Yu 1 optic cup, the prospective neural retina expresses Chx10, and the 1 Marine Bioproducts Engineering Group, Dalian Institute of RPE, Mitf. However, to facilitate identification of definite events Chemical Physics, Chinese Academy of Sciences, during oculogenesis, there remains a need to identify additional Dalian, China markers of optical development. Thus, we performed here a 2 Graduate School of the Chinese Academy of Sciences, screen for Wnt ligands that are expressed during eye develop- Beijing, China ment. Specifically, we examined the expression of Wnt1, Wnt3, Wnt4-1 and Wnt5A during chick optic vesicles stages up to optic The biogenic silica mineralization in an intertidal marine cup formation. Of these four genes, only Wnt5A was consis- sponge Hymeniacidon perleve (Porifera: Demospongiae) has tently expressed in the dorsal optic cup. Although Wnt1, Wnt3 been investigated during the developmental process over one and Wnt4-1 were present in the developing nervous system, year period and in an in vitro sponge cell culture. Tissue neither was found in the optic vesicle or cup.
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
    CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections.
    [Show full text]