Ocular Side Effects of Systemic Drugs.Cdr

Total Page:16

File Type:pdf, Size:1020Kb

Ocular Side Effects of Systemic Drugs.Cdr ERA’S JOURNAL OF MEDICAL RESEARCH VOL.6 NO.1 Review Article OCULAR SIDE EFFECTS OF SYSTEMIC DRUGS Pragati Garg, Swati Yadav Department of Ophthalmology Era's Lucknow Medical College & Hospital, Sarfarazganj Lucknow, U.P., India-226003 Received on : 06-03-2019 Accepted on : 28-06-2019 ABSTRACT Systemic drugs are frequently administered in persons of all age group Address for correspondence ranging from children to the elderly for various disorders. There has been Dr. Pragati Garg increased reporting of ocular side effects of various systemic drugs in the Department of Ophthalmology past two decades. Some offenders well known are α -2-adrenergic agonists, Era’s Lucknow Medical College & quinine derivatives, β- adrenergic antagonists and antituberculosis drugs. Hospital, Lucknow-226003 Newer systemic drugs causing ocular side effects are being reported in Email: [email protected] available literature. Knowledge regarding these is expected to aid Contact no: +91-9415396506 clinicians in identifying these side effects and the offending drug, thereby, prescribing the appropriate treatment for the condition the patient maybe suffering from without any ocular disturbances. KEYWORDS: Ocular side effects, Systemic drugs. Introduction This article will briefly cover how systemic drugs can Many common systemic medications can affect ocular affect the various ocular structures. tissues and visual function to varying degrees. When a Factors Affecting The Production Of Ocular Side systemic medication is taken to treat another part of the Effects By A Drug body, the eyes frequently are affected. Systemic A) Drug related factors medications can have adverse effects on the eyes that range from dry eye syndrome, keratitis and cataract to (1) The nature of the drug: Absorption of drug in blinding complications of toxic retinopathy and optic body and its pharmacological effects on the body's neuropathy (1). Some of these side-effects, though metabolism is effected by nature of drug. The ease undesirable, have to be accepted as unavoidable. The with which a drug passes into the general circulation discovery of serious ocular defects arising in and into the eye determines the ability of systemically association with the long-term use in high dosage of administered drugs to affect the eye directly. certain drugs has indicated the need for all prescribers (2) The amount of the drug consumed: The daily to be aware of the risks involved. Particularly this is consumption of high doses of drugs reaches toxic important since some of the toxic effects have seriously levels to effect the eye. In addition, prolonged impaired vision and proved to be irreversible. consumption of drugs whose detoxification and When patients present with ocular symptoms that have excretion is low determines the effect on eyes. no apparent cause, it is important to consider whether (3) The route of its administration:Drugs the condition could be caused by a systemic areadministered locally, orally or through parenteral medication they are taking. Patients often neglect to route. Topical application of drugs, allows sufficient mention the maintenance drugs that they take every absorption to risk ocular side effects. day, so ophthalmologists may need to ask specifically (4) Pathological condition of patient: Liver and about theseEJMR types of medication. One of the most renal diseases frequently affect the detoxication and important aspect is obtaining a thorough medical excretion of drugs, allowing them to accumulate to history which includes specific medication dosage and toxic levels. In some instances, it is difficult to duration of treatment (2). Patient safety is essential determine whether an ocular defect has arisen as a during treatment for a particular disorder. result of involvement with the general disease or as a There is much awareness of systemic effects of ocular toxic manifestation of a drug used in therapy. eye drops due to absorption through nasal mucosa. It is (5) Effect of drug combination: Certain drugs much needed to be aware of the ocular side effects of consumed in combination with other substances have systemic drugs also for better patient compliance and potentiated toxic effects. satisfaction . ERA’S JOURNAL OF MEDICAL RESEARCH, VOL.6 NO.1 Page: 1 OCULAR SIDE EFFECTS OF SYSTEMIC DRUGS (6) Previous exposure to the drug: The ability of the non pigmentedciliary epithelium, which causes non-protein drugs to act as haptens sensitize the reduction in aqueous formation by the ciliary body (5). patient and are thus, responsible for iatrogenic disease, Topical β2 blockers produce little additional IOP particularly where drugs are applied topically over reduction with concomitant administration of a non- long periods. selective (β1 and β2) systemic beta-blocker. Some (7) Drug metabolism: The body's ability to patients may be misdiagnosed as normal tension metabolize a drug directly correlates with toxicity. In glaucoma because the IOP is artificially reduced, patients with liver and kidney disease, there is a appearing within normal limits. decreased rate of excretion, which allows drug 2. Diuretics molecules to accumulate to toxic levels (3). Also, toxic Hydrochlorothiazide (HCTZ) is a diuretic metabolites formed elsewhere like the liver, can reach commonly used to treat congestive heart failure, and the eye through systemic circulation or can be sometimes causes dry eye by changing the tear film. It produced locally in ocular tissues. reduces lysozyme levels and immunoglobulin A, and B) Ocular factors also causes a decrease in aqueous production and. The The eyes are generally affected when a systemic tear potassium is found decreased significantly in medication is taken to treat some other part of the body. subjects taking hydrochlorothiazide (6). Myopic shift Following systemic administration, the and band keratopathyhave been reported, however, blood–aqueous barrier and blood–retinal barrier are occurrence is not common (6). Exact mechanism the major barriers for anterior segment and posterior producing acute myopia is not very clear even though segment ocular drug delivery, respectively4. The it has been postulated to be due to ciliary body effusion, (7) peripheral uveal effusion (8) and ciliary choroid, sclera and ciliary body have thin, fenestrated 9 walls for drug molecules to pass through. Small, lipid spasm and lens swelling. Oral sulphonamides cause soluble molecules, which pass freely into the aqueous transient myopia as a result of forward displacement of humor,can further diffuse into a circulation .The drug the lens due to allergic ciliary body oedema and molecules can enter the eye and contact various ocular rotation (9-10). tissues, and eventually accumulate in ocular tissues or 3. Angiotensin Converting Enzyme (ACE) exit the eye. There are three major accumulation sites Inhibitors including the cornea, lens and vitreous. The duration These are commonly used as antihypertensive drugs of action of drug in the eye is prolonged if it is which can cause decreased vision, photosensitivity, deposited, increasing chances for toxicity (4). conjunctivitis, lid edema and discoloration and The cornea has a permeable endothelium, and blepharitis. Enzyme activities of ACE have been thestomaglycosaminoglycans (GAGs) which can reported further in production of aqueous humour, bindto drug molecules, leading to edema and vitreous humour and tear fluid, also in retina, and decreased transparency. Drug molecules can also bind ciliary body, which are inhibited by these drugs (11). to lens proteins and photosensitize the lens to 4. Antiarrhythmics ultraviolet (UV) radiation. Lastly, drug molecules tend to accumulate in the vitreous due to the slow rate of a) Amiodarone: It is used to treat various cardiac fluid exchange in the lens, cornea, and trabecular arrhythmias like atrial fibrillation and meshwork (2). ventriculartachycardia, which causes certain ocular side effects. Studies have found the presence of List Of Ocular Side Effects Of Some Common amiodarone in all ocular tissues when systematically Systemic Drugs administered. Keratopathy is the mostcommon ocular A) Antihypertensive drugs adverse effect of amiodarone found in almost all 1. Beta-blockers: Beta- blockers,used to treat patients (70-100%) (12). It most commonly appears EJMRafter 1-4 months of therapy. Involvement is bilateral hypertension, reduce tear lysozyme levels and immunoglobulin A(IgA) which leads to reduction in but is often asymmetric. Toxicityincreases with higher tear secretion, and patients complain of ocular doses and longer therapy. irritation, dry eye symptoms, and contact lens Amiodarone tends to cause whorl-like corneal intolerance (5). deposits in as early as six days of treatment butmore Artificial tear supplementation and refitting the patient commonly in one to three months of treatment. The with softcontact lenses should be done as deposits appear whorl-like because epithelial cells management. Beta blockers also decrease intraocular migrate centripetally from limbus. pressure (IOP) by blocking the beta-2 (β2) receptors on ERA’S JOURNAL OF MEDICAL RESEARCH, VOL.6 NO.1 Page: 2 Jan - Jun 2019 ERA’S JOURNAL OF MEDICAL RESEARCH VOL.6 NO.1 sodium, necessary for aqueous secretion. It inhibits the transport of Na+necessary for aqueous secretion and thus causes reduced aqueous secretion and IOP2. Along with the ocular side effects, there are numerous systemic side effects associated with this drug precluding its use in a b c glaucoma treatments (15). Other ocular side effects
Recommended publications
  • Hereditary Nystagmus in Early Childhood
    J Med Genet: first published as 10.1136/jmg.7.3.253 on 1 September 1970. Downloaded from Journal of Medical Genetics (1970). 7, 253. Hereditary Nystagmus in Early Childhood BRIAN HARCOURT* Nystagmus is defined as a rhythmic involuntary clinical characteristics of various types of hereditary movement of the eyes, and as an acquired pheno- nystagmus and the techniques which are available menon arising in later childhood or in adult life is to differentiate between 'idiopathic' nystagmus and usually a symptom of serious neurological or laby- nystagmus as a symptom of an occult disorder of the rinthine disease; in such cases the movements of the visual apparatus in early childhood, some descrip- eyes commonly produce subjective symptoms of tion of the modes of inheritance and of the long- objects moving in the visual panorama (oscillopsia). term visual prognosis are given in the various Nystagmus may also be 'congenital', or, more categories of infantile nystagmus which can be so accurately, may first be observed within a few weeks defined. of birth when the infant begins to attempt to fix and to follow visually stimulating targets by means of Character of Nystagmus conjugate movements of the eyes. In such cases, Though it is not usually possible to arrive at the nystagmus may persist throughout life, but even an exact diagnosis of the cause of nystagmus by ob- at a later stage there is always a complete absence of servation of the eye movements alone, a great deal of the symptom of oscillopsia. Nystagmus which useful information can be obtained by such a study.
    [Show full text]
  • Treacher Collins Prize Essay the Significance of Nystagmus
    Eye (1989) 3, 816--832 Treacher Collins Prize Essay The Significance of Nystagmus NICHOLAS EVANS Norwich Introduction combined. The range of forms it takes, and Ophthalmology found the term v!to"[<xy!too, the circumstances in which it occurs, must be like many others, in classical Greece, where it compared and contrasted in order to under­ described the head-nodding of the wined and stand the relationships between nystagmus of somnolent. It first acquired a neuro-ophthal­ different aetiologies. An approach which is mological sense in 1822, when it was used by synthetic as well as analytic identifies those Goodl to describe 'habitual squinting'. Since features which are common to different types then its meaning has been refined, and much and those that are distinctive, and helps has been learned about the circumstances in describe the relationship between eye move­ which the eye oscillates, the components of ment and vision in nystagmus. nystagmus, and its neurophysiological, Nystagmus is not properly a disorder of eye neuroanatomic and neuropathological corre­ movement, but one of steady fixation, in lates. It occurs physiologically and pathologi­ which the relationship between eye and field cally, alone or in conjunction with visual or is unstable. The essential significance of all central nervous system pathology. It takes a types of nystagmus is the disturbance in this variety of different forms, the eyes moving relationship between the sensory and motor about one or more axis, and may be conjugate ends of the visual-oculomotor axis. Optimal or dysjugate. It can be modified to a variable visual performance requires stability of the degree by external (visual, gravitational and image on the retina, and vision is inevitably rotational) and internal (level of awareness affected by nystagmus.
    [Show full text]
  • Macular Dystrophies Mimicking Age-Related Macular Degeneration
    Progress in Retinal and Eye Research 39 (2014) 23e57 Contents lists available at ScienceDirect Progress in Retinal and Eye Research journal homepage: www.elsevier.com/locate/prer Macular dystrophies mimicking age-related macular degeneration Nicole T.M. Saksens a,1,2,7, Monika Fleckenstein b,1,3,7, Steffen Schmitz-Valckenberg b,4,7, Frank G. Holz b,3,7, Anneke I. den Hollander a,5,7, Jan E.E. Keunen a,5,7, Camiel J.F. Boon a,c,d,5,6,7, Carel B. Hoyng a,*,7 a Department of Ophthalmology, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX Nijmegen, The Netherlands b Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, Bonn, Germany c Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford OX3 9DU, United Kingdom d Department of Ophthalmology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands article info abstract Article history: Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly Available online 28 November 2013 population in the Western world. AMD is a clinically heterogeneous disease presenting with drusen, pigmentary changes, geographic atrophy and/or choroidal neovascularization. Due to its heterogeneous Keywords: presentation, it can be challenging to distinguish AMD from several macular diseases that can mimic the Age-related macular degeneration features of AMD. This clinical overlap may potentially lead to misdiagnosis. In this review, we discuss the AMD characteristics of AMD and the macular dystrophies that can mimic AMD. The appropriate use of clinical Macular dystrophy and genetic analysis can aid the clinician to establish the correct diagnosis, and to provide the patient Differential diagnosis Retina with the appropriate prognostic information.
    [Show full text]
  • 39Th Annual Meeting
    North American Neuro-Ophthalmology Society 39th Annual Meeting February 9–14, 2013 Snowbird Ski Resort • Snowbird, Utah POSTER PRESENTATIONS Tuesday, February 12, 2013 • 6:00 p.m. – 9:30 p.m. Authors will be standing by their posters during the following hours: Odd-Numbered Posters: 6:45 p.m. – 7:30 p.m. Even-Numbered Posters: 7:30 p.m. – 8:15 p.m. The Tour of Posters has been replaced with Distinguished Posters. The top-rated posters this year are marked with a “*” in the Syllabus and will have a ribbon on their poster board. Poster # Title Presenting Author 1* Redefining Wolfram Syndrome in the Molecular Era Patrick Yu-Wai-Man Management and Outcomes of Idiopathic Intracranial Hypertension with Moderate-Severe 2* Rudrani Banik Visual Field Loss: Pilot Data for the Surgical Idiopathic Intracranial Hypertension Treatment Trial Correlation Between Clinical Parameters And Diffusion-Weighted Magnetic Resonance 3* David M. Salvay Imaging In Idiopathic Intracranial Hypertension 4* Contrast Sensitivity Visual Acuity Defects in the Earliest Stages of Parkinsonism Juliana Matthews 5* Visual Function and Freedom from Disease Activity in a Phase 3 Trial for Relapsing Multiple Sclerosis Laura J. Balcer Dimensions of the Optic Nerve Head Neural Canal Using Enhanced Depth Imaging Optical 6* Kevin Rosenberg Coherence Tomography in Non-Arteritic Ischemic Optic Neuropathy Compared to Normal Subjects Eye Movement Perimetry: Evaluation of Saccadic Latency, Saccadic Amplitude, and Visual 7* Matthew J. Thurtell Threshold to Peripheral Visual Stimuli in Young Compared With Older Adults 9* Advanced MRI of Optic Nerve Drusen: Preliminary Findings Seth A. Smith 10* Clinical Features of OPA1-Related Optic Neuropathy: A Retrospective Case Series Philip M.
    [Show full text]
  • The Pharmacological Treatment of Nystagmus: a Review
    Review The pharmacological treatment of nystagmus: a review Rebecca Jane McLean & Irene Gottlob† Ophthalmology Group, University of Leicester, UK 1. Introduction 2. Acquired nystagmus Nystagmus is an involuntary, to-and-fro movement of the eyes that can result in a reduction in visual acuity and oscillopsia. Mechanisms that cause 3. Infantile nystagmus nystagmus are better understood in some forms, such as acquired periodic 4. Other treatments used in alternating nystagmus, than in others, for example acquired pendular nystagmus nystagmus, for which there is limited knowledge. Effective pharmacological 5. Conclusion treatment exists to reduce nystagmus, particularly in acquired nystagmus 6. Expert opinion and, more recently, infantile nystagmus. However, as there are very few randomized controlled trials in the area, most pharmacological treatment options in nystagmus remain empirical. Keywords: 3,4-diaminopyridine, acquired nystagmus, acquired pendular nystagmus, baclofen, downbeat nystagmus, gabapentin, infantile nystagmus, memantine, multiple sclerosis, periodic alternating nystagmus, upbeat nystagmus Expert Opin. Pharmacother. (2009) 10(11):1805-1816 1. Introduction The involuntary, to-and-fro oscillation of the eyes in pathological nystagmus can occur in the horizontal, vertical and/or torsional plane and be further classified into a jerk or pendular waveform [1]. Nystagmus leads to reduced visual acuity due to the excessive motion of images on the retina, and also the movement of images away from the fovea [2]. As the desired target falls further from the centre of the fovea, receptor density decreases and therefore the ability to perceive detail is reduced [3]. Visual acuity also declines the faster the target moves across the fovea [4]. Three main mechanisms stabilize the line of sight (to static targets) so that the image we see is fixed and clear.
    [Show full text]
  • A Case of Anterior Ischemic Optic Neuropathy Associated with Uveitis
    Clinical Ophthalmology Dovepress open access to scientific and medical research Open Access Full Text Article CASE REPORT A case of anterior ischemic optic neuropathy associated with uveitis Michitaka Sugahara Introduction: Here, we describe a patient who presented with anterior ischemic optic Takayuki Fujimoto neuropathy (AION) and subsequently developed uveitis. Kyoko Shidara Case: A 69-year-old man was referred to our hospital and initially presented with best-corrected Kenji Inoue visual acuities (BCVA) of 20/40 (right eye) and 20/1000 (left eye) and relative afferent pupillary Masato Wakakura defect. Slit-lamp examination revealed no signs of ocular inflammation in either eye. Fundus examination revealed left-eye swelling and a pale superior optic disc, and Goldmann perimetry Inouye Eye Hospital, Tokyo, Japan revealed left-eye inferior hemianopia. The patient was diagnosed with nonarteritic AION in the left eye. One week later, the patient returned to the hospital because of vision loss. The BCVA of the left eye was so poor that the patient could only count fingers. Slit-lamp examination revealed 1+ cells in the anterior chamber and the anterior vitreous in both eyes. Funduscopic examination revealed vasculitis and exudates in both eyes. The patient was diagnosed with bilateral panuveitis, and treatment with topical betamethasone was started. No other physical findings resulting from other autoimmune or infectious diseases were found. No additional treatments were administered, and optic disc edema in the left eye improved, and the retinal exudates disappeared in 3 months. The patient’s BCVA improved after cataract surgery was performed. Conclusion: Panuveitis most likely manifests after the development of AION.
    [Show full text]
  • Visual Perception in Migraine: a Narrative Review
    vision Review Visual Perception in Migraine: A Narrative Review Nouchine Hadjikhani 1,2,* and Maurice Vincent 3 1 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA 2 Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, 41119 Gothenburg, Sweden 3 Eli Lilly and Company, Indianapolis, IN 46285, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-724-5625 Abstract: Migraine, the most frequent neurological ailment, affects visual processing during and between attacks. Most visual disturbances associated with migraine can be explained by increased neural hyperexcitability, as suggested by clinical, physiological and neuroimaging evidence. Here, we review how simple (e.g., patterns, color) visual functions can be affected in patients with migraine, describe the different complex manifestations of the so-called Alice in Wonderland Syndrome, and discuss how visual stimuli can trigger migraine attacks. We also reinforce the importance of a thorough, proactive examination of visual function in people with migraine. Keywords: migraine aura; vision; Alice in Wonderland Syndrome 1. Introduction Vision consumes a substantial portion of brain processing in humans. Migraine, the most frequent neurological ailment, affects vision more than any other cerebral function, both during and between attacks. Visual experiences in patients with migraine vary vastly in nature, extent and intensity, suggesting that migraine affects the central nervous system (CNS) anatomically and functionally in many different ways, thereby disrupting Citation: Hadjikhani, N.; Vincent, M. several components of visual processing. Migraine visual symptoms are simple (positive or Visual Perception in Migraine: A Narrative Review. Vision 2021, 5, 20. negative), or complex, which involve larger and more elaborate vision disturbances, such https://doi.org/10.3390/vision5020020 as the perception of fortification spectra and other illusions [1].
    [Show full text]
  • Simulation of Oscillopsia in Virtual Reality
    This is a repository copy of Simulation of oscillopsia in virtual reality. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/132350/ Version: Published Version Article: Randall, D., Griffiths, H. orcid.org/0000-0003-4286-5371, Arblaster, G. orcid.org/0000-0002-3656-3740 et al. (2 more authors) (2018) Simulation of oscillopsia in virtual reality. British and Irish Orthoptic Journal, 14 (1). pp. 45-49. ISSN 1743-9868 10.22599/bioj.112 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Randall, D, et al. 2018. Simulation of Oscillopsia in Virtual Reality. British and Irish Orthoptic Journal, 14(1), pp.4549, DOI: https://doi.org/10.22599/bioj.112 ORIGINAL ARTICLE Simulation of Oscillopsia in Virtual Reality David Randall, Helen Griffiths, Gemma Arblaster, Anne Bjerre and John Fenner Purpose: Nystagmus is characterised by involuntary eye movement. A proportion of those with nystagmus experience the world constantly in motion as their eyes move: a symptom known as oscillopsia. Individuals with oscillopsia can be incapacitated and often feel neglected due to limited treatment options.
    [Show full text]
  • Towards an International Classification of Vestibular Disorders
    Journal of Vestibular Research 19 (2009) 1–13 1 DOI 10.3233/VES-2009-0343 IOS Press Classification of vestibular symptoms: Towards an international classification of vestibular disorders First consensus document of the Committee for the Classification of Vestibular Disorders of the B ar´ any´ Society Alexandre Bisdorffa,∗, Michael Von Brevernb, Thomas Lempertc and David E. Newman-Tokerd aDepartment of Neurology, Centre Hospitalier Emile Mayrisch, L-4005 Esch-sur-Alzette, Luxembourg bVestibular Research Group Berlin, Department of Neurology, Park-Klinik Weissensee, Berlin, Germany cVestibular Research Group Berlin, Department of Neurology, Schlosspark-Klinik, Berlin, Germany dDepartment of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA On behalf of the Committee for the Classification of Vestibular Disorders of the Bar´ any´ Society: Pierre Bertholon, Alexandre Bisdorff, Adolfo Bronstein, Herman Kingma, Thomas Lempert, Jose Antonio Lopez Escamez, Måns Magnusson, Lloyd B. Minor, David E. Newman-Toker, Nicolas´ Perez,´ Philippe Perrin, Mamoru Suzuki, Michael von Brevern, John Waterston and Toshiaki Yagi Received 4 February 2009 Accepted 1 September 2009 1. Introduction such as psychiatry and headache, where often there is no histopathologic, radiographic, physiologic, or other The Committee for Classification of Vestibular Dis- independent diagnostic standard available. However, orders of the Bar´ any´ Society was inaugurated at the diagnostic standards and classification are also crucial meeting of the Bar´ any´ Society in Uppsala 2006. Its in areas of medicine such as epilepsy and rheumatolo- charge is to promote development of an implementable gy, where, although confirmatory tests do exist, there classification of vestibular disorders. is substantial overlap in clinical features or biomarkers Symptom and disease definitions are a fundamen- across syndromes.
    [Show full text]
  • Assessment and Management of Infantile Nystagmus Syndrome
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Atilla, J Clin Exp Ophthalmol 2016, 7:2 g u y o J Ophthalmology 10.4172/2155-9570.1000550 ISSN: 2155-9570 DOI: Review Article Open Access Assessment and Management of Infantile Nystagmus Syndrome Huban Atilla* Department of Ophthalmology, Faculty of Medicine, Ankara University, Turkey *Corresponding author: Huban Atilla, Department of Ophthalmology, Faculty of Medicine, Ankara University, Turkey, Tel: +90 312 4462345; E-mail: [email protected] Received date: March 08, 2016; Accepted date: April 26, 2016; Published date: April 29, 2016 Copyright: © 2016 Atilla H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This article is a review of infantile nystagmus syndrome, presenting with an overview of the physiological nystagmus and the etiology, symptoms, clinical evaluation and treatment options. Keywords: Nystagmus syndrome; Physiologic nystagmus phases; active following of the stimulus results in poor correspondence between eye position and stimulus position. At higher velocity targets Introduction (greater than 100 deg/sec) optokinetic nystagmus can no longer be evoked. Unlike simple foveal smooth pursuit, OKN appears to have Nystagmus is a rhythmic, involuntary oscillation of one or both both foveal and peripheral retinal components [3]. Slow phase of the eyes. There are various classifications of nystagmus according to the nystagmus is for following the target and the fast phase is for re- age of onset, etiology, waveform and other characteristics.
    [Show full text]
  • Ocular Dysmetria in a Patient with Charcot-‐Marie-‐ Tooth Disease
    Ocular Dysmetria in a Patient with Charcot-Marie- Tooth Disease Michelle Lee, OD A patient with the inherited neuropathy, Charcot-Marie-Tooth disease (CMT), presents with ocular dysmetria. Although abnormal ocular motility has not been reported in CMT patients, the absence of other etiologies indicates a possible ocular manifestation. CASE HISTORY • Patient demographics: 74 year old Caucasian male • Chief complaint: no visual or ocular complaints • Ocular History o Mild cataracts OU o Dry eye syndrome OU o Refractive error OU • Medical history o Charcot-Marie-Tooth disease o Asthma o Hypercholesterolemia o Herpes zoster o Chronic lower bacK pain o Dermatitis o Obstructive sleep apnea • Medications o Albuterol o Gabapentin o Meloxicam o Mometasone furoate o Oxybutynin chloride o Simvastatin o Tamusolisn HCL o Aspirin o Vitamin D • Ocular medications: artificial tears prn OU • Family history: father and grandfather also with CMT PERTINENT FINDINGS • Clinical o Mixed hypometric and hypermetric saccades with intermittent disconjugate movement o Trace restriction of lateral gaze and inferior temporal OS o Ptosis OD o Borderline reduced contrast sensitivity OD, mildly reduced contrast sensitivity OS o Pertinent negatives: no evidence of light-near-dissociation, no signs of optic neuropathy 1 of 4 • Physical o Abnormal gait • Lab studies o EMG consistent with positive family history of CMT • Radiology studies o MRI (04/13): no intracranial mass or acute infarcts seen, no evidence of cerebellar abnormality noted DIFFERENTIAL DIAGNOSIS • Primary/leading
    [Show full text]
  • Acquired Pendular Nystagmus in Multiple Sclerosis: Clinical Observations and the Role of Optic Neuropathy 263
    262 journal ofNeurology, Neurosurgery, and Psychiatry 1993;56:262-267 Acquired pendular nystagmus in multiple J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.56.3.262 on 1 March 1993. Downloaded from sclerosis: clinical observations and the role of optic neuropathy Jason J S Barton, Terry A Cox Abstract identified from the files of patients seen Thirty seven patients with pendular nys- between 1981-90 at the MS Clinic at the tagmus due to multiple sclerosis were University of British Columbia. Only those reviewed. Most developed nystagmus with a "clinically definite" or "clinically prob- later in a progressive phase of the dis- able" diagnosis of MS4 and who had been ease. All had cerebellar signs on exami- examined by a neuro-ophthalmologist were nation and evidence of optic neuropathy. accepted. Two patients were not studied fur- MRI in eight patients showed cerebeliar ther because of insufficient data. or brainstem lesions in seven; the most Data were taken from the first neuro-oph- consistent finding was a lesion in the dor- thalmologic examination noting pendular nys- sal pontine tegmentum. Dissociated nys- tagmus to document the signs most closely tagmus was seen in 18 patients: in these associated with its appearance. Visual acuity the signs of optic neuropathy were often after refraction was assessed with projected asymmetric and the severity correlated Snellen charts. Colour vision was scored with closely with the side with larger oscilla- 16 Ishihara pseudo-isochromatic plates and tions. This suggests that dissociations in optic atrophy was graded on fundoscopy on a acquired pendular nystagmus may be scale of 0 to 4.5 Ocular motility and the due to asymmetries in optic neuropathy amplitude and trajectory of pendular nystag- rather than asymmetries in cerebellar or mus were assessed clinically.
    [Show full text]