Report of the ELT Science Working Group

Total Page:16

File Type:pdf, Size:1020Kb

Report of the ELT Science Working Group Science Cases and Requirements for the ESO ELT Report of the ELT Science Working Group 30 April 2006 Report of the ELT Science Working Group April 30 2006 Table of Contents Executive Summary.......................................................................................................... 1 1. Table of requirements for Prominent Science Cases............................................ 3 I. Introduction .............................................................................................................. 4 II. Science Cases: Stars and Planets.............................................................................. 5 S1. Solar System Comets:....................................................................................... 5 Hans-Uli Käufl ......................................................................................................... 5 S2. Extra-Solar-System Comets ............................................................................. 7 Hans-Uli Käufl ......................................................................................................... 7 S3. From giant to terrestrial exoplanets: detection, characterisation and evolution9 R. Rebolo and S. Udry.............................................................................................. 9 S4. Freely-floating planetary mass objects........................................................... 12 F. Comeron, M. McCaughrean, & H. Zinnecker.................................................... 12 S5. Young stellar clusters (incl. Galactic Centre)................................................. 15 F. Comerón, M. McCaughrean, H. Zinnecker........................................................ 15 S6. Magnetic fields in star formation and in very low-mass objects.................... 17 Eike Guenther (TLS) and Hans Zinnecker (AIP)................................................... 17 S7. Origin of massive stars ................................................................................... 20 H. Zinnecker, H.-U. Käufl, M. McCaughrean........................................................ 20 S8. LMC and SMC field star population .............................................................. 22 H. Zinnecker & F. Comerón................................................................................... 22 S9. Circumstellar Disks........................................................................................ 24 M. McCaughrean, W. Benz. H.-U. Käufl............................................................... 24 S10. Stellar remnants: black holes and neutron stars ............................................. 27 R. Rebolo................................................................................................................ 27 S11. Asteroseismology ........................................................................................... 29 S. Udry.................................................................................................................... 29 III. Science Cases – Stars and Galaxies.................................................................... 31 G1. The intracluster stellar population .................................................................. 31 Magda Arnabodli.................................................................................................... 31 G2. Planetary Nebulae as traces of the element abundances in early type galaxies and diffuse light in clusters......................................................................................... 33 Magda Arnaboldi.................................................................................................... 33 G3. Stellar Clusters and the Evolution of Galaxies............................................... 35 Arne Ardeberg and Peter Linde.............................................................................. 35 G4. Imaging & Spectroscopy of Resolved Stellar Populations in Galaxies ......... 37 E. Tolstoy ............................................................................................................... 37 G5. Spectral observations of star clusters: ............................................................ 46 Kissler-Patig ........................................................................................................... 46 G6. Young, massive star clusters .......................................................................... 48 Kissler-Patig ........................................................................................................... 48 G7. Measuring the stellar IMF in local group galaxies......................................... 50 Guido de Marchi..................................................................................................... 50 G8. Star formation history through supernovae .................................................... 53 Bruno Leibundgut................................................................................................... 53 G9. AGN Demographics ....................................................................................... 56 R. Fosbury .............................................................................................................. 56 IV. Science Cases – Galaxies and Cosmology ......................................................... 58 C1. Dark Energy – Type Ia Supernovae as Distance Indicators ........................... 58 ii Report of the ELT Science Working Group April 30 2006 Isobel Hook ............................................................................................................ 58 C2. A dynamical measurement of the expansion history of the Universe ............ 64 M. Haehnelt ............................................................................................................ 64 C3. Testing the variability of fundamental constants with QSO absorption spectra 66 Martin Haehnelt...................................................................................................... 66 C4. First light - The Highest Redshift Galaxies (z>10) ........................................ 68 M. Franx ................................................................................................................. 68 C5. Galaxies and AGN at end of reionizaion........................................................ 71 M. Franx ................................................................................................................. 71 C6. Probing reionization with GRBs and quasars................................................. 73 J. Bergeron & P. Shaver ......................................................................................... 73 C7. Is the low density IGM metal-enriched? ........................................................ 76 J. Bergeron.............................................................................................................. 76 C8. Topology of the IGM at z = 2-3 ..................................................................... 78 J. Bergeron.............................................................................................................. 78 C9. Galaxy Formation and Evolution ................................................................... 80 A.Cimatti & P.Rosati.............................................................................................. 80 C10. Physics of High Redshift Galaxies ................................................................. 83 A. Cimatti & P. Rosati............................................................................................ 83 C11. Gravitational Lensing..................................................................................... 87 P.Rosati & P.Shaver ............................................................................................... 87 C12. Deep Galaxy Studies at z=2-5 ........................................................................ 89 M. Franx ................................................................................................................. 89 V. Prominent Science Cases........................................................................................ 91 VI. Table of Requirements ....................................................................................... 92 VII. Appendices ......................................................................................................... 95 1. Synergies and Operations ................................................................................... 95 2. JWST .................................................................................................................. 96 3. Considerations for the ELT Site ......................................................................... 97 Synergy considerations for the ELT site Summary................................................ 97 4. Working Group Members................................................................................. 100 5. Useful links....................................................................................................... 101 6. Further work needed......................................................................................... 103 7. Terms of Reference .......................................................................................... 104 8. Meeting agendas............................................................................................... 106 iii Report of the ELT Science Working Group April 30 2006 Executive Summary The ESO-ELT Science Working
Recommended publications
  • One-Armed Oscillations in Be Star Discs
    A&A 456, 1097–1104 (2006) Astronomy DOI: 10.1051/0004-6361:20065407 & c ESO 2006 Astrophysics One-armed oscillations in Be star discs J. C. B. Papaloizou1 andG.J.Savonije2 1 Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK 2 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: [email protected] Received 11 April 2006 / Accepted 20 June 2006 ABSTRACT Aims. In this paper we study the effect of the quadrupole-term in the gravitational potential of a rotationally deformed central Be star on one armed density waves in the circumstellar disc. The aim is to explain the observed long-term violet over red (V/R) intensity variations of the double peaked Balmer emission-lines, not only in cool Be star systems, but also in the hot systems like γ Cas. Methods. We have carried out semi-analytic and numerical studies of low-frequency one armed global oscillations in near Keplerian discs around Be stars. In these we have investigated surface density profiles for the circumstellar disc which have inner narrow low surface density or gap regions, just interior to global maxima close to the rapidly rotating star, as well as the mode inner boundary conditions. Results. Our results indicate that it is not necessary to invoke extra forces such as caused by line absorption from the stellar flux in order to explain the long-term V/R variations in the discs around massive Be stars. When there exists a narrow gap between the star and its circumstellar disc, with the result that the radial velocity perturbation is non-zero at the inner disc boundary, we find oscillation (and V/R) periods in the observed range for plausible magnitudes for the rotational quadrupole term.
    [Show full text]
  • The New Generation Planetary Population Synthesis (NGPPS). II
    Astronomy & Astrophysics manuscript no. pop c ESO 2020 July 14, 2020 The New Generation Planetary Population Synthesis (NGPPS) II. Planetary population of solar-like stars and overview of statistical results? Alexandre Emsenhuber1; 2, Christoph Mordasini2, Remo Burn2, Yann Alibert2, Willy Benz2, and Erik Asphaug1 1 Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721, USA e-mail: [email protected] 2 Physikalisches Institut, Universität Bern, Gesselschaftsstrasse 6, 3012 Bern, Switzerland Received DD MMM YYYY / Accepted DD MMM YYYY ABSTRACT Context. Planetary formation and evolution is a combination of multiple processes that are interlinked. These processes are not known in detail and many uncertainties remain. Constraining the formation and evolution mechanisms observationally requires statistical comparison to a large diversity of planetary systems. Aims. We want to understand the global observable consequences of different physical processes (accretion, migration, and interac- tions) and initial properties (such as disc masses and metallicities) on the demographics of the planetary population. We also want to study the convergence of our scheme with respect to one initial condition, the initial number of planetary embryo in each disc. Methods. We select distributions of initial conditions that are representative of known protoplanetary discs. Then, we use the Gener- ation III Bern model to perform planetary population synthesis. We synthesise five populations with each a different initial number of Moon-mass embryos per disc: 1, 10, 20, 50, and 100. The last is our nominal planetary population consisting of 1000 stars (systems) that we use to provide an extensive statistical analysis of the planetary systems around 1 M stars.
    [Show full text]
  • Detection of Nitrogen Gas in the Β Pictoris Circumstellar Disc P
    Manuscript version: Published Version The version presented in WRAP is the published version (Version of Record). Persistent WRAP URL: http://wrap.warwick.ac.uk/110773 How to cite: The repository item page linked to above, will contain details on accessing citation guidance from the publisher. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: Please refer to the repository item page, publisher’s statement section, for further information. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications A&A 621, A121 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834346 & © ESO 2019 Astrophysics Detection of nitrogen gas in the β Pictoris circumstellar disc P. A. Wilson1,2,3,4,5, R. Kerr6, A. Lecavelier des Etangs4,5, V. Bourrier4,5,7, A. Vidal-Madjar4,5, F. Kiefer4,5, and I.
    [Show full text]
  • Space News Update – May 2019
    Space News Update – May 2019 By Pat Williams IN THIS EDITION: • India aims to be 1st country to land rover on Moon's south pole. • Jeff Bezos says Blue Origin will land humans on moon by 2024. • China's Chang'e-4 probe resumes work for sixth lunar day. • NASA awards Artemis contract for lunar gateway power. • From airport to spaceport as UK targets horizontal spaceflight. • Russian space sector plagued by astronomical corruption. • Links to other space and astronomy news published in May 2019. Disclaimer - I claim no authorship for the printed material; except where noted (PW). INDIA AIMS TO BE 1ST COUNTRY TO LAND ROVER ON MOON'S SOUTH POLE India will become the first country to land a rover on the Moon's the south pole if the country's space agency "Indian Space Research Organisation (ISRO)" successfully achieves the feat during the country's second Moon mission "Chandrayaan-2" later this year. "This is a place where nobody has gone. All the ISRO missions till now to the Moon have landed near the Moon's equator. Chandrayaan-2, India’s second lunar mission, has three modules namely Orbiter, Lander (Vikram) & Rover (Pragyan). The Orbiter and Lander modules will be interfaced mechanically and stacked together as an integrated module and accommodated inside the GSLV MK-III launch vehicle. The Rover is housed inside the Lander. After launch into earth bound orbit by GSLV MK-III, the integrated module will reach Moon orbit using Orbiter propulsion module. Subsequently, Lander will separate from the Orbiter and soft land at the predetermined site close to lunar South Pole.
    [Show full text]
  • Gas Accretion by Giant Planets : a Study with 3D Inviscid Hydrodynamical Simulations
    EPSC Abstracts Vol. 8, EPSC2013-363, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Gas Accretion by Giant Planets : a study with 3D inviscid hydrodynamical simulations J. Szulágyi (1), A. Morbidelli (1), A. Crida (1) and F. Masset (2) (1) University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Laboratoire Lagrange, France ([email protected]) (2) Institute of Physical Sciences, Universidad Nacional Autónoma de México Abstract If this were true, there should be a dichotomy in the mass distribution of planets : planets should be either We investigate the properties of the circumplanetary smaller than 30 Earth masses (those that did not ∼ disc (CPD) of a Jupiter-mass planet with a three- reach the phase of runaway gas accretion) or of mul- dimensional hydrodynamical nested grid code. We tiple Jupiter-masses (those that entered and completed perform isothermal simulations of a large radial por- the fast runaway gas accretion). Planets in between tion of the circumstellar disc and, with the help of a these two mass categories should be extremely rare, system of 8 nested grids, we zoom into the planet’s conversely to what is observed [4]. vicinity. Since giant planets are thought to form in a A very likely possibility, however, is that the cir- dead zone, we do not use any prescribed viscosity in cumplanetary disc acts as a regulator of the rate of gas the fluid-dynamics equations. accretion onto the planet. In particular, if the circum- We discuss in details the geometry of the circum- planetary disc (CPD) has a very low viscosity [8], then planetary disc, and especially focus on the role of the the transport of angular momentum through this disc polar inflow.
    [Show full text]
  • On the Structure and Mass Delivery Towards Circumplanetary Discs Matthäus Schulik,1 Anders Johansen,1 Bertram Bitsch,2 Elena Lega3 Michiel Lambrechts1
    Astronomy & Astrophysics manuscript no. cpds c ESO 2020 March 31, 2020 On the structure and mass delivery towards circumplanetary discs Matthäus Schulik,1 Anders Johansen,1 Bertram Bitsch,2 Elena Lega3 Michiel Lambrechts1 1 Lund Observatory, Box 43, Sölvegatan 27, SE-22100 Lund, Sweden e-mail: [email protected] 2 Max-Planck Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany 3 Laboratoire Lagrange, UMR7293, Université de la Côte d’Azur, Boulevard de la Observatoire, 06304 Nice Cedex 4, France Received ... ABSTRACT Circumplanetary discs (CPDs) form around young gas giants and are thought to be the sites of moon formation as well as an interme- diate reservoir of gas that feeds the growth of the gas giant. How the physical properties of such CPDs are affected by the planetary mass and the overall opacity is relatively poorly understood. In order to clarify this, we use the global radiation hydrodynamics code FARGOCA, with a grid structure that allows resolving the planetary gravitational potential sufficiently well for a CPD to form. We then study the gas flows and density/temperature structures that emerge as a function of planet mass, opacity and potential depth. Our results indicate interesting structure formation for Jupiter-mass planets at low opacities, which we subsequently analyse in de- tail. Using an opacity level that is 100 times lower than that of ISM dust, our Jupiter-mass protoplanet features an envelope that is sufficiently cold for a CPD to form, and a free-fall region separating the CPD and the circumstellar disc emerges. Interestingly, this free-fall region appears to be a result of supersonic erosion of outer envelope material, as opposed to the static structure formation that one would expect at low opacities.
    [Show full text]
  • A Natural Formation Scenario for Misaligned and Short-Period Eccentric Extrasolar Planets
    Mon. Not. R. Astron. Soc. 417, 1817–1822 (2011) Printed 3 July 2018 (MN LATEX style file v2.2) A natural formation scenario for misaligned and short-period eccentric extrasolar planets I. Thies1⋆, P. Kroupa1†, S. P. Goodwin2, D. Stamatellos3, A. P. Whitworth3 1Argelander-Institut f¨ur Astronomie (Sternwarte), Universit¨at Bonn, Auf dem H¨ugel 71, D-53121 Bonn, Germany 2Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK 3School of Physics & Astronomy, Cardiff University, Cardiff CF24 3AA, UK 3 July 2018 ABSTRACT Recent discoveries of strongly misaligned transiting exoplanets pose a challenge to the established planet formation theory which assumes planetary systems to form and evolve in isolation. However, the fact that the majority of stars actually do form in star clusters raises the question how isolated forming planetary systems really are. Besides radiative and tidal forces the presence of dense gas aggregates in star-forming regions are potential sources for perturbations to protoplanetary discs or systems. Here we show that subsequent capture of gas from large extended accretion envelopes onto a passing star with a typical circumstellar disc can tilt the disc plane to retrograde orientation, naturally explaining the formation of strongly inclined planetary systems. Furthermore, the inner disc regions may become denser, and thus more prone to speedy coagulation and planet formation. Pre-existing planetary systems are compressed by gas inflows leading to a natural occurrence of close-in misaligned hot Jupiters and short-period eccentric planets. The likelihood of such events mainly depends on the gas content of the cluster and is thus expected to be highest in the youngest star clusters.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Probing Dust Grain Evolution in IM Lupi's Circumstellar Disc
    A&A 489, 633–650 (2008) Astronomy DOI: 10.1051/0004-6361:200810121 & c ESO 2008 Astrophysics Probing dust grain evolution in IM Lupi’s circumstellar disc Multi-wavelength observations and modelling of the dust disc C. Pinte1,2,D.L.Padgett3, F. Ménard2, K. R. Stapelfeldt4,G.Schneider5, J. Olofsson2,O.Panic´ 6,J.C.Augereau2, G. Duchêne2,7, J. Krist4, K. Pontoppidan8, M. D. Perrin9,C.A.Grady10, J. Kessler-Silacci11,E.F.vanDishoeck6,12, D. Lommen6, M. Silverstone13,D.C.Hines14,S.Wolf15,G.A.Blake8, T. Henning16, and B. Stecklum17 1 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK e-mail: [email protected] 2 Laboratoire d’Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, BP 53, 38041 Grenoble Cedex 9, France 3 Spitzer Science Center, Caltech, Pasadena, CA 91125, USA 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 5 Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 6 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 7 Astronomy Dept, UC Berkeley, Berkeley CA 94720-3411, USA 8 Division of Geological and Planetary Sciences 150-21, California Institute of Technology, Pasadena, CA 91125, USA 9 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1562, USA 10 Eureka Scientific and Goddard Space Flight Center, Code 667, Greenbelt, MD 20771, USA 11 The University of Texas at Austin, Department of Astronomy, 1 University Station C1400, Austin, Texas 78712–0259, USA 12 Max Planck
    [Show full text]
  • The Dispersal of Planet-Forming Discs: Theory Confronts Observations Rsos.Royalsocietypublishing.Org Barbara Ercolano1,2, Ilaria Pascucci3,4
    The Dispersal of Planet-forming discs: Theory confronts Observations rsos.royalsocietypublishing.org Barbara Ercolano1;2, Ilaria Pascucci3;4 1Universitäts-Sternwarte München, Scheinerstr. 1, Research 81679 München, Germany 2Excellence Cluster Origin and Structure of the Article submitted to journal Universe, Boltzmannstr.2, 85748 Garching bei München, Germany 3Lunar and Planetary Laboratory, The University of Subject Areas: Arizona, Tucson, AZ 85721, USA Astrophysics 4Earths in Other Solar Systems Team, NASA Nexus Keywords: for Exoplanet System Science Protoplanetary Disks, Planet Formation Discs of gas and dust around Myr-old stars are a by-product of the star formation process and provide the raw material to form planets. Hence, their Author for correspondence: evolution and dispersal directly impact what type ercolanousm.lmu.de of planets can form and affect the final architecture of planetary systems. Here, we review empirical constraints on disc evolution and dispersal with special emphasis on transition discs, a subset of discs that appear to be caught in the act of clearing out planet-forming material. Along with observations, we summarize theoretical models that build our physical understanding of how discs evolve and disperse and discuss their significance in the context of the formation and evolution of planetary systems. By confronting theoretical predictions with observations, we also identify the most promising areas for future progress. ............ arXiv:1704.00214v2 [astro-ph.EP] 4 Apr 2017 c 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited.
    [Show full text]
  • Determining the True Mass of Radial-Velocity Exoplanets with Gaia F
    Determining the true mass of radial-velocity exoplanets with Gaia F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, A. Vidal-Madjar To cite this version: F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, et al.. Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets. Astronomy and Astrophysics - A&A, EDP Sciences, 2021, 645, pp.A7. 10.1051/0004-6361/202039168. hal-03085694 HAL Id: hal-03085694 https://hal.archives-ouvertes.fr/hal-03085694 Submitted on 21 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 645, A7 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039168 & © F. Kiefer et al. 2020 Astrophysics Determining the true mass of radial-velocity exoplanets with Gaia Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets? F. Kiefer1,2, G. Hébrard1,3, A. Lecavelier des Etangs1, E. Martioli1,4, S. Dalal1, and A. Vidal-Madjar1 1 Institut d’Astrophysique de Paris, Sorbonne
    [Show full text]
  • Exoplanet Demographics Conference November 9-13, 2020 Tuesday Talk Abstracts
    Exoplanet Demographics Conference November 9-13, 2020 Tuesday Talk Abstracts Small Planets Low-mass Exoplanet Demographics - Daniel Jontof-Hutter (Univ. of the Pacific) Exoplanet science is advancing rapidly on many fronts following the detection of thousands of planets, particularly from transit surveys. Precise stellar characterization has revealed the bimodal planetary size distribution, and has enabled precise planetary mass measurements with radial velocities and transit timing. Over 120 exoplanets less massive than 30 Earths have measured masses and radii (Jontof-Hutter, 2019, AREPS, 47, 141), and a remarkably diverse range of bulk densities among these exoplanets has been revealed. Planetary mass and radius characterization has also entered the terrestrial regime- over 30 exoplanets smaller than 1.6 Earth-radii have detected masses, and planets as small as Mars now populate the mass-radius diagram. In this review, we summarize the progress that has been made in characterizing this diverse population: where planet sizes and incident fluxes inform on bulk planet properties, where compositions by volume are dominated by volatiles and where bulk planet properties within individuals systems differ substantially. To some extent, however, detection biases prevent individual characterizations from revealing underlying planet demographics. We review progress to correct for these biases in determining distributions of planet properties. Looking forward, planetary system demographics will require observations to probe system architectures beyond the compact configurations that have been detected close to stellar hosts. A small number of compact multi-transiting systems show evidence of additional planets from radial velocities, and observing campaigns to detect non-transiting planets that orbit beyond the known planets have begun.
    [Show full text]