Saccharomyces Jurei Sp. Nov., Isolation and Genetic Identification of a Novel Yeast Species from Quercus Robur

Total Page:16

File Type:pdf, Size:1020Kb

Saccharomyces Jurei Sp. Nov., Isolation and Genetic Identification of a Novel Yeast Species from Quercus Robur TAXONOMIC DESCRIPTION Naseeb et al., Int J Syst Evol Microbiol 2017;67:2046–2052 DOI 10.1099/ijsem.0.002013 Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur Samina Naseeb,1† Stephen A. James,2† Haya Alsammar,1 Christopher J. Michaels,1 Beatrice Gini,1 Carmen Nueno-Palop,2 Christopher J. Bond,2 Henry McGhie,3 Ian N. Roberts2 and Daniela Delneri1,* Abstract Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain. INTRODUCTION of 16 chromosomes [18], and they can be differentiated from one another based on the sequences of their internal The Saccharomyces sensu stricto group is composed of eight transcribed spacer (ITS) and 26S rRNA D1/D2 regions [19, biologically distinct yeast species, namely Saccharomyces 20]. It has been shown that the majority of yeast species can cerevisiae, S. paradoxus, S. cariocanus, S. uvarum, S. mika- be identified from sequence divergence of the D1/D2 tae, S. kudriavzevii, S. arboricola and S. eubayanus [1–6], domain [21]. Sequencing of the ITS1 and D1/D2 regions is and two natural hybrids, namely S. pastorianus [7, 8] and S. therefore routinely used for identifying yeast strains [3, 22– bayanus [9]. S. cariocanus was initially included in the 25]. genus based on karyotyping and reproductive isolation [3]. However, subsequent genome sequence analysis of the only Saccharomyces yeasts have been isolated from a wide variety two known strains (of S. cariocanus) showed them to belong of different substrates including deciduous tree bark, sur- to one of three geographically well-defined populations of S. rounding soil, tree exudates (sap), fruits, insects and vine- paradoxus (i.e. American population) [10, 11]. The most yard grapes [2, 26–28]. S. paradoxus is the most commonly recent phylogenetic analyses of the genus excluded both S. isolated species in nature and has been found globally from cariocanus and S. bayanus, the latter due to it being of natural resources, and most notably from oak trees (Quercus hybrid origin [12, 13]. The cryotolerant yeast S. eubayanus spp.) and surrounding soil [11, 29]. Moreover, S. cerevisae is the latest addition to the genus. This species was first iso- and S. paradoxus have been isolated from the same loca- lated in Nothofagus (southern beech) forests in Patagonia, tions, indicating that populations of the two species coexist Argentina [6], but has since been found in North America, in nature [30, 31]. Saccharomyces hybrids have been often on the Tibetan Plateau and most recently on the North isolated from domesticated environments such as vineyards – Island of New Zealand [14 16]. [32] and breweries, and are known to be associated with fer- The Saccharomyces species are defined by the biological spe- mentation processes for the production of wine and beer. cies concept since they are reproductively isolated via post- The best example of this is the lager yeast S. pastorianus zygotic barriers [3, 10, 17]. All of these species possess (syn. S. carlsbergensis), a cold-adapted S. cerevisiae  S. typical budding shape morphology, have the same number eubayanus alloploid hybrid [6]. Author affiliations: 1Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK; 2Institute of Food Research, Norwich, Norfolk, UK; 3The Manchester Museum, The University of Manchester, Manchester M13 9PL, UK. *Correspondence: Daniela Delneri, [email protected] Keywords: Saccharomyces; yeast; new species; Saccharomyces jurei; isolation protocol. Abbreviations: ITS, internal transcribed spacer; NJ, neighbour-joining. †These authors contributed equally to this work. The GenBank/EMBL/DDBJ accession numbers for the 26S rRNA D1/D2 and ITS sequences of D5088T are HG764813 and HG764814, respectively. The MycoBank number for Saccharomyces jurei sp. nov. is MB 819910. Three supplementary tables and one supplementary figure are available with the online Supplementary Material. 002013 ã 2017 IUMS This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. 2046 Naseeb et al., Int J Syst Evol Microbiol 2017;67:2046–2052 To date, most of the Saccharomyces strains held in interna- Morphological and physiological characterization of tional yeast collections (e.g. the Westerdijk Fungal Biodiver- yeasts sity Institute, CBS) have been isolated from substrates The two strains were characterized biochemically, morpho- collected and sampled at low altitudes [26, 30, 33, 34]. Some logically and physiologically according to standard methods species found from higher altitude include S. eubayanus iso- described previously [35]. Growth temperature was deter- lated from the Tibetan Plateau [14] and S. arboricola from mined by cultivation on YM (yeast extract-malt extract) the Qinling Mountains [2]. Consequently, very little is agar. Sporulation tests were performed on cornmeal agar, known about the ecology and geographical distribution of Gorodkowa agar, potassium acetate agar and YM agar, and Saccharomyces yeasts found at higher altitudes and cooler plates were incubated at 25 C for 3–4 weeks in individual conditions. Thus, sampling substrates such as soil and trees and mixed cultures. at higher altitudes may lead to the discovery of new cryoto- lerant yeast strains and species. In this study, we sampled Images of the asci were taken using an Olympus model BH- 2 light microscope and a scanning electron microscope. The oak tree bark and surrounding soil at an altitude of 1000 m above sea level in Saint Auban, France. The yeast commu- asci formed on acetate agar after 5 days at 25 C, and sponta- nity was isolated and the species identities were determined neously broke as result of the general fixing process. by standard ITS and D1/D2 sequencing. Whilst the majority DNA extraction of isolated Saccharomyces were identified as S. paradoxus, two strains (D5088T and D5095) were recovered and found For ITS1 and 26S rRNA D1/D2 sequencing, genomic DNA to represent a novel species belonging to the genus Saccha- was isolated from cultures freshly grown on plates using the romyces. The novel species is named Saccharomyces jurei sp. Masterpure Yeast DNA extraction kit (catalogue no. nov., in memory of the yeast researcher Professor Jure Piš- MPY80200) and following the manufacturer’s protocol. kur. We show here that S. jurei is reproductively isolated DNA yields and A260/A280 ratios were measured using a from other Saccharomyces species by performing genetic Nanodrop spectrophotometer (ND-1000), while DNA crosses and testing for hybrid sterility. Both strains formed purity and integrity were checked by 0.8 % agarose gel viable hybrids with all other Saccharomyces species and electrophoresis. were, as expected from crosses between different biological species, predominantly sterile (with a spore viability ranging DNA sequencing from 0 to 3 %). The variable D1 and D2 domains of the 26S rRNA gene were amplified and sequenced using primers NL1 and NL4 [36]. The ribosomal ITS region was amplified using primers METHODS ITS4 and ITS5, and sequenced using these primers as well Yeast isolation, media and maintenance as internal primers ITS2 and ITS3 [20, 37]. Translation EF- 1aA(TEF1) and RPB2 genes were amplified and sequenced Samples of bark and soil were obtained in July 2013 from as described previously [23]. Other nuclear genes (CAT8, oak trees (Quercus) growing at an altitude of 1000m CYR1, GSY1, MET6 and OPY1) were amplified and above sea level in the Saint Auban region of south-eastern sequenced using previously published primers [32]. The ¢ ¢ France (43 5.2 N 006 44 E). The samples were collected PCR fragments were analysed by standard 1 % agarose gel aseptically and stored in sterile bags or Petri dishes. Equal electrophoresis, purified and concentrated using QIAquick amounts of each bark and soil sample were independently PCR purification spin columns (Qiagen) following the man- placed into one of two 50ml sterile Falcon tubes contain- ufacturer’s instructions. The purified products were ing Sniegowski enrichment medium consisting of 3 g sequenced using the BigDye Terminator Ready Reaction kit, yeast extract, 3 g malt extract, 5 g peptone, 10 g sucrose, version 3.1 (Applied Biosystems) following the manufac- 76ml EtOH, 1mg chloramphenicol and 1ml of 1M HCl turer’s instructions. Sequence traces were edited manually, per litre [31]. The Falcon tubes were tightly capped and and consensus sequences were generated using the program one set was incubated (without agitation) at 30 C, while SEQMAN, version 11 (DNASTAR). The sequences were com- – the other was incubated at 20 C for 20 25days. The tubes pared pairwise
Recommended publications
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Saccharomyces Paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral Dsrna Content
    microorganisms Article Saccharomyces paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral dsRNA Content Bazile˙ Ravoityte˙ 1,*, Juliana Lukša 1, Vyacheslav Yurchenko 2,3 , Saulius Serva 4,5 and Elena Serviene˙ 1,5,* 1 Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; [email protected] 2 Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; [email protected] 3 Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Malaya Pirogovskaya str. 20, 119435 Moscow, Russia 4 Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, Sauletekio˙ al. 7, 10257 Vilnius, Lithuania; [email protected] 5 Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio˙ al. 11, 10223 Vilnius, Lithuania * Correspondence: [email protected] (B.R.); [email protected] (E.S.) Received: 18 November 2020; Accepted: 29 November 2020; Published: 30 November 2020 Abstract: Killer yeasts are attractive antifungal agents with great potential applications in the food industry. Natural Saccharomyces paradoxus isolates provide new dsRNA-based killer systems available for investigation. The presence of viral dsRNA may alter transcriptional profile of S. paradoxus. To test this possibility, a high-throughput RNA sequencing was employed to compare the transcriptomes of S. paradoxus AML 15-66 K66 killer strains after curing them of either M-66 alone or both M-66 and L-A-66 dsRNA viruses. The S. paradoxus cells cured of viral dsRNA(s) showed respiration deficient or altered sporulation patterns. We have identified numerous changes in the transcription profile of genes including those linked to ribosomes and amino acid biosynthesis, as well as mitochondrial function.
    [Show full text]
  • Interspecific Hybrids Reveal Increased Fermentation
    fermentation Article Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile Matthew J. Winans 1,2,* , Yuki Yamamoto 1, Yuki Fujimaru 1, Yuki Kusaba 1, Jennifer E. G. Gallagher 2 and Hiroshi Kitagaki 1 1 Graduate School of Advanced Health Sciences, Saga University, 1, Honjo, Saga city, Saga 840-8502, Japan; [email protected] (Y.Y.); [email protected] (Y.F.); [email protected] (Y.K.); [email protected] (H.K.) 2 Biology Department, West Virginia University, 53 Campus Drive, Morgantown, WV 26506-6057, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(304)-483-1786; Fax: +1-(304)-293-6363 Received: 4 December 2019; Accepted: 17 January 2020; Published: 20 January 2020 Abstract: The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. Hierarchical clustering heatmapping with principal component analysis for metabolic profiling was used in finding low levels of endogenous amino/organic acids clustered S. arboricola apart from the S.
    [Show full text]
  • Genetic Variation and Phylogeography of the Wild Yeast Saccharomyces Paradoxus in Eurasia
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA VEGETAL Genetic variation and phylogeography of the wild yeast Saccharomyces paradoxus in Eurasia Pedro Miguel Coelho de Almeida MESTRADO EM MICROBIOLOGIA APLICADA 2011 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA VEGETAL Genetic variation and phylogeography of the wild yeast Saccharomyces paradoxus in Eurasia Dissertação orientada por Prof. Doutor José Paulo Sampaio (CREM, FCT-UNL) e Prof.ª Doutora Margarida Barata (FCUL) Pedro Miguel Coelho de Almeida MESTRADO EM MICROBIOLOGIA APLICADA 2011 Genetic variation and phylogeography of the wild yeast Saccharomyces paradoxus in Eurasia Pedro Miguel Coelho de Almeida MASTER THESIS 2011 This thesis was fully performed at CREM (Centro de Recursos Microbiológicos) research center, Department of Life Sciences of the New University of Lisbon under the direct supervision of Prof. Dr. José Paulo Sampaio. Prof. Dr. Margarida Barata was the internal designated supervisor in the scope of the Master in Applied Microbiology of the Faculty of Sciences of the University of Lisbon. Genetic variation and phylogeography of the wild yeast Saccharomyces paradoxus in Eurasia ACKNOWLEDGEMENTS I have learned much during my MSc and the first person to whom I really want to express my sincere gratitude is Prof. Dr. José Paulo Sampaio for receiving me in his laboratory, allowing me to take the research of my thesis under his supervision, and always get time when I need it. I am very thankful for the guidance and suggestions that make this thesis possible. I will always keep in mind his open-mind and the useful teachings concerning microbiology, ecology, phylogenetics, evolution … and many others… I also would like to thank Prof.
    [Show full text]
  • Social Wasps Promote Social Behavior in Saccharomyces Spp
    COMMENTARY Social wasps promote social behavior in Saccharomyces spp. COMMENTARY Meredith Blackwella,b,1 and Cletus P. Kurtzmanc Production of fermented beverages and bread mak- ing represents a multibillion dollar worldwide industry (1) with its origins linked to the Middle East nearly 10,000 y ago (2). Despite this long history, the cause of fermentation was not discovered until the pioneer- ing work beginning in the middle of the 19th century when Louis Pasteur demonstrated that fermentation is yeast-mediated. The long-term questions have been which yeast and where did it come from? The name selected for the wine fermentation yeast was Saccha- romyces cerevisiae, but based on phenotype, it appeared that there were related fermentative spe- cies. Early studies from DNA reassociation (3) and from gene sequencing (4) verified this premise and demon- strated that additional species of Saccharomyces were involved in fermentation, such as Saccharomyces uva- rum for lager beers. DNA sequence evidence sup- ports the use of S. cerevisiae in wine making in Egypt 5,000 y ago (5). Unresolved has been an under- standing of the natural habitat of Saccharomyces spe- cies. It has been proposed that S. cerevisiae evolved into a domesticated species found only in wineries and associated vineyards, but the discovery of Saccha- romyces species on tree bark has raised the intriguing possibility that S. cerevisiae and related species have a Fig. 1. Several studies surveyed yeasts present in the gut or on the surface of natural habitat associated with forest trees (6). More various insects. The work of Stefanini et al.
    [Show full text]
  • Brewing Efficacy of Non-Conventional Saccharomyces Non-Cerevisiae Yeasts Authors: James Bruner 1,2 (Orcid: 0000-0003-3691-0711)
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2021 doi:10.20944/preprints202107.0423.v1 Brewing Efficacy of Non-Conventional Saccharomyces Non-Cerevisiae Yeasts Authors: James Bruner 1,2 (ORCiD: 0000-0003-3691-0711), Andrew Marcus 1, Glen Fox 1* (ORCiD: 0000-0001-7502-0637) Addresses: 1. Food Science and Technology Department, University of California, 1 Shields Ave, Davis, CA, USA 95616 2. Creature Comforts Brewing Company, 271 W. Hancock Ave, Athens, GA, USA 30601 *Corresponding authors: [email protected] © 2021 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2021 doi:10.20944/preprints202107.0423.v1 Abstract Consumer demands for new sensory experiences have driven the research of unconventional yeasts in beer. While much research exists on the use of various common Saccharomyces cerevisiae strains as well as non-Saccharomyces yeasts, there exists a gap in knowledge regarding other non-cerevisiae Saccharomyces species in the fermentation of beer, outside that of S. pastorianus. Here, five distinct species of Saccharomyces from the UC Davis Phaff Yeast Culture Collection, as well as one interspecies hybrid from Fermentis, were chosen to ferment 40 L pilot scale beers. S. kudriavzevii, S. mikatae, S. paradoxus, S. bayanus, and S. uvarum yeasts were fermented in duplicate, with one fermenter in each pair receiving 10 g/L dry- hop during fermentation. Analytical measurements were made each day of fermentation and compared to controls of SafAle US-05 and SafLager W 34/70 for commercial brewing parameters of interest. Finished beers were also analyzed for aroma, taste, and mouthfeel to determine the flavor of each yeast as it pertains to brewing potential.
    [Show full text]
  • Novel Non-Cerevisiae Saccharomyces Yeast Species Used in Beer and Alcoholic Beverage Fermentations
    fermentation Review Novel Non-Cerevisiae Saccharomyces Yeast Species Used in Beer and Alcoholic Beverage Fermentations James Bruner * and Glen Fox * Food Science and Technology, University of California, Davis, CA 95616, USA * Correspondence: [email protected] (J.B.); [email protected] (G.F.) Received: 28 October 2020; Accepted: 22 November 2020; Published: 24 November 2020 Abstract: A great deal of research in the alcoholic beverage industry was done on non-Saccharomyces yeast strains in recent years. The increase in research interest could be attributed to the changing of consumer tastes and the search for new beer sensory experiences, as well as the rise in popularity of mixed-fermentation beers. The search for unique flavors and aromas, such as the higher alcohols and esters, polyfunctional thiols, lactones and furanones, and terpenoids that produce fruity and floral notes led to the use of non-cerevisiae Saccharomyces species in the fermentation process. Additionally, a desire to invoke new technologies and techniques for making alcoholic beverages also led to the use of new and novel yeast species. Among them, one of the most widely used non-cerevisiae strains is S. pastorianus, which was used in the production of lager beer for centuries. The goal of this review is to focus on some of the more distinct species, such as those species of Saccharomyces sensu stricto yeasts: S. kudriavzevii, S. paradoxus, S. mikatae, S. uvarum, and S. bayanus. In addition, this review discusses other Saccharomyces spp. that were used in alcoholic fermentation. Most importantly, the factors professional brewers might consider when selecting a strain of yeast for fermentation, are reviewed herein.
    [Show full text]
  • INTERSPECIFIC HYBRID BETWEEN Saccharomyces Mikatae and Saccharomyces Cerevisiae AS an ALTERNATIVE STRAIN for BREAD MAKING
    INTERSPECIFIC HYBRID BETWEEN Saccharomyces mikatae AND Saccharomyces cerevisiae AS AN ALTERNATIVE STRAIN FOR BREAD MAKING Yuji Oda1,2*, Subaru Tanizaki1, Megumi Yokoyama-Ohtsuka1, Hiroaki Sakurai2 Address(es): 1 Obihiro University of Agriculture and Veterinary Medicine, Department of Life and Agricultural Sciences, Obihiro, Hokkaido 080-8555, Japan. 2 Nippon Beet Sugar Manufacturing Co., Research Center, Obihiro, Hokkaido 080-0831, Japan. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2020.10.1.127-129 ARTICLE INFO ABSTRACT Received 3. 9. 2019 Hybrids of the homothallic diploid Saccharomyces mikatae and heterothallic haploid Saccharomyces cerevisiae isolated from local Revised 2. 5. 2020 fruits in Hokkaido and a baking strain, respectively, were constructed by the spore to cell mating method. Interspecific hybridization of Accepted 22. 5. 2020 the selected strain was confirmed by polymerase chain reaction using species-specific primers, fermentation profiles, and spore Published 1. 8. 2020 formation. The leavening ability of the dough and enzyme activities of the hybrid exhibited intermediate traits of their parental strains. A baking test by the sponge-dough method with a standard formulation of white bread showed that breads produced using the hybrid differed in aroma and taste from those made using a conventional baking strain. Thus, the hybrid may be used to produce baked goods Short communication with diverse quality, which may be more acceptable to specific consumers. Keywords: Bread making, Hybrid, Saccharomyces mikatae, Saccharomyces cerevisiae INTRODUCTION During a survey of local genetic resources, we found a fermentative yeast strain, identified as S. mikatae, which was unsuitable for usual bread making as it Saccharomyces is a teleomorphic ascomycetous genus that generally exhibits exhibited a defect in maltose fermentation.
    [Show full text]
  • Saccharomyces Paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses
    viruses Article Saccharomyces paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses Igle˙ Vepštaite-Monstaviˇc˙ e˙ 1, Juliana Lukša 1 , Aleksandras Konovalovas 2, Dovile˙ Ežerskyte˙ 1, Ramune˙ Staneviˇciene˙ 1, Živile˙ Strazdaite-Žielien˙ e˙ 1, Saulius Serva 2,3,* and Elena Serviene˙ 1,3,* 1 Laboratory of Genetics, Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania; [email protected] (I.V.-M.); [email protected] (J.L.); [email protected] (D.E.); [email protected] (R.S.); [email protected] (Ž.S.-Ž.) 2 Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; [email protected] 3 Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania * Correspondence: [email protected] (S.S.); [email protected] (E.S.); Tel.: +370-52-72-9363 (S.S.); Tel.: +370-52-39-8244 (E.S.); Fax: +370-52-39-8231 (S.S.); Fax: +370-52-72-9352 (E.S.) Received: 28 August 2018; Accepted: 15 October 2018; Published: 16 October 2018 Abstract: The Saccharomycetaceae yeast family recently became recognized for expanding of the repertoire of different dsRNA-based viruses, highlighting the need for understanding of their cross-dependence. We isolated the Saccharomyces paradoxus AML-15-66 killer strain from spontaneous fermentation of serviceberries and identified helper and satellite viruses of the family Totiviridae, which are responsible for the killing phenotype. The corresponding full dsRNA genomes of viruses have been cloned and sequenced. Sequence analysis of SpV-LA-66 identified it to be most similar to S.
    [Show full text]
  • Searching for Telomerase Rnas in Saccharomycetes
    bioRxiv preprint doi: https://doi.org/10.1101/323675; this version posted May 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Article TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes Maria Waldl 1,†, Bernhard C. Thiel 1,†, Roman Ochsenreiter 1, Alexander Holzenleiter 2,3, João Victor de Araujo Oliveira 4, Maria Emília M. T. Walter 4, Michael T. Wolfinger 1,5* ID , Peter F. Stadler 6,7,1,8* ID 1 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; {maria,thiel,romanoch}@tbi.univie.ac.at, michael.wolfi[email protected] 2 BioInformatics Group, Fakultät CB Hochschule Mittweida, Technikumplatz 17, D-09648 Mittweida, Germany; [email protected] 3 Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany 4 Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília; [email protected], [email protected] 5 Center for Anatomy and Cell Biology, Medical University of Vienna, Währingerstraße 13, 1090 Vienna, Austria 6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, Germany 7 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany 8 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501 * Correspondence: MTW michael.wolfi[email protected]; PFS [email protected] † These authors contributed equally to this work.
    [Show full text]
  • Saccharomyces Kudriavzevii in Portugal Are Associated with Oak Bark and Are Sympatric with S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by New University of Lisbon's Repository APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 2008, p. 2144–2152 Vol. 74, No. 7 0099-2240/08/$08.00ϩ0 doi:10.1128/AEM.02396-07 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Natural Populations of Saccharomyces kudriavzevii in Portugal Are Associated with Oak Bark and Are Sympatric with S. cerevisiae and S. paradoxusᰔ Jose´ Paulo Sampaio* and Paula Gonc¸alves Centro de Recursos Microbiolo´gicos, Departmento de Cieˆncias da Vida, Faculdade de Cieˆncias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Received 24 October 2007/Accepted 5 February 2008 Here we report the isolation of four Saccharomyces species (former Saccharomyces sensu stricto group) from tree bark. The employment of two temperatures (10°C in addition to the more commonly used 30°C) resulted in the isolation of S. kudriavzevii and S. uvarum, two species that grow at low temperatures, in addition to S. cerevisiae and S. paradoxus. A clear bias was found toward the bark of certain trees, particularly certain oak species. Very often, more than one Saccharomyces species was found in one locality and occasionally even in the same bark sample. Our evidence strongly suggests that (markedly) different growth temperature preferences play a fundamental role in the sympatric associations of Saccharomyces species uncovered in this survey. S. kudriavzevii was isolated at most of the sites sampled in Portugal, indicating that the geographic distribution Downloaded from of this species is wider than the distribution assumed thus far.
    [Show full text]
  • Suppressive Effect of Wild Saccharomyces Cerevisiae and Saccharomyces Paradoxus Strains on Ige Production by Mouse Spleen Cells
    Food Sci. Technol. Res., 19 (6), 1019–1027, 2013 Suppressive Effect of Wild Saccharomyces cerevisiae and Saccharomyces paradoxus Strains on Ige Production by Mouse Spleen Cells 1* 1 2 1 2 2 Takeshi Kawahara , Daichi NaKayama , Keisuke toda , Shyuichiro iNagaKi , Katsumi taNaKa and Hisako yaSui 1 Laboratory of Food Bioscience, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan 2 Kiso Town Resources Institute, 2326-6 Fukushima Kisomachi, Kiso-gun, Nagano 397-8588, Japan Received February 18, 2013; Accepted July 17, 2013 The genus Saccharomyces includes industrial yeasts that are used for bread and alcoholic beverage production. Saccharomyces strains isolated from natural resources, referred to as “wild” yeasts, are used for making products with strain-specific flavors that are different from those of the “domesticated” in- dustrial yeasts. The physiological effects of wild yeast are poorly understood. In this study, we isolated 2 Saccharomyces cerevisiae strains (S02 − 03) and 5 Saccharomyces paradoxus strains (P01 − 02, S01, S04 − 05) from natural resources in the Kiso area and investigated the effect of these fungal strains on IgE production by mouse spleen cells. Culturing spleen cells with heat-killed yeasts resulted in elevated IFN-γ and IL-12 levels followed by significant reduction in IgE levels. The S03 and P01 strains induced IL-12 p40 and IL-10 expression in RAW264 cells. Thus, wild strains of S. cerevisiae and S. paradoxus regulate macrophage cytokine production to improve the Th1/Th2 immune balance and suppress IgE production. Keywords: Saccharomyces cerevisiae, Saccharomyces paradoxus, wild yeast, IFN-γ, IL-12, IgE, allergy Introduction tained from common industrial yeast.
    [Show full text]