Section 5.3 Points on Circles Using Sine and Cosine 321
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trigonometric Functions
Trigonometric Functions This worksheet covers the basic characteristics of the sine, cosine, tangent, cotangent, secant, and cosecant trigonometric functions. Sine Function: f(x) = sin (x) • Graph • Domain: all real numbers • Range: [-1 , 1] • Period = 2π • x intercepts: x = kπ , where k is an integer. • y intercepts: y = 0 • Maximum points: (π/2 + 2kπ, 1), where k is an integer. • Minimum points: (3π/2 + 2kπ, -1), where k is an integer. • Symmetry: since sin (–x) = –sin (x) then sin(x) is an odd function and its graph is symmetric with respect to the origin (0, 0). • Intervals of increase/decrease: over one period and from 0 to 2π, sin (x) is increasing on the intervals (0, π/2) and (3π/2 , 2π), and decreasing on the interval (π/2 , 3π/2). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Cosine Function: f(x) = cos (x) • Graph • Domain: all real numbers • Range: [–1 , 1] • Period = 2π • x intercepts: x = π/2 + k π , where k is an integer. • y intercepts: y = 1 • Maximum points: (2 k π , 1) , where k is an integer. • Minimum points: (π + 2 k π , –1) , where k is an integer. • Symmetry: since cos(–x) = cos(x) then cos (x) is an even function and its graph is symmetric with respect to the y axis. • Intervals of increase/decrease: over one period and from 0 to 2π, cos (x) is decreasing on (0 , π) increasing on (π , 2π). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Tangent Function : f(x) = tan (x) • Graph • Domain: all real numbers except π/2 + k π, k is an integer. -
Unit Circle Trigonometry
UNIT CIRCLE TRIGONOMETRY The Unit Circle is the circle centered at the origin with radius 1 unit (hence, the “unit” circle). The equation of this circle is xy22+ =1. A diagram of the unit circle is shown below: y xy22+ = 1 1 x -2 -1 1 2 -1 -2 We have previously applied trigonometry to triangles that were drawn with no reference to any coordinate system. Because the radius of the unit circle is 1, we will see that it provides a convenient framework within which we can apply trigonometry to the coordinate plane. Drawing Angles in Standard Position We will first learn how angles are drawn within the coordinate plane. An angle is said to be in standard position if the vertex of the angle is at (0, 0) and the initial side of the angle lies along the positive x-axis. If the angle measure is positive, then the angle has been created by a counterclockwise rotation from the initial to the terminal side. If the angle measure is negative, then the angle has been created by a clockwise rotation from the initial to the terminal side. θ in standard position, where θ is positive: θ in standard position, where θ is negative: y y Terminal side θ Initial side x x Initial side θ Terminal side Unit Circle Trigonometry Drawing Angles in Standard Position Examples The following angles are drawn in standard position: y y 1. θ = 40D 2. θ =160D θ θ x x y 3. θ =−320D Notice that the terminal sides in examples 1 and 3 are in the same position, but they do not represent the same angle (because x the amount and direction of the rotation θ in each is different). -
P. 1 Math 490 Notes 7 Zero Dimensional Spaces for (SΩ,Τo)
p. 1 Math 490 Notes 7 Zero Dimensional Spaces For (SΩ, τo), discussed in our last set of notes, we can describe a basis B for τo as follows: B = {[λ, λ] ¯ λ is a non-limit ordinal } ∪ {[µ + 1, λ] ¯ λ is a limit ordinal and µ < λ}. ¯ ¯ The sets in B are τo-open, since they form a basis for the order topology, but they are also closed by the previous Prop N7.1 from our last set of notes. Sets which are simultaneously open and closed relative to the same topology are called clopen sets. A topology with a basis of clopen sets is defined to be zero-dimensional. As we have just discussed, (SΩ, τ0) is zero-dimensional, as are the discrete and indiscrete topologies on any set. It can also be shown that the Sorgenfrey line (R, τs) is zero-dimensional. Recall that a basis for τs is B = {[a, b) ¯ a, b ∈R and a < b}. It is easy to show that each set [a, b) is clopen relative to τs: ¯ each [a, b) itself is τs-open by definition of τs, and the complement of [a, b)is(−∞,a)∪[b, ∞), which can be written as [ ¡[a − n, a) ∪ [b, b + n)¢, and is therefore open. n∈N Closures and Interiors of Sets As you may know from studying analysis, subsets are frequently neither open nor closed. However, for any subset A in a topological space, there is a certain closed set A and a certain open set Ao associated with A in a natural way: Clτ A = A = \{B ¯ B is closed and A ⊆ B} (Closure of A) ¯ o Iτ A = A = [{U ¯ U is open and U ⊆ A}. -
Molecular Symmetry
Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry . -
Lesson 6: Trigonometric Identities
1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as a2 − b2 =(a − b)(a + b)or a3 + b3 =(a + b)(a2 − ab + b2): Identities such as these are used to simplifly algebriac expressions and to solve alge- a3 + b3 briac equations. For example, using the third identity above, the expression a + b simpliflies to a2 − ab + b2: The first identiy verifies that the equation (a2 − b2)=0is true precisely when a = b: The formulas or trigonometric identities introduced in this lesson constitute an integral part of the study and applications of trigonometry. Such identities can be used to simplifly complicated trigonometric expressions. This lesson contains several examples and exercises to demonstrate this type of procedure. Trigonometric identities can also used solve trigonometric equations. Equations of this type are introduced in this lesson and examined in more detail in Lesson 7. For student’s convenience, the identities presented in this lesson are sumarized in Appendix A 2. The Elementary Identities Let (x; y) be the point on the unit circle centered at (0; 0) that determines the angle t rad : Recall that the definitions of the trigonometric functions for this angle are sin t = y tan t = y sec t = 1 x y : cos t = x cot t = x csc t = 1 y x These definitions readily establish the first of the elementary or fundamental identities given in the table below. For obvious reasons these are often referred to as the reciprocal and quotient identities. -
The Motion of Point Particles in Curved Spacetime
Living Rev. Relativity, 14, (2011), 7 LIVINGREVIEWS http://www.livingreviews.org/lrr-2011-7 (Update of lrr-2004-6) in relativity The Motion of Point Particles in Curved Spacetime Eric Poisson Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email: [email protected] http://www.physics.uoguelph.ca/ Adam Pound Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email: [email protected] Ian Vega Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email: [email protected] Accepted on 23 August 2011 Published on 29 September 2011 Abstract This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise toa self-force that prevents the particle from moving on a geodesic of the background spacetime. The self-force contains both conservative and dissipative terms, and the latter are responsible for the radiation reaction. The work done by the self-force matches the energy radiated away by the particle. The field’s action on the particle is difficult to calculate because of its singular nature:the field diverges at the position of the particle. But it is possible to isolate the field’s singular part and show that it exerts no force on the particle { its only effect is to contribute to the particle's inertia. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Trigonometric Functions
Hy po e te t n C i u s se o b a p p O θ A c B Adjacent Math 1060 ~ Trigonometry 4 The Six Trigonometric Functions Learning Objectives In this section you will: • Determine the values of the six trigonometric functions from the coordinates of a point on the Unit Circle. • Learn and apply the reciprocal and quotient identities. • Learn and apply the Generalized Reference Angle Theorem. • Find angles that satisfy trigonometric function equations. The Trigonometric Functions In addition to the sine and cosine functions, there are four more. Trigonometric Functions: y Ex 1: Assume � is in this picture. P(cos(�), sin(�)) Find the six trigonometric functions of �. x 1 1 Ex 2: Determine the tangent values for the first quadrant and each of the quadrant angles on this Unit Circle. Reciprocal and Quotient Identities Ex 3: Find the indicated value, if it exists. a) sec 30º b) csc c) cot (2) d) tan �, where � is any angle coterminal with 270 º. e) cos �, where csc � = -2 and < � < . f) sin �, where tan � = and � is in Q III. 2 Generalized Reference Angle Theorem The values of the trigonometric functions of an angle, if they exist, are the same, up to a sign, as the corresponding trigonometric functions of the reference angle. More specifically, if α is the reference angle for θ, then cos θ = ± cos α, sin θ = ± sin α. The sign, + or –, is determined by the quadrant in which the terminal side of θ lies. Ex 4: Determine the reference angle for each of these. Then state the cosine and sine and tangent of each. -
Geometry Course Outline
GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid -
4.2 – Trigonometric Functions: the Unit Circle
Warm Up Warm Up 1 The hypotenuse of a 45◦ − 45◦ − 90◦ triangle is 1 unit in length. What is the measure of each of the other two sides of the triangle? 2 The hypotenuse of a 30◦ − 60◦ − 90◦ triangle is 1 unit in length. What is the measure of each of the other two sides of the triangle? Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 1 / 27 4.2 { Trigonometric Functions: The Unit Circle Pre-Calculus Mr. Niedert Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 2 / 27 2 Trigonometric Functions 3 Domain and Period of Sine and Cosine 4 Evaluating Trigonometric Functions with a Calculator 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 3 / 27 3 Domain and Period of Sine and Cosine 4 Evaluating Trigonometric Functions with a Calculator 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle 2 Trigonometric Functions Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 3 / 27 4 Evaluating Trigonometric Functions with a Calculator 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle 2 Trigonometric Functions 3 Domain and Period of Sine and Cosine Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 3 / 27 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle 2 Trigonometric Functions 3 Domain and Period of Sine and Cosine 4 Evaluating Trigonometric Functions with a Calculator Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. -
Derivation of Sum and Difference Identities for Sine and Cosine
Derivation of sum and difference identities for sine and cosine John Kerl January 2, 2012 The authors of your trigonometry textbook give a geometric derivation of the sum and difference identities for sine and cosine. I find this argument unwieldy | I don't expect you to remember it; in fact, I don't remember it. There's a standard algebraic derivation which is far simpler. The only catch is that you need to use complex arithmetic, which we don't cover in Math 111. Nonetheless, I will present the derivation so that you will have seen how simple the truth can be, and so that you may come to understand it after you've had a few more math courses. And in fact, all you need are the following facts: • Complex numbers are of the form a+bi, where a and b are real numbers and i is defined to be a square root of −1. That is, i2 = −1. (Of course, (−i)2 = −1 as well, so −i is the other square root of −1.) • The number a is called the real part of a + bi; the number b is called the imaginary part of a + bi. All the real numbers you're used to working with are already complex numbers | they simply have zero imaginary part. • To add or subtract complex numbers, add the corresponding real and imaginary parts. For example, 2 + 3i plus 4 + 5i is 6 + 8i. • To multiply two complex numbers a + bi and c + di, just FOIL out the product (a + bi)(c + di) and use the fact that i2 = −1. -
Name: Introduction to Geometry: Points, Lines and Planes Euclid
Name: Introduction to Geometry: Points, Lines and Planes Euclid: “What’s the point of Geometry?- Euclid” http://www.youtube.com/watch?v=_KUGLOiZyK8&safe=active When do historians believe that Euclid completed his work? What key topic did Euclid build on to create all of Geometry? What is an axiom? Why do you think that Euclid’s ideas have lasted for thousands of years? *Point – is a ________ in space. A point has ___ dimension. A point is name by a single capital letter. (ex) *Line – consists of an __________ number of points which extend in ___________ directions. A line is ___-dimensional. A line may be named by using a single lower case letter OR by any two points on the line. (ex) *Plane – consists of an __________ number of points which form a flat surface that extends in all directions. A plane is _____-dimensional. A plane may be named using a single capital letter OR by using three non- collinear points. (ex) *Line segment – consists of ____ points on a line, called the endpoints and all of the points between them. (ex) *Ray – consists of ___ point on a line (called an endpoint or the initial point) and all of the points on one side of the point. (ex) *Opposite rays – share the same initial point and extend in opposite directions on the same line. *Collinear points – (ex) *Coplanar points – (ex) *Two or more geometric figures intersect if they have one or more points in common. The intersection of the figures is the set of elements that the figures have in common.